
ISSN (Print) : 0974-6846
Indian Journal of Science and Technology, Vol 8(13), 59410, July 2015 ISSN (Online) : 0974-5645

1. Introduction

A digital image is stored in a computer in the form of
a two dimensional array of pixels or picture elements,
depending on the height and width of the image. Each
pixel in turn, is a combination of the varying intensities
of red, green and blue colors which are commonly
stored in the form of triplets of 8 bit each in the
computer memory. Thus an image size is dependent on
the number of pixels it is having which is a function
of the dimensions of the image. In general, the space
complexity of an image is O (MN) where the M is the
height of the image and N is the width of the image.
Image compression techniques aim towards reducing
the space complexity for the image. Thus less space is
required for storing and transmission of an image. In
this paper we have used Singular Value Decomposition

as an image compression technique and compared the
error in the images at different levels of compression.
Singular Value Decomposition is a concept of linear
algebra which factorizes a real matrix A(MxN) into
components U, S and V such that the following relation
is satisfied: A = U*S*V’. This relation is the singular
value decomposition of A where U is of dimension
MxM, S is a diagonal matrix of dimension MxN in
which non-diagonal elements are zero, also called the
singular values of A and V is of dimension NxN. SVD
allows us to write the matrix A as a summation of rank
one matrix in the manner shown below: A= U1*S1
V1’ + U2 S2*V2’…………UN*SN*VN’. The terms of the
diagonal matrix S are sorted in value such that S1> S2>
S3…>SN. Therefore we can reconstruct the matrix A
completely if we have the complete matrices U, S and
V. However, if we remove some of the lower diagonal

Parallel Implementation of Singular Value
Decomposition (SVD) in Image Compression

using Open Mp and Sparse Matrix Representation

J. SairaBanu, Rajasekhara Babu and Reeta Pandey
School of Computing Science and Engineering, VIT University, Vellore-632014, India

Abstract
The advent of Multi-core processors has offered powerful processing capabilities and provided new avenues for parallel
processing. As the traditional methods of computation are inherently based on single core of execution, they are not capable
of taking the advantage of high computational power offered by multi core processors, even if available. Singular Value
Decomposition (SVD) has been proven well for many image processing techniques such as image compression, quality
measure and in watermarking. SVD is a highly compute intensive algorithm that applies numerous matrix operations to
an image such as transpose, inverse, multiplication of high orders to form a compressed image. However accelerating the
SVD routines to exploit the underlying hardware poses a significant challenge to the programmers. This paper deals with
improving the speedup of SVD algorithm used in image compression technique. This is achieved by identifying the areas
where data parallelism can be applied and parallel programming model OpenMp is used to run the parallel components on
multiple processors. This results in faster execution of the algorithm and hence reduces the execution time when applied to
image compression for large images. This paper also addresses the space overhead of storing the matrices of SVD technique,
by adapting efficient sparse matrix storage format such as Compressed Row Storage (CSR). Experimental results show that
the speedup achieved through OpenMp is around 1.15 and better compression ratio with sparse matrix storage format.

Keywords: CSR, Image Compression, SVD, OpenMp, Sparse Matrix

* Author for correspondence

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

2

elements of S, we can still get a good approximation
of A. The fact that we can approximate the matrix A
even with lesser elements in S is the basis for image
compression using SVD. The approximation becomes
more accurate with the increase in number of singular
values used. As a result of quantization, it is common to
have matrices that have a large number of zeroes than
the non-zero values. An elegant method of storing such
matrices is the use of sparse matrix storage formats. In
this approach, we store only the non-zero elements of a
matrix thereby reducing the total storage needed for the
original matrix. This also helps in reducing the amount
of data that needs to be transmitted for communication
across computers.

The growth of computing power has also been a
fast paced one. Today we have high processing power
available in the form of multi-core processors such as
the Intel multi-cores processors. In order to fully tap the
potential of multiprocessing; calls for a new approach
towards programming where we distribute the processing
load to different cores thereby reducing execution time
and producing faster results. In this paper we have
used OpenMp for achieving distribution of workload
to different cores. Open Multiprocessing, commonly
known as OpenMp is a shared memory multiprocessing
paradigm. We have used the OpenMp in C++ for parallel
execution of sections of the code which require high
performance. OpenMp is based on a fork and join
model where a single thread forks into multiple threads
for performing the parallel tasks and after the execution
of the parallel region, it resumes as a single thread. The
performance gain offered by OpenMp comes from the
fact that the multiple threads can execute concurrently
on different cores in a multi-core processor. OpenMp
works best when there is no data dependency among the
parallel threads.

In this paper we have used SVD routine implemented
in GNU Scientific Library for image compression and
parallelized the routines and achieved around 1.15%
speedup using dual core Intel processor. We preferred
GSL rather than INTEL MKL library because it is an open
Source which in turn uses LAPACK and BLAS library.
The rest of the paper is organized as follows: Section 2
presents the related work, Section 3 describes the SVD
technique and its application in image compression
section 4 deals with sparse matrix storage formats,

Section 5 explores the OpenMp programming model for
SVD, Section 6 presents the results of SVD and Sparse
storage format for image compression, Section 7 talks
about the conclusion.

2. Related Work

SVD routines which are used in many scientific or
engineering applications such as Image processing,
Image compression, Data clustering, etc. have been
implemented in many scientific libraries like LAPACK,
GNU Scientific library, INTEL MKL library etc.
Chaitanya Gunta et al6 made an attempt to accelerate
the SVD routines in LAPACK scientific Library. Sheetal
Lahabar et al10 proposed parallelizing SVD routines for
GPU using CUDA programming. Michal W. Berry et al2
provided a comprehensive study on SVD for dense and
sparse matrices which are suitable for parallel computing
platforms. Sivashankaran Rajamanickam12 has worked in
efficient algorithm for sparse singular value decomposition.
Mostafa I. Soliman16 has proposed a new algorithm for
computing the singular value decomposition on one
side Jacobi based techniques. The above referred papers
explore the way to accelerate the SVD technique. Rowayda
A. Sadek15 has conducted an experimental survey on SVD
as an efficient image processing applications. Prasantha
et al11 adapted SVD as an image compression technique
and performed experimental study using MATLAB.
Awwal Mohammed Rufal et al14 presents a new lossy
image compression techniques which combines both
SVD and wavelet difference reduction (WDR) to increase
the performance of image compression. Vasil Kolev et al8
has applied SVD for images from scanned photographic
plates. Mahendra M. Dixit4 worked on adaptive SVD
algorithm for 2D/3D still image compression application.
Z hongxiaojia7 concerned about accurate computation
of SVD using cross product matrices. Taro Konda et al9
presented the double Divide and Conquer algorithm
(dDC) for bidiagonal SVD which performs well in speed,
accuracy and orthogonality compared to the standard
algorithms such as QR and Divide and Conquer. Literature
review reveals that SVD is used as one of the image
compression techniques. In this paper, the SVD technique
is accelerated and it is employed for image compression
application and the space overhead is addressed with the
help of efficient sparse matrix storage format.

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

J. SairaBanu, Rajasekhara Babu and Reeta Pandey

3

3. Singular Value Decomposition
(SVD)

SVD is an approach of advanced linear algebra. It is based
on the packing the maximum energy of a signal into a
lesser number of coefficients. It is an effective method
to split a matrix into linearly independent constituents
where each constituent has its own contribution in
terms of energy. The uses of SVD are diverse ranging
from areas such an image processing, latent semantic
analysis, approximation of the pseudo inverse of a
matrix, least square minimization of a matrix, efficient
medical imaging, topographical analysis, watermarking
schemes and many other areas. In the case of image
compression, SVD offers its advantage in the form of
its sensitivity to local adaptations in the statistics of
an image. The core mathematical foundations of SVD
can be summarized as factorizing a matrix A into
three components U, known as the matrix of rows, S
called the diagonal matrix or the singular values of
A and V is called the matrix of columns. These factors
of the matrix satisfy the relation A = U*S*VT. For a
given Matrix A of size MxN the output of SVD has the
following components. U: a matrix of dimension MxM.
S: the diagonal matrix of dimension MXN, V: a matrix
of dimension NxN and VT represents the transpose of
the matrix V. To understand the process of SVD let us
take an example of a 2x2 matrix

A =
2 2
1 1−

The transpose of A, is AT=
2 1
2 1

−

 .

The first step in SVD involves calculating

A*AT and AT *A, which as:

A* AT =
8 0
0 2

 and AT *A=

5 3
3 5

Further, we solve for the Eigen vectors of A such that

|A*AT –λI| = 0.
The values of the Eigen vectors are determined as

λ1 = 8 and λ2 = 2. Upon finding the Eigen vector of
A* AT, we can easily determine the diagonal matrix S. The

singular values of A is defined as the square root of the
roots the Eigen vector of A* AT.

Thus we have, S =
8 0

0 2

In the next step we determine the values of the matrix
U as follows: to determine the columns of U, we solve for
the Eigen vectors of A* AT. This should satisfy the relation,

[A*AT- λI][x] = 0. Using the Eigen values, we get the Eigen

vectors as X1 =
−

1
0

 and X2 =
0
1

. To get the columns

of U, we determine the unit Eigen vectors of u1 and u2.

Thus we determine U as U =
−

1 0
0 1

. To determine the

columns of V we first determine the Eigen vectors of the
relation [AT*A- λI][x] = 0. Further we calculate the unit
Eigen vectors v1, v2 to determine the columns of V in a

similar manner and have V =

1
2

1
2

1
2

1
2

−

Thus we have the matrices U, S and V and it can be
show that the matrix A has been factorized into the three
matrices U, S, V: it can be seen that the relation A = U*S*
VT holds good

2 2
1 1−

 =

−

1 0
0 1 *

8 0

0 2

*

1
2

1
2

1
2

1
2

−

 A = U * S * VT

SVD computation involves sequence of vector
operations, matrix to matrix and matrix to vector
multiplication13,20. This feature makes SVD computation
a good candidate for parallelization.

3.1 SVD Algorithm in GSL
Generally there are different algorithms for computing
SVD such as Golub–Reinsch, High Relative Accuracy
Bidiagonal SVD, square root-free algorithm, bisection
method, divide and conquer method, one-sided
Jacobi method for SVD and biorthogonalization.
In GNU scientific Library SVD is implemented

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

4

using Golub-Reinsch SVD, modified Golub-Reinsch
SVD and one-sided Jacobi orthogonalization. GNU
library uses thin version of SVD, a common format
with U as M-by-N orthogonal matrix. Full SVD is
defined as U as an M-by-M orthogonal matrix and S as
an M-by-N diagonal matrix (with additional rows
of zeros). Here we conducted experiments on image
compression using SVD algorithm both in MATLAB
as well as in C using GNU Scientific library. Golub
Reinsch algorithm is a most efficient, popular and
numerically stable technique for computing SVD of an
arbitrary matrix. It is also well suited for multicore and
SIMD GPU architecture. GolubReinsch algorithm21 is
also used in LAPACK package. It has two distinct steps
such as transforming the given matrix into bidiagonal
forms using series of householder transformations
and followed by an iterative procedure designed to
use orthogonal transformations to produce diagonal
matrices that are successively more diagonal. Running
time of SVD is O (mn2).

3.2 GolubReinsch Algorithm
Step 1: Bidiagonalization of A to B

B ← QTAP [A is the original matrix, B is a diagonal
matrix and Q and P are unitary householder matrices]
Step2: Diagonalization of B to S

S ← XTBY [The matrix B is obtained from the step 1,
Σ is a diagonal matrix; X and Y are orthogonal unitary
matrices].
Step 3: Compute orthogonal matrix U and V

U ← QX
V T ← (PY) T
Step 4: Compute SVD of A
A = UΣV T

3.3 SVD in Image Compression
The objective of image compression is to represent an
image with lesser amount of data than what an image
is composed of and the ability to reconstruct the image
from its smaller representation. This improves the
storage efficiency of an image and also greatly reduces
the amount of data that is required to transmit the image
across computers1,5,19. However, the image formed from
its compressed image by an image processing algorithm
may or may not be able to recreate the exact copy of
original image. A compression technique can be lossy

or lossless based on the quality of image it restores.
A lossless compression scheme can reconstruct the
exact copy of an image whereas a lossy scheme can
recreate the image with some data loss, depending on
the compression technique used. We have used SVD as
lossy image compression scheme. The other methods for
image compression are discrete 9/7 biorthogonal wavelet
transform, discrete cosine transform, Karhunen-Lohve
transform, and combinations of these. The reason why
we have used singular value decomposition is it is basic,
simple and works almost for all kind of matrix and it is
well suited for image compression. As images are stored
in the form of matrices in the computer memory, it is
imperative to think an image as a matrix17. Depending
on amount of type of image, colored or grayscale,
the space required to store an image depends on the
dimension of the image. A grayscale image has the
space requirement of mxn where m and n denote the
height and the width of the image whereas a colored
image has the space requirement of mxnx3, as there
are 3 matrices of mxn each representing the colors red,
green and blue commonly known as the RGB image. An
illustration of both these schemes has been shown in
Figure 1.

From the properties of SVD it follows that a matrix A
can be represented in the form of its SVD components as
a sum of rank 1 matrices of the form:

A= U1*S1 *V1
T + U2*S2*V2

 T…………Un* S n*Vn T

In the above relation, it is worth mentioning that
the value of S1> S2> S3>….Sn. The above relation also
implies that, the contribution of the first component
of the sum would be highest while the contribution of
the last component would be lowest. Thus, it follows

Figure 1. Colored and Grayscale Image.

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

J. SairaBanu, Rajasekhara Babu and Reeta Pandey

5

that if we consider only the first r members of the above
summation, we can still get a considerable approximation
of A. This is the property used for SVD based image
compression3,19. The relation for the compression of
an image considering the first r singular values can be
show to be:

Ar = U1*S1 *V1
T + U2* S 2*V2

 T…………Un* Sr*Vr
 T

Here Ar represents the approximation of the image
based on the first r singular values of the singular matrix
S. Thus, instead of storing the matrix A of size MxN, we
can store the matrices Umxr,Vnxr and the singular vector Sr
and reconstruct the image as: Ar = Umxr *Sr*VT

nxr. Thus, it
leads to a reduction in the amount of space needed to store
the image and the space complexity of the compressed
image would be given by Ar = r (m + n + 1). Depending
on the value r of the rank of SVD selected, we can get a
compression that would be defined as:

Compression ratio Cr m n
r m n

=
+ +

*
()1

Mean square error (MSE) = Σ (Oij-Rij)
2/mn where

O represents the original image and R represents the
reconstructed image of dimension mxn

Peak signal to noise ratio (PSNR) = 10 log (2552/Mean
Square Error)

4. Sparse Matrix Storage Formats

To reduce the storage requirements of the image we
have used sparse matrices. A sparse matrix is one
which has lot of redundant information in the form
of zero values. Some of the common techniques of
storing a spares matrix are diagonal format, ELLPACK,
Coordinate format, Compressed Row Storage (CSR),
Compressed Column storage CCS, row grouped CSR,
Blocked compressed Row storage, Quad tree format,
Combination of CSR and quad tree format, Minimal
QCSR format and unified SELL-Cσ. We have used CSR
format in our implementation. In CSR method a matrix
is stored in the form of three vectors: A: the vector of
Non-Zero Elements, C: the vector of indices Columns
of Non-Zero Elements and R: the vector indices of
first Non-Zero element in each row. This is the most
popularly used format, as it is both a general purpose

format, and is very efficient. There have been a lot of
other improved versions of this format, like the blocked
CSR and the row-grouped CRS (described later), that
have been introduced and implemented. The size of
the matrices is purely dependent on the number of
non-zero elements in the matrix, and hence no matter
how many zeroes are padded, the size occupied will
remain the same. The row pointer array facilitates
fast multiplication, and the code remains unchanged
for Sparse Matrix Vector multiplication SpMV6. SVD
algorithm used for image compression involves matrix
matrix multiplication and matrix vector multiplication.
The unnecessary zero in these matrices is removed by
representing these matrices in efficient sparse matrix
storage format such as CSR.

For example:

M =

0 4 0 7
2 0 3 0
0 5 0 0
0
1

0
0

0
0

0
6

0
6
0
2
0

A = [4 7 2 3 6 5 2 1 6]
C = [1 3 0 2 4 1 4 0 3]
R = [0 2 5 6 7 9]

5. OpenMp

OpenMp (Open Multiprocessing) software is an
Application Programming Interface (API) that supports
multi-platform shared memory architecture. It works
with fork-join method. The compiler, on receiving the
code, generates the multi-threaded version of this code,
using the directives. Each thread is given to a separate
core, where they are executed simultaneously. In the
end, the main thread gives the result. It is preferred
here over the other available software because of various
reasons; firstly, it has portable multithreaded code,
and has unified code for both sequential and parallel
implementation (the OpenMp constructs are treated
as comments when run sequentially). Secondly, it
is very simple to use as it does not deal with message
passing, unlike Message Passing Interface (MPI). Finally,
the complier directives that are used for achieving
parallelism can be easily embedded in C/C++ source

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

6

Figure 2. Flow diagram for SVD based image compression.

code. OpenMp accomplishes parallelism exclusively by
means of threads. It is an explicit programming model
and allows the user full control over parallelization.
Here, we use OpenMp in Windows environment, which
requires Visual Studio. To parallelize a program using
OpenMp, first, the code is divided into two parts- the
part that can be parallelized, and the part that cannot.
The part that can be parallelized is then examined and
dependent variables are identified. Based on these
observations, various directives are used to parallelize
various parts of the code. In the implementation of
SVD, the parallelization is done with OpenMp using the
“pragma” directive and special care is taken for variable
sharing.

5.1 Implementation Details
Figure 2 shows the steps followed in SVD based Image
compression. A colored image is represented in the RGB
scheme as a 3 matrices of order MxN each containing
the intensities of different shades of Red Green and Blue.
The input RGB image that is taken has a JPG file format.
The file also contains the metadata required for JPEG files
which has to be removed. For processing of the image;
we remove the JPEG header from the file and convert it
to its corresponding Gray scale version. This conversion
is done using Mat lab and the generated image is an
MxN gray scale image. This gray scale image is written
to a binary file on which further processing to be done.
RGB to Gray scale conversion: the JPG file is read in
Matlab using the imread function. This function reads
the jpg image and converts it into a matrix of the order
MxNx3, where each matrix is the representation of the
colors corresponding to Red, Green and Blue. To convert
this image to its gray scale version, we use the function
rgb2gray. This function converts the RGB to gray scale

using the relation: Gray scale intensity = 0.2989*red+
0.5870*green + 0.1140*blue. This function converts the
MxNx3 image to an MxN gray scale matrix. This matrix
is further written to a binary file which can be used for
further processing.

5.2 Singular Value Decomposition using
OpenMp
OpenMp is a parallel, scalable and highly portable
programming model based on a shared memory
concept. The rise in use of OpenMp has been primarily
due to the availability of multi-core processors. Open
MP gives the power to distribute work to different cores
in a processor and share the load of one processor
to many processors. We have used OpenMp for the
faster execution of the sections of code which can be
scheduled concurrently. Figure 3 depicts the processing
of Image. The application for image compression
has been developed in visual C++ using OpenMp
constructs for parallelizing the code. The motivation for
using OpenMp for SVD comes from the fact that with
the increase in the size of the image a high computation
power is needed. Using OpenMp on a multi-core
processor can help reduce the execution time. Also,
the code is highly portable and most of the compilers
today have the support for OpenMp. The following flow
diagram explains the flow of the code:

Figure 3. Processing of image.

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

J. SairaBanu, Rajasekhara Babu and Reeta Pandey

7

The application takes the input in the form the
grayscale binary file, the dimensions of the image (row
and columns) and also the rank for the SVD computation.
With these inputs, the SVD processing is done by sharing
the work among the cores and the final output in the form
of compressed files is generated.

5.3 Generation of Compressed Image Files
By using sparse matrices to represent the final output
and using the ‘thin’ version of SVD, we are able to achieve
compression and the resulting images has a reduced
space complexity as compared to the input image file from
O(mn) to O (r(m+n+1)).

5.4 Reconstruction
Reconstruction is carried out in Matlab by reading
the output files generated by the C++ application and
displaying the gray scale image using imshow function of
Matlab.

6. Results

We have taken three different colored images of different
sizes. The images are first converted to the gray scale images
and then SVD is performed on them. The performance of
SVD in these images vary based on the type of image as
shown in Figure 4 three images that have been considered
here are Fruits (320x240) Human Face (550x500)
and Room (610x423). Figure 4a, 4b and 4c shows the
reconstruction of images with different rank values. The
accuracy of the image compression and reconstruction is
measured by the PSNR and the Mean Square Error and it
is shown in Figure 5 and 6. Performance gain is measured
by the Speedup that is achieved. Speedup for a parallel
architecture is defined as Speedup = Taken by Serial
Code/Time taken by Parallel Code. Table 1, 2 and 3 show
execution time of sequential and parallel version of SVD
for various images and Figure 7, 8, and 9 shows the graph
of the execution time.

Figure 4c. Reconstruction of Room at different Ranks.

Figure 4a. Reconstruction of the image Fruits. Figure 4b. Reconstruction of Human Face.

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

8

PSNR has been computed considering the maximum
value of a pixel to be 255 in gray scale. A higher value
for PSNR indicates a better reconstruction of the image.
Table 4, 5 and 6 tabulates the image compression achieved
through SVD using sparse matrix with CSR format for
different rank values and its corresponding graph is
shown in the Figure 9, 10 and 11.

Figure 5. Variation of PSNR with Rank.

Figure 6. Variation of MSE with Rank.

Table 1. Performance details of SVD on image Fruits
Rank 5 10 25 50 100 125

Compression
Ratio

27.4 13.76 5.47 2.74 1.37 1.09

Speed Up 1.11 1.12 1.12 1.10 1.13 1.12
Ex Time
OpenMP(sec)

0.81 0.80 0.81 0.82 0.83 0.83

Ex Time Serial 0.90 0.90 0.91 0.91 0.94 0.93
Reconstruction
Time ms

100 100 200 300 300 400

Figure 7. Graph for execution times of parallel versus
serial for Fruit Image.

Table 2. Performance details of SVD on Room
Rank 5 10 25 50 100 125

Compression Ratio 49.9 24.97 9.99 4.9 2.49 1.9
Speed Up 1.15 1.16 1.15 1.16 1.17 1.16
Ex Time OpenMP
(sec)

5.2 5.22 5.25 5.3 5.30 5.37

ExTime Serial (sec) 6.0 6.10 6.13 6.20 6.22 6.26
Reconstruction
Time ms

400 400 500 600 600 700

Figure 8. Graph for execution times of parallel versus
serial for Room Image.

Table 3. Performance details of SVD on the Human
Face 1

Rank 5 10 25 50 100 125

Compression Ratio 52.3 26.1 10.47 4.72 2.6 2.09
Speed Up 1.154 1.154 1.15 1.16 1.14 1.15
Ex Time OpenMP
(sec)

7.1 7.14 7.19 7.23 7.42 7.45

ExTime Serial (sec) 8.20 8.24 8.32 8.39 8.53 8.58
Reconstruction
Time milli sec

300 400 400 500 500 600

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

J. SairaBanu, Rajasekhara Babu and Reeta Pandey

9

Figure 9. Graph for execution times of parallel versus
serial for Human Face Image.

Table 4. Fruits file size for different rank values

Rank SVD
Size of original

image in Kb

Size of compressed
image (sparse
matrix) in Kb

5 300 12

25 300 56

50 300 110

100 300 219

150 300 329

Figure 10. Fruit Original image size vs compressed image
size.

Table 5. Human face file size for different rank values

Rank SVD
Size of original

image in Kb

Size of compressed
image (sparse
matrix) in Kb

5 1075 21
25 1075 103
50 1075 206

100 1075 411
150 1075 616

Table 6. Room file size for different rank values

Rank SVD
Size of original

image in Kb

Size of compressed
image (sparse
matrix) in Kb

5 1008 21
25 1008 102
50 1008 205

100 1008 405
150 1008 606

Figure 11. Human face Original image size vs
compressed image size.

7. Conclusion

The performance of SVD varies depending on the type
of image being compressed. The PSNR for human face is
better than the other two images. Thus SVD can perform
better for compressing human faces. The quality of the
image increases with high rank values but it results in lesser
compression. The approach applied to a gray scale image
can also be extended to the RGB matrices and thus compress
colored images. The use of sparse matrix plays a significant
role in reducing the total size required for storing the

Figure 12. Room Original image size vs
compressed image size.

Vol 8 (13) | July 2015 | www.indjst.org Indian Journal of Science and Technology

Parallel Implementation of Singular Value Decomposition (SVD)

10

compressed image. The use of OpenMp has increased the
execution speed of our program and has resulted in faster
compression time of images. While OpenMp is a widely
used extension for parallel programming, its performance
depends greatly on the parallelism of the code being
executed. A data dependency in the loops can result in
serial execution of the code and thus offer minimal benefits.
However, in scenarios where the code is completely loop
independent, it can give very high performance benefits.
When OpenMp constructs are applied to loops with lesser
iteration, it gives a lesser performance benefit due to the
overheads involved in managing the threads.

8. References

1. Andrews HC, Patterson C. Singular value decomposi-
tion (SVD) image coding. Commun IEEE Trans. 1976;
24(4):425–32.

2. Berry MW, Mezher , Philippe B, Sameh A. Parallel algo-
rithms for the singular value decomposition. Stat Textb
Monogr. 2006; 184(117).

3. Ding CHQ, Ye J. 2-Dimensional Singular Value Decompo-
sition for 2D Maps and Images. SDM. 2005; p. 32–43.

4. Dixit, MM, Vijaya C, et al. Computational analysis of adaptive
Singular Value Decomposition algorithm to 2D and 3D still
image compression application. Communication Control and
Computing Technologies (ICCCCT). IEEE; 2010. p. 482–7.

5. Golub GH, Van Loan CF. Matrix computations. JHU Press;
2012.

6. Gunta C, Khan SN, Saha K, Pau DP. Acceleration of
SVD routines in LAPACK. EUROCON. IEEE; 2013.
p. 1733–7.

7. Jia Z. Using cross-product matrices to compute the SVD.
Numer Algorithm. 2006; 42(1):31–61.

8. Kolev Vasil, Tsvetkova K, Tsvetkov M. Singular Value
Decomposition of Images from Scanned Photographic
Plates. arXiv Prepr, arXiv13101869. 2013.

9. Konda Taro, Nakamura Y. A new algorithm for singular
value decomposition and its parallelization. Parallel
 Comput. 2009; 35(6):331–44.

10. Lahabar, S, Narayanan P. Singular value decomposition on
GPU using CUDA. Parallel and Distributed Processing.
IEEE; 2009. p. 1–10.

11. Prasantha HS, Shashidhara HL, Balasubramanya Murthy K.
Image compression using SVD. Conference on Computa-
tional Intelligence and Multimedia Applications. IEEE;
2007. p. 143–5.

12. Rajamanickam S. Efficient algorithms for sparse singular
value decomposition. 2009.

13. Rangarajan A. Learning matrix space image representa-
tions. Energy Minimization Methods in Computer Vision
and Pattern Recognition. Springer; 2001. p. 153–68.

14. Rufai AM, Anbarjafari G, Demirel H. Lossy image
 compression using singular value decomposition and
wavelet difference reduction. Digit Signal Process. 2014;
24:117–23.

15. Sadek RA. SVD based image processing applications: State
of the ART, Contributions and Research Challenges. arXiv
Prepr, arXiv12117102. 2012.

16. Soliman MI, Rajasekaran S, Ammar R. A block JRS algo-
rithm for highly parallel computation of SVDs. High
Performance Computing and Communications. 2007;
4782:346–57.

17. Van der Schaaf van A, van Hateren J van. Modelling the
power spectra of natural images: statistics and information.
Vision Res. 1996; 36(17):2759–70.

18. Yang J-F, Lu C-L. Combined techniques of singular value
decomposition and vector quantization for image coding.
Image Process IEEE Trans. 1995; 4(8):1141–6.

19. Yang J, Zhang D, Frangi AF, Yang J. Two-dimensional PCA:
a new approach to appearance-based face representation
and recognition. Pattern Anal Mach Intel IEEE Trans. 2004;
26(1):131–7.

20. Ye J. Generalized low rank approximations of matrices.
Mach Learn. 61AD; 1-3:167–91.

