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1. Introduction

A digital image is stored in a computer in the form of 
a two dimensional array of pixels or picture elements, 
depending on the height and width of the image. Each 
pixel in turn, is a combination of the varying intensities 
of red, green and blue colors which are commonly 
stored in the form of triplets of 8 bit each in the 
computer memory. Thus an image size is dependent on 
the number of pixels it is having which is a function 
of the dimensions of the image. In general, the space 
complexity of an image is O (MN) where the M is the 
height of the image and N is the width of the image. 
Image compression techniques aim towards reducing 
the space complexity for the image. Thus less space is 
required for storing and transmission of an image.  In 
this paper we have used Singular Value Decomposition 

as an image compression technique and compared the 
error in the images at different levels of compression. 
Singular Value Decomposition is a concept of linear 
algebra which factorizes a real matrix A(MxN) into 
components  U, S and V such that the following relation 
is satisfied: A = U*S*V’. This relation is the singular 
value decomposition of A where U is of dimension 
MxM, S is a diagonal matrix of dimension MxN in 
which non-diagonal elements are zero, also called the 
singular values of A and V is of dimension NxN. SVD 
allows us to write the matrix A as a summation of rank 
one matrix in the manner shown below: A= U1*S1 
*V1’ + U2* S2*V2’…………UN*SN*VN’. The terms of the 
diagonal matrix S are sorted in value such that S1> S2> 
S3…>SN. Therefore we can reconstruct the matrix A 
completely if we have the complete matrices U, S and 
V. However, if we remove some of the lower diagonal 
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elements of S, we can still get a good approximation 
of A. The fact that we can approximate the matrix A 
even with lesser elements in S is the basis for image 
compression using SVD.  The approximation becomes 
more accurate with the increase in number of singular 
values used. As a result of quantization, it is common to 
have matrices that have a large number of zeroes than 
the non-zero values. An elegant method of storing such 
matrices is the use of sparse matrix storage formats. In 
this approach, we store only the non-zero elements of a 
matrix thereby reducing the total storage needed for the 
original matrix. This also helps in reducing the amount 
of data that needs to be transmitted for communication 
across computers.

The growth of computing power has also been a 
fast paced one. Today we have high processing power 
available in the form of multi-core processors such as 
the Intel multi-cores processors. In order to fully tap the 
potential of multiprocessing; calls for a new approach 
towards programming where we distribute the processing 
load to different cores thereby reducing execution time 
and producing faster results. In this paper we have 
used OpenMp for achieving distribution of workload 
to different cores. Open Multiprocessing, commonly 
known as OpenMp is a shared memory multiprocessing 
paradigm. We have used the OpenMp in C++ for parallel 
execution of sections of the code  which require high 
performance.    OpenMp is based on a fork and join 
model where a single thread forks into multiple threads 
for performing the parallel tasks and after the execution 
of the parallel region, it resumes as a single thread. The 
performance gain offered by OpenMp comes from the 
fact that the multiple threads can execute concurrently 
on different cores in a multi-core processor. OpenMp 
works best when there is no data dependency among the 
parallel threads. 

In this paper we have used SVD routine implemented 
in GNU Scientific Library for image compression and 
parallelized the routines and achieved around 1.15% 
speedup using dual core Intel processor. We preferred 
GSL rather than INTEL MKL library because it is an open 
Source which in turn uses LAPACK and BLAS library. 
The rest of the paper is organized as follows: Section 2 
presents the related work, Section 3 describes the SVD 
technique and its application in image compression 
section 4 deals with sparse matrix storage formats, 

Section 5 explores the OpenMp programming model for 
SVD, Section 6 presents the results of SVD and Sparse 
storage format for image compression, Section 7 talks 
about the conclusion.

2. Related Work

SVD routines which are used in many scientific or 
engineering applications such as Image processing, 
Image compression, Data clustering, etc. have been 
implemented in many scientific libraries like LAPACK, 
GNU Scientific library, INTEL MKL library etc. 
Chaitanya Gunta et  al6 made an attempt to accelerate 
the SVD routines in LAPACK scientific Library. Sheetal 
Lahabar et al10 proposed parallelizing SVD routines for 
GPU using CUDA programming. Michal W. Berry et al2 
provided a comprehensive study on SVD for dense and 
sparse matrices which are suitable for parallel computing 
platforms. Sivashankaran Rajamanickam12 has worked in 
efficient algorithm for sparse singular value decomposition. 
Mostafa I. Soliman16 has proposed a new algorithm for 
computing the singular value decomposition on one 
side Jacobi based techniques. The above referred papers 
explore the way to accelerate the SVD technique. Rowayda 
A. Sadek15 has conducted an experimental survey on SVD 
as an efficient image processing applications. Prasantha 
et al11 adapted SVD as an image compression technique 
and performed experimental study using MATLAB. 
Awwal Mohammed Rufal et al14 presents a new lossy 
image compression techniques which combines both 
SVD and wavelet difference reduction (WDR) to increase 
the performance of image compression. Vasil Kolev et al8 
has applied SVD for images from scanned photographic 
plates. Mahendra M. Dixit4 worked on adaptive SVD 
algorithm for 2D/3D still image compression application. 
Z hongxiaojia7 concerned about accurate computation 
of SVD using cross product matrices. Taro Konda et al9 
presented the double Divide and Conquer algorithm 
(dDC) for bidiagonal SVD which performs well in speed, 
accuracy and orthogonality compared to the standard 
algorithms such as QR and Divide and Conquer. Literature 
review reveals that SVD is used as one of the image 
compression techniques. In this paper, the SVD technique 
is accelerated and it is employed for image compression 
application and the space overhead is addressed with the 
help of efficient sparse matrix storage format.
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3.  Singular Value Decomposition 
(SVD)

SVD is an approach of advanced linear algebra. It is based 
on the packing the maximum energy of a signal into a 
lesser number of coefficients. It is an effective method 
to split a matrix into linearly independent constituents 
where each constituent has its own contribution in 
terms of energy. The uses of SVD are diverse ranging 
from areas such an image processing, latent semantic 
analysis, approximation of the pseudo inverse of a 
matrix, least square minimization of a matrix, efficient 
medical imaging, topographical analysis,  watermarking 
schemes and many other areas. In the case of image 
compression, SVD offers its advantage in the form of 
its sensitivity to local adaptations in the  statistics of 
an  image. The core mathematical foundations of SVD 
can be summarized as factorizing a matrix A into 
three components U, known as the matrix of rows, S 
called the diagonal matrix or the singular values of 
A and V is called the matrix of columns. These factors 
of the matrix satisfy the relation A = U*S*VT. For a 
given Matrix A of size MxN the output of SVD has the 
following components. U: a matrix of dimension MxM. 
S: the diagonal matrix of dimension MXN, V: a matrix 
of   dimension NxN   and VT represents the transpose of 
the matrix V. To understand the process of SVD let us 
take an example of a 2x2 matrix 

A = 
2 2
1 1−











The transpose of A, is AT= 
2 1
2 1

−







 . 

The first step in SVD involves calculating

A*AT and AT *A, which    as:

A* AT = 
8 0
0 2








   and  AT *A= 

5 3
3 5










Further, we solve for the Eigen vectors of A such that 

|A*AT –λI| = 0.
The values of the Eigen vectors are determined as  

λ1 = 8 and λ2 = 2. Upon finding the Eigen vector of  
A* AT, we can easily determine the diagonal matrix S. The 

singular values of A is defined as the square root of the 
roots the Eigen vector of A* AT.

Thus we have, S =  
8 0

0 2













In the next step we determine the values of the   matrix 
U as follows: to determine the columns of U, we solve for 
the Eigen vectors of A* AT. This should satisfy the relation, 

[A*AT- λI][x] = 0. Using the Eigen values, we get the Eigen 

vectors as X1 = 
−









1
0

 and X2 = 
0
1







. To get the columns 

of U, we determine the unit Eigen vectors of u1 and u2. 

Thus we determine U as U =
−









1 0
0 1

. To determine the 

columns of V we first determine the Eigen vectors of the 
relation [AT*A- λI][x] = 0. Further we calculate the unit 
Eigen vectors v1, v2 to determine the columns of V in a 

similar manner and have  V =

1
2

1
2

1
2

1
2

−

















Thus we have the matrices U, S and V and it can be 
show that the matrix A has been factorized into the three 
matrices U, S, V: it can be seen that the relation A = U*S* 
VT holds good
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2
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       A       =       U       *          S          *           VT

SVD computation involves sequence of vector 
operations, matrix to matrix and matrix to vector 
multiplication13,20. This feature makes SVD computation 
a good candidate for parallelization.

3.1 SVD Algorithm in GSL
Generally there are different algorithms for computing 
SVD such as Golub–Reinsch, High Relative Accuracy 
Bidiagonal SVD, square root-free algorithm, bisection 
method, divide and conquer method, one-sided 
Jacobi method for SVD and biorthogonalization. 
In GNU scientific Library SVD is implemented 



Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

4

using Golub-Reinsch SVD, modified Golub-Reinsch 
SVD and one-sided Jacobi orthogonalization. GNU 
library uses thin version of SVD, a common format 
with  U  as  M-by-N  orthogonal matrix. Full SVD is 
defined as U as an M-by-M orthogonal matrix and S as 
an  M-by-N  diagonal matrix (with additional rows 
of zeros). Here we conducted experiments on image 
compression using SVD algorithm both in MATLAB 
as well as in C using GNU Scientific library. Golub 
Reinsch algorithm is a most efficient, popular and 
numerically stable technique for computing SVD of an 
arbitrary matrix. It is also well suited for multicore and 
SIMD GPU architecture. GolubReinsch algorithm21 is 
also used in LAPACK package. It has two distinct steps 
such as transforming the given matrix into bidiagonal 
forms using series of householder transformations 
and followed by an iterative procedure designed to 
use orthogonal transformations to produce diagonal 
matrices that are successively more diagonal. Running 
time of SVD is O (mn2). 

3.2 GolubReinsch Algorithm
Step 1: Bidiagonalization of A to B

B ← QTAP [A is the original matrix, B is a diagonal 
matrix and Q and P are unitary householder matrices]
Step2: Diagonalization of B to S

S ← XTBY [The matrix B is obtained from the step 1, 
Σ is a diagonal matrix; X and Y are orthogonal unitary 
matrices].
Step 3: Compute orthogonal matrix U and V

U ← QX
V T ← (PY) T
Step 4: Compute SVD of A
A = UΣV T

3.3 SVD in Image Compression
The objective of image compression is to represent an 
image with lesser amount of data than what an image 
is composed of and the ability to reconstruct the image 
from its smaller representation. This improves the 
storage efficiency of an image and also greatly reduces 
the amount of data that is required to transmit the image 
across computers1,5,19. However, the image formed from 
its compressed image by an image processing algorithm 
may or may not be able to recreate the exact copy of 
original image. A compression technique can be lossy 

or lossless based on the quality of image it restores. 
A lossless compression scheme can reconstruct the 
exact copy of an image whereas a lossy scheme can 
recreate the image with some data loss, depending on 
the compression technique used. We have used SVD as 
lossy image compression scheme. The other methods for 
image compression are discrete 9/7 biorthogonal wavelet 
transform, discrete cosine transform, Karhunen-Lohve 
transform, and combinations of these. The reason why 
we have used singular value decomposition is it is basic, 
simple and works almost for all kind of matrix and it is 
well suited for image compression. As images are stored 
in the form of matrices in the computer memory, it is 
imperative to think an image as a matrix17. Depending 
on amount of type of image, colored or grayscale, 
the space required to store an image depends on the 
dimension of the image. A grayscale image has the 
space requirement of mxn where m and n denote the 
height and the width of the image whereas a colored 
image  has the  space requirement of mxnx3,  as there 
are 3 matrices of mxn each representing the colors red, 
green and blue commonly known as the RGB image. An 
illustration of both these schemes has been shown in 
Figure 1.

From the properties of SVD it follows that   a matrix A 
can be represented in the form of its SVD components as 
a sum of rank 1 matrices of the form:

A= U1*S1 *V1
T + U2*S2*V2

 T…………Un* S n*Vn T

In the above relation, it is worth mentioning that 
the value of S1> S2> S3>….Sn. The above relation also 
implies that, the contribution of the first component 
of the sum would be highest while the contribution of 
the last component would be lowest. Thus, it follows 

Figure 1. Colored and Grayscale Image.
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that if we consider only the first r members of the above 
summation, we can still get a considerable approximation 
of A. This is the property used for SVD based image 
compression3,19.  The relation for   the compression of 
an image considering the first r singular values can be 
show to be:

Ar = U1*S1 *V1
T + U2* S 2*V2

 T…………Un* Sr*Vr
 T

Here  Ar  represents the approximation of the image 
based on the first r singular values of  the singular matrix 
S. Thus, instead of storing the matrix A of size MxN, we 
can store the matrices Umxr,Vnxr and the singular vector Sr 
and reconstruct the image as: Ar = Umxr *Sr*VT

nxr. Thus, it 
leads to a reduction in the amount of space needed to store 
the image and the space complexity of the compressed 
image would be given by Ar = r (m + n + 1). Depending 
on the value r of the rank of SVD selected, we can get a 
compression that would be defined as: 

Compression ratio Cr m n
r m n

=
+ +

*
( )1

Mean square error (MSE) = Σ (Oij-Rij)
2/mn where 

O represents the original image and R represents the 
reconstructed image of dimension mxn

Peak signal to noise ratio (PSNR) = 10 log (2552/Mean 
Square Error)

4. Sparse Matrix Storage Formats

To reduce the storage requirements of the image we 
have used sparse matrices. A sparse matrix is one 
which has lot of redundant information in the form 
of zero values. Some of the common techniques of 
storing a spares matrix are diagonal format, ELLPACK, 
Coordinate format, Compressed Row Storage (CSR ), 
Compressed Column storage CCS, row grouped CSR, 
Blocked compressed Row storage, Quad tree format, 
Combination of CSR and quad tree format, Minimal 
QCSR format and unified SELL-Cσ. We have used CSR 
format in our implementation. In CSR method a matrix 
is stored in the form of three vectors: A: the vector of 
Non-Zero Elements, C: the vector of indices Columns 
of Non-Zero Elements and R: the vector indices of 
first Non-Zero element in each row. This is the most 
popularly used format, as it is both a general purpose 

format, and is very efficient. There have been a lot of 
other improved versions of this format, like the blocked 
CSR and the row-grouped CRS (described later), that 
have been introduced and implemented. The size of 
the matrices is purely dependent on the number of 
non-zero elements in the matrix, and hence no matter 
how many zeroes are padded, the size occupied will 
remain the same. The row pointer array facilitates 
fast multiplication, and the code remains unchanged 
for Sparse Matrix Vector multiplication SpMV6. SVD 
algorithm used for image compression involves matrix 
matrix multiplication and matrix vector multiplication. 
The unnecessary zero in these matrices is removed by 
representing these matrices in efficient sparse matrix 
storage format such as CSR. 

For example:

M =























0 4 0 7
2 0 3 0
0 5 0 0
0
1

0
0

0
0

0
6

0
6
0
2
0

A = [ 4 7 2 3 6 5 2 1 6 ]
C = [ 1 3 0 2 4 1 4 0 3 ]
R = [ 0 2 5 6 7 9 ]

5. OpenMp

OpenMp (Open Multiprocessing) software is an 
Application Programming Interface (API) that supports 
multi-platform  shared memory architecture. It works 
with fork-join method. The compiler, on receiving the 
code, generates the multi-threaded version of this code, 
using the directives. Each thread is given to a separate 
core, where they are executed simultaneously. In the 
end, the main thread gives the result. It is preferred 
here over the other available software because of various 
reasons; firstly, it has portable multithreaded code, 
and has unified code for both sequential and parallel 
implementation (the OpenMp constructs are treated 
as comments when run sequentially). Secondly, it 
is very simple to use as it does not deal with message 
passing, unlike Message Passing Interface (MPI). Finally, 
the complier directives that are used for achieving 
parallelism can be easily embedded in C/C++ source 
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Figure 2. Flow diagram for SVD based image compression.

code. OpenMp accomplishes parallelism exclusively by 
means of threads. It is an explicit programming model 
and allows the user full control over parallelization. 
Here, we use OpenMp in Windows environment, which 
requires Visual Studio. To parallelize a program using 
OpenMp, first, the code is divided into two parts- the 
part that can be parallelized, and the part that cannot. 
The part that can be parallelized is then examined and 
dependent variables are identified. Based on these 
observations, various directives are used to parallelize 
various parts of the code. In the implementation of 
SVD, the parallelization is done with OpenMp using the 
“pragma” directive and special care is taken for variable 
sharing.

5.1 Implementation Details
Figure 2 shows the steps followed in SVD based Image 
compression. A colored image is represented in the RGB 
scheme as a 3 matrices of order MxN each containing 
the intensities of different shades of Red Green and Blue. 
The input RGB image that is taken has a JPG file format. 
The file also contains the metadata required for JPEG files 
which has to be removed. For processing of the image; 
we remove the JPEG header from the file and convert it 
to its corresponding Gray scale version. This conversion 
is done using Mat lab and the generated image is an 
MxN gray scale image. This gray scale image is written 
to a binary file on which   further processing to be done. 
RGB to Gray scale conversion: the JPG file is read in 
Matlab using the imread  function. This function reads 
the jpg image and converts it into a matrix of the order 
MxNx3, where each matrix is the representation of the 
colors corresponding to Red, Green and Blue. To convert 
this image to its gray scale version, we use the   function 
rgb2gray. This function converts the RGB to gray scale 

using the relation: Gray scale intensity = 0.2989*red+ 
0.5870*green + 0.1140*blue. This function converts the 
MxNx3 image to an MxN gray scale matrix. This matrix 
is further written to a binary file which can be used for 
further processing.

5.2 Singular Value Decomposition using 
OpenMp
OpenMp is a parallel, scalable and highly portable 
programming model based on a shared memory 
concept. The rise in use of OpenMp has been primarily 
due to the availability of multi-core processors. Open 
MP gives the power to distribute work to different cores 
in a processor and   share the load of one processor 
to many processors. We have used OpenMp for the 
faster execution of the sections of code which can be 
scheduled concurrently. Figure 3 depicts the processing 
of Image. The application for image compression 
has been developed in visual C++ using OpenMp 
constructs for parallelizing the code. The motivation for 
using OpenMp for SVD comes from the fact that with 
the increase in the size of the image a high computation 
power is needed. Using OpenMp on a multi-core 
processor can help reduce the execution time. Also, 
the code is highly portable and most of the compilers 
today have the support for OpenMp. The following flow 
diagram explains the flow of the code:

Figure 3. Processing of image.
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The application takes the input in the form the 
grayscale binary file, the dimensions of the image (row 
and columns) and also the rank for the SVD computation. 
With these inputs, the SVD processing is done by sharing 
the work among the cores and the final output in the form 
of compressed files is generated. 

5.3 Generation of Compressed Image Files
By using   sparse matrices to represent  the final output  
and  using the ‘thin’ version of SVD, we are able to achieve 
compression  and the resulting images  has a reduced 
space complexity as compared to the input image file from 
O(mn) to O (r(m+n+1)).

5.4 Reconstruction
Reconstruction is carried out in Matlab by reading 
the output files generated by the C++ application and 
displaying the gray scale image using imshow function of 
Matlab.

6. Results 

We have taken three different colored images of different 
sizes. The images are first converted to the gray scale images 
and then SVD is performed on them. The performance of 
SVD in these images vary based on the type of image as  
shown in Figure 4 three images that have been considered 
here are Fruits (320x240) Human Face (550x500) 
and Room (610x423). Figure 4a, 4b and 4c shows the 
reconstruction of images with different rank values. The 
accuracy of the image compression and reconstruction is 
measured by the PSNR and the Mean Square Error and it 
is shown in Figure 5 and 6. Performance gain is measured 
by the Speedup that is achieved. Speedup for a parallel 
architecture is defined as   Speedup = Taken by Serial 
Code/Time taken by Parallel Code. Table 1, 2 and 3 show 
execution time of sequential and parallel version of SVD 
for various images and Figure 7, 8, and 9 shows the graph 
of the execution time. 

Figure 4c. Reconstruction of Room at different Ranks.

Figure 4a. Reconstruction of   the image Fruits. Figure 4b. Reconstruction of Human Face.
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PSNR has been computed considering the maximum 
value of a pixel to be 255 in gray scale. A higher value 
for PSNR indicates a better reconstruction of the image. 
Table 4, 5 and 6 tabulates the image compression achieved 
through SVD using sparse matrix with CSR format for 
different rank values and its corresponding graph is 
shown in the Figure 9, 10 and 11. 

Figure 5. Variation of PSNR with Rank.

Figure 6. Variation of MSE with Rank.

Table 1. Performance details of SVD on image Fruits
Rank 5 10 25 50 100 125

Compression 
Ratio

27.4 13.76 5.47 2.74 1.37 1.09

Speed Up 1.11 1.12 1.12 1.10 1.13 1.12
Ex Time 
OpenMP(sec)

0.81 0.80 0.81 0.82 0.83 0.83

Ex Time Serial 0.90 0.90 0.91 0.91 0.94 0.93
Reconstruction  
Time  ms

100 100 200 300 300 400

Figure 7. Graph for execution times of parallel versus 
serial for Fruit Image.

Table 2. Performance details of SVD on Room
Rank 5 10 25 50 100 125

Compression Ratio 49.9 24.97 9.99 4.9 2.49 1.9
Speed Up 1.15 1.16 1.15 1.16 1.17 1.16
Ex Time OpenMP 
(sec)

5.2 5.22 5.25 5.3 5.30 5.37

ExTime Serial (sec) 6.0 6.10 6.13 6.20 6.22 6.26
Reconstruction  
Time ms

400 400 500 600 600 700

Figure 8. Graph for execution times of parallel versus 
serial for Room Image.

Table 3.  Performance details of SVD on the Human 
Face 1

Rank 5 10 25 50 100 125

Compression Ratio 52.3 26.1 10.47 4.72 2.6 2.09
Speed Up 1.154 1.154 1.15 1.16 1.14 1.15
Ex Time OpenMP 
(sec)

7.1 7.14 7.19 7.23 7.42 7.45

ExTime Serial (sec) 8.20 8.24 8.32 8.39 8.53 8.58
Reconstruction  
Time milli sec

300 400 400 500 500 600
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Figure 9. Graph for execution times of parallel versus 
serial for Human Face Image.

Table 4. Fruits file size for different rank values

Rank SVD
Size of original 

image in Kb

Size of  compressed 
image (sparse 
matrix) in Kb

5 300 12

25 300 56

50 300 110

100 300 219

150 300 329

Figure 10. Fruit Original image size vs compressed image 
size.

Table 5. Human face file size for different rank values

Rank SVD
Size of original 

image in Kb

Size of compressed 
image (sparse 
matrix) in Kb

5 1075 21
25 1075 103
50 1075 206

100 1075 411
150 1075 616

Table 6. Room file size for different rank values

Rank SVD
Size of original 

image in Kb

Size of  compressed 
image (sparse 
matrix) in Kb

5 1008 21
25 1008 102
50 1008 205

100 1008 405
150 1008 606

Figure 11. Human face Original image size vs 
compressed image size.

7. Conclusion

The performance of SVD varies depending on the type 
of image being compressed. The PSNR for human face is 
better than the other two images. Thus SVD can perform 
better for compressing human faces. The quality of the 
image increases with high rank values but it results in lesser 
compression. The approach applied to a gray scale image 
can also be extended to the RGB matrices and thus compress 
colored images. The use of sparse matrix plays a significant 
role in reducing the total size required for storing the 

Figure 12. Room Original image size vs 
compressed image size.
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compressed image. The use of OpenMp has increased the 
execution speed of our program and has resulted in faster 
compression time of images. While OpenMp is a widely 
used extension for parallel programming, its performance 
depends greatly on the parallelism of the code being 
executed. A data dependency in the loops can result in 
serial execution of the code and thus offer minimal benefits. 
However, in scenarios where the code is completely loop 
independent, it can give very high performance benefits. 
When OpenMp constructs are applied to loops with lesser 
iteration, it gives a lesser performance benefit due to the 
overheads involved in managing the threads.
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