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and minimax probability machine regression (MPMR)
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Abstract The determination of seismic attenuation

(s) (dB/cm) is a challenging task in earthquake science.

This article employs genetic programming (GP) and

minimax probability machine regression (MPMR) for

prediction of s. GP is developed based on genetic algo-

rithm. MPMR maximizes the minimum probability of

future predictions being within some bound of the true

regression function. Porosity (n) (%), permeability

(k) (millidarcy), grain size (d) (lm), and clay content

(c) (%) have been considered as inputs of GP and MPMR.

The output of GP and MPMR is s. The developed GP gives

an equation for prediction of s. The results of GP and

MPMR have been compared with the artificial neural net-

work. This article gives robust models based on GP and

MPMR for prediction of s.

Keywords Seismic attenuation � Genetic

programming � Minimax probability machine

regression � Artificial neural network � Prediction

1 Introduction

The determination of seismic attenuation (s) (dB/cm) is an

imperative task in earthquake science. s depends on dif-

ferent rock properties, for example, porosity (n) (%), per-

meability (k) (milidarcy), grain size (d) (lm), and clay

content (c) (%). Researchers gave different attenuation

mechanisms (Biot 1956a, b; Walsh 1966, 1969; Stoll and

Bryan 1970; Solomon 1973; Kuster and Toksoz 1974;

Mavko and Nur 1975, 1979). Klimentos and Mccann

(1990) used regression model for prediction of s. Brzo-

stowski and McMechan (1992), and Leggett et al. (1992)

developed the model based on the change in seismic

amplitude as observed data for prediction of s. Researchers

also used the rise time associated with the broadening

effect for determination of s (Kjartansson 1979; Zucca

et al. 1994). Boadu (1997) successfully used artificial

neural network (ANN) for prediction of s. However, ANN

has various limitations such as black-box approach, low

generalization capability, arriving at local minima, over-

training, etc. (Park and Rilett 1999; Kecman 2001). Quan

and Harris (1997) successfully adopted frequency shift

method to predict s. Roth et al. (2000) developed an

empirical equation for prediction of s.

This article employs genetic programming (GP) and

minimax probability machine regression (MPMR) for

prediction of s. GP is developed based on genetic algorithm

(GA) (Koza 1992). It has been successfully applied for

modeling different problems in engineering (Rezapour

et al. 2010; Guven and Kisi 2011; Azamathulla and Zahiri

2012). MPMR is developed based on Minimax Probability

Machine (MPM) (Lanckriet et al. 2002, 2003). Many

applications of MPMR are available in literatures (Yang

et al. 2010; Zhou et al. 2011, 2013). GP and MPMR have

been developed based on the database collected from the
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work of Boadu (1997). The developed GP and MPMR have

been compared with the ANN model. The paper is orga-

nized as follows. The details of GP are given in Sect. 2.

Section 3 describes the details of MPMR. Section 4 gives

the details of results and discussion. Major conclusions

have been drawn in Sect. 5.

2 Details of GP

GP predicts output based on the dataset. In GP, a random

population of equation is created. In next step, fitness of

each equation is determined. ‘‘Parents’’ are selected out of

these individuals through tournament. ‘‘Offsprings’’ are

created from ‘‘Parents’’ through the process of reproduc-

tion, mutation, and crossover. The details of reproduction,

mutation, and crossover are given by Koza (1992). The

best equation that produced any generation is the solution

of the problem. n, k, d, and c are considered as inputs of

the GP. The output of GP is s. Training and testing

dataset has been used to develop the GP model. Training

dataset is used to construct the GP model. Testing dataset

is adopted to verify the constructed GP model. Table 1

shows the statistical parameters of the dataset. This study

uses 34 (see Table 2) datasets as training dataset. The

remaining eight (see Table 3) datasets have been used as

testing dataset. The program of GP has been implemented

by MATLAB.

3 Details of MPMR

MPMR is developed by constructing a dichotomy classifier

(Strohmann and Grudic 2002). MPMR adopts the follow-

ing regression model for prediction of output (y).

y ¼
XN

i¼1

biK xi; xð Þ þ b; ð1Þ

where y is output, x is input, K(xi, x) is kernel function, and

b, b are outputs of the MPMR algorithm. This study uses c,

n, k, and d as inputs. The output of MPMR is s. So,

Table 1 Statistical parameters of the dataset

Variables Mean Standard deviation Skewness Kurtosis

n (%) 20.62 8.97 -0.06 2.02

k (milidarcy) 39.54 73.42 2.30 7.50

d (lm) 142 85.18 1.15 3.11

c (%) 12.12 8.10 0.07 2.08

s (dB/cm) 3.33 2.43 0.53 2.77

Table 2 Training dataset

n (%) k (milidarcy) d (lm) c (%) s (dB/cm)

29.81 17.17 74 12 4.51

35.98 21.16 76 16 4.54

20.55 0.05 80 15 3.15

2.9 0 70 0 0.08

32.397 9.3 78 23 8.92

35.129 73.26 82 30 8.48

33.1 10.05 83 20 4.83

23.42 11.42 85 15 2.4

24.7 7.1 91 22 3.47

29.943 9.59 84 17 5.02

30.69 3.5 102 17 4.59

24.84 1.13 91 25 7.68

11.93 0.01 87 7 1.79

15.11 0.06 74 14 4.92

19.05 0.13 72 15 6.83

28.83 10.27 82 20 3.33

33.249 2.25 80 15 5.26

27.74 5.78 87 20 4.19

29.412 7.03 91 23 4.93

18.645 2.21 145 12 2.68

17.794 0.37 140 12 2.36

14.783 220.9 242 0.2 0.08

15.065 150.7 229 1 0.7

14.518 160.4 260 0.7 0.14

15.64 87.65 235 0.5 0.09

16.514 41.74 377 15 3.63

17.06 50.51 312 15 3.3

12.045 3.67 226 7 2.1

16.48 87.55 226 5 0.47

8.21 0.13 140 6 2.46

26.56 305.8 187 5 2.73

11.98 0.46 153 6 1.6

5.45 0 97 3 0.19

9.94 0.16 97 9 4.63

Table 3 Testing dataset

n (%) k (milidarcy) d (lm) c (%) s (dB/cm)

3.489 0 78 0 0.01

31.02 5.47 84 18 4.5

27.57 0.45 76 25 8.61

20.48 0.44 79 8 1.57

28.543 33.67 139 15 4.18

15.431 255.9 272 1 0.29

16.03 52.42 330 15 3.38

14.125 11.06 271 4 1.65
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x ¼ c; n; k; d½ � and y ¼ s½ �:

MPMR creates two classes (ui and vi) of data. The

expression of ui and vi is given below.

ui ¼ yi þ e; xi1; xi2; . . .; xidð Þ;
vi ¼ yi � e; xi1; xi2; . . .; xidð Þ; ð2Þ

where i = 1,…,N.

The classification boundary between ui and vi is a

regression surface. MPMR uses the same training and

testing dataset as used by the GP. Radial basis function

(K xi; xð Þ ¼ exp � xi�xð Þ xi�xð ÞT
2r2

h i
where r is width of radial

basis function) has been used as kernel function. The data

is normalized between 0 and 1. The program of MPMR has

been constructed by using MATLAB.

4 Results and discussion

For GP, the number of population is set to 800. The number

of generation is kept to 100. The mutation frequency and

crossover frequency is kept to 70 and 50, respectively.

Figures 1 and 2 illustrates the performance of training and

testing, respectively. The performance of GP has been

assessed in terms of coefficient of correlation (R) value. For

a good model, the value of R is close to one. The value of

R has been shown in Figs. 1 and 2. The developed GP

gives the following expression for determination of s.

s ¼ 5:89c� 10:61nþ 0:23 expðn� dÞ þ 4:26 expðn� cÞ
þ 48:19 expðexpðnÞÞ � 61:18 expðnÞf g2�10:4ðnÞ4

� 39:24 expðnÞ2
n o2

þ61:81c2 � 34:52: ð3Þ

Figures 1 and 2 shows that the value of R is close to one.

So, the developed GP predicts s reasonably well.

For MPMR, the design values of r and e have been

determined by trial and error approach. The developed

MPMR gives the best performance at r = 0.5 and

e = 0.003. So, the design values of r and e is 0.5 and

0.003, respectively. The performance of training and test-

ing has been shown in Figs. 1 and 2. The value of R is close

to one for training as well as testing dataset. Therefore, the

developed MPMR proves his capability for prediction.

The developed GP and MPMR have been compared

with the ANN model developed by Boadu (1997). Com-

parison has been done in terms of standard error. Figure 3

shows the bar chart of standard error of the GP, MPMR,

and ANN models. The developed GP and MPMR outper-

form the ANN model. The performance of GP and MPMR

is almost same. The developed MPMR has control over

future prediction. However, ANN and GP have no control

over future prediction.

5 Conclusions

This article describes GP and MPMR for prediction of

seismic attenuation (s). The developed GP and MPMR uses

n, c, k, and d as inputs. Training and testing datasets have

been used to develop the GP and MPMR models. The
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Fig. 1 Performance of training dataset
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Fig. 2 Performance of testing dataset
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Fig. 3 Bar chart of standard error for ANN, GP, and MPMR models
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predictive capability of GP and MPMR has been assessed

in terms of R value. The performance of GP and MPMR is

encouraging. The developed GP gives an equation for

prediction of s. The performance of GP and MPMR is

better than the ANN model. The results confirm that the

developed GP and MPMR show excellent predictive

accuracy.
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