
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Performance evaluation of throughput computing
workloads using multi-core processors and
graphics processors
To cite this article: Gaurav P Dave et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263 042101

View the article online for updates and enhancements.

Related content

Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA
projects
Emmanuel Agullo, Jim Demmel, Jack
Dongarra et al.

-

Workload analyse of assembling process
L D Ghenghea

-

Evaluating the scalability of HEP software
and multi-core hardware
Sverre Jarp, Alfio Lazzaro, Julien Leduc et
al.

-

This content was downloaded from IP address 157.49.64.244 on 03/08/2021 at 11:22

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Performance evaluation of throughput computing workloads

using multi-core processors and graphics processors

Gaurav P Dave, N Sureshkumar and S S Blessy Trencia Lincy

School of Computer Engineering, VIT University, Vellore-632014, India

 E-mail: sureshkumar.n@vit.ac.in

Abstract. Current trend in processor manufacturing focuses on multi-core architectures rather

than increasing the clock speed for performance improvement. Graphic processors have

become as commodity hardware for providing fast co-processing in computer systems.

Developments in IoT, social networking web applications, big data created huge demand for

data processing activities and such kind of throughput intensive applications inherently

contains data level parallelism which is more suited for SIMD architecture based GPU. This

paper reviews the architectural aspects of multi/many core processors and graphics processors.

Different case studies are taken to compare performance of throughput computing applications

using shared memory programming in OpenMP and CUDA API based programming.

1. Introduction
Architectural advancements in microprocessors created improvement in performance of HPC

applications by increasing processing elements on processor die. This in contrast to traditional way of

increasing clock rate; created huge impact on the software development community. [1] With this

approach we can divide the processors in two groups: the first is multi-core model where a few cores

are integrated in single processor (e.g. Intel Core- i7 contains four physical cores) and second is many-

core model where large number of core/ processing elements are integrated (e.g. Nvidia GeForce GTX

1080 contains 2560 single precision CUDA cores). The power of massively parallel computer systems

can be utilized in two ways: automatic parallelism, parallel programming. Both ways differs in peak

performance achievable for an application and effort required to implement parallelism in the code. In

automatic parallelism ILP (Instruction Level Parallelism) and parallel compilers plays major role by

taking advantage of hardware features of micro architecture.

The scope of the paper is to review architectural aspects of multi/many core processors and

graphics processors. Different case studies are taken to compare performance of throughput computing

applications using shared memory programming in OpenMP and CUDA API based programming.

The rest part of the paper is divided into following parts: Section: 2 shows throughput computing

applications and usage in different domains. Section: 3 provide major performance evaluation metrics

for parallel programs. Section: 4 provide review on HPC hardware and software. Section: 5 describes

case study on CpenMP and CUDA programming and analysis using profiling. Section:6 concludes

the paper. And Section: 7 shows proposed future work.

2

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

2. Throughput computing workloads

With increase in digital data from various sources like IoT, social networking sites, multimedia, big

data, scientific data, medical data etc. has created processing and storage requirements at large scale.

Such kind of massive data requires state of art storage, indexing, processing and retrieving

requirements. One of attractive feature of such applications is "inherent data level parallelism" due to

which data can be processed in independent order on different processing elements. "Data level

parallelism" and "processing deadlines" plays major role in "throughput computing applications" as in

simple terms throughput is how much data can be processed in given time period.

In [2], authors provide evaluation of selected throughput computing application kernels based on

CPU and GPU implementations. These kernels are part of application code having inherent

parallelism. They can be classified based on (1) computation and memory access (2) nature of memory

access to take advantage of data parallelism in terms of SIMD (3) coarse grained and fine grained

parallelism to identify synchronization requirements. Summary of these kernels are given in table:1.

Authors using benchmarks and optimized code for CPU and GPU shows that the performance for

CPU can be obtained at par with GPU implementations by carefully using the architectural features of

multi-core CPUs. Author’s shows performance comparison based on following criteria which is

briefly given below:

1. Memory bandwidth:

The effect of data transfer to/from external memory in performance of kernel depends on two areas:

(1) how much computation is provided in kernel so that it can use the memory transactions (2)

whether the kernel has working set that is appropriate for size of storage elements (i.e. cache or

buffers)

2. Computation in terms of FLOPS(Floating Point Operations Per Second):

It depends on performance of single thread and achieved TLP using multiple cores or DLP using

vector (SIMD) units.

3. Impact of cache memory:

Working set characteristics determine the performance of kernel. Cache is useful for hiding memory

latency of kernel by storing kernel's working set on cache fully or partially.

4. Level of data parallelism in terms of gather/scatter:

If the kernel is not bandwidth bound then it is advantageous with increasing DLP. However for

achieving best performance the data layout should be aligned with the width of SIMD units.

5. Reduction of threads and synchronization among threads:

Throughput computing applications uses TLP and DLP for achieving best performance. Creation,

manipulation, joining of threads or synchronization among threads involve overhead so reduction of

joining and synchronization plays vital role.

6. Specific fixed functions

Certain kernels involve operations which are supported in hardware of CPU or GPU. Such kernels

take advantage of such features.

Kernels are classified based on computation, memory and synchronization requirements. Various high

performance libraries are provided in CUDA toolkit. Open source and proprietary libraries are also

available for Nvidia CUDA enabled GPUs.

Table 1 Throughput computing kernels

Description

of kernels
Characteristics

Parallelis

m

(SIMD)*

Where TLP

possible?
Usage

Nvidia

CUDA

library

SGEMM

(Single

precision

Performs O(n
3
)

computations and O(n
2
)

data accesses. Compute to

RL

Processing of

2D tiles created

by row of

Used in

linear

algebra

cuBLAS,

cuBLAS-XT,

NVBLAS,

3

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

General

matrix-

multiplicatio

n)

data access ratio is O(n),

so compute intensive

nature.

matrix-1 and

column of

matrix-2

EM Photonics

CULA Tools,

ArrayFire

Monte Carlo

(MC)

Heuristic method for

simulating the nature of

system like PI value

approximations, finance

stock price predictions.

Simulation can be broadly

divided into random

number generator, data set

generation, function

evaluation and statistical

aggregation.

It is compute intensive.

RL

In random

number

generation and

statistical

aggregation

Simulati

ng

systems

cuRAND-For

random

number

generation

Thrust library

can be used to

accelerate MC

on GPU.

Convolution

(Conv)

It is commonly used for

image filtering. It consist

of multiply-add operation

and data access for nearby

neighbours. Each pixel is

independently processed

so both SIMD and TLP

can be used. If

multidimensional

convolution is used then

cache blocks play

important role. It is

compute intensive and for

small filters bandwidth

bound.

RL

Due to

independent

processing of

each pixel, TLP

can be used

across pixels.

For

analysis

of

images

NVIDIA

Performance

Primitives

library (NPP)

Fast Fourier

Transformati

on (FFT)

Used to transform signals

from time domain to

frequency domain and

vice versa. Compared to

DFT which requires O(n
2
)

operations, FFT requires

O(nlogn) operations.FFT

is compute intensive or

bandwidth bound

depending on size of the

signals.

RL In smaller FFTs

Signal

processi

ng

cuFFT

Single-

Precision

A·X Plus

Y(SAXPY)

It is group of scalar

multiplication and vector

addition in Basic Linear

Algebra Subprograms

(BLAS). For large vectors

the operation is

bandwidth bound.

RL

Across the

vectors X and

Y as both are

independent.

Used in

linear

algebra

cuBLAS,

cuBLAS-XT,

NVBLAS,

EM Photonics

CULA Tools,

ArrayFire

Lattice

Boltzmann

Used for simulating fluid

and runs efficiently on
RL

Across the cells

of lattice

Computa

tional

cuSOLVER,

AmgX

4

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

method

(LBM)

massively parallel

computers. Compute and

data are O(n) leading low

compute to bandwidth

ratio. It is bandwidth

bound.

Fluid

Dynamic

s(CFD)

Constraint

Solver

(Solv)

Synchronization bound G/S

Across

constraints

Rigid

body

physics

-

Sparse

matrix

vector

multiplicatio

n (SpMV)

Bandwidth bound for

matrices with larger

dimensions

G
Across non-

zero elements

For

solving

sparse

metrices

cuSPARSE

Gilbert–
Johnson–
Keerthi

distance

algorithm

(GJK)

Used to find distance

between two convex sets.

Compute intensive.

G/S Across objects

Collision

Detectio

n

Image

processing

libraries

ArryFire

Sorting

Radix sort is taken into

consideration.

Compute intensive

G/S
Across

elements
Database ArryFire

Ray casting

(RC)

Used to visualize 3-D

datasets like medical

images, CT scan data etc.

Memory intensive

operations are performed

where first level working

set may contain 4-8 MB

and last level working set

may contain over 500 MB

to several GB

G Across rays

Volume

Renderin

g

NVIDIA

IndeX

Searching

Compute intensive for

small tree, bandwidth

intensive at bottom of tree

for large tree.

In memory searching is

faster if depth of tree is

less than last cache size in

CPU performance

analysis. For GPU

searching is compute

intensive and run time

search is proportional to

depth of tree

G/S Across queries Database -

5

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Histogram

(Hist)

Image processing

algorithm for separating

the pixels based on

parameters and

aggregating in different

bins.

Reduction or

synchronization intensive

Conflict

detection

support is

required

for SIMD

implemen

tation

Across pixels
Image

Analysis

Image

processing

libraries

ArryFire,

Nvidia

Performance

primitives

Bilateral

(Bilat)

Used as non-linear filter

in image processing for

edge preserving

smoothing provisions.

Compute intensive

RL Across pixels
Image

Analysis

Image

processing

libraries like

ArryFire

*Parallelism: RL-Regular, G-Gather, S-Scatter

Kernels are classified based on computation, memory and synchronization requirements. Various

high performance libraries are provided in CUDA toolkit. Open source and proprietary libraries are

also available for Nvidia CUDA enabled GPUs.

In [3], authors divide the workloads based on "RMS- Recognition, Mining and Synthesis" and

categorise throughput computing applications using similarity patterns based on algorithmic structure,

mathematical model and data structures. Authors show the importance of workload convergence on

architectural design of general purpose computing platforms and impact of computing devices on

user's experience and developer's methodology and productivity.

"Random number generation(RNG)" is one of basic requirement for throughput computing

applications like Monte Carlo methods. For accelerating RNG using GPU; different methods and

requirements are reviewed in [4].

Brain data processing is one of the toughest challenge for identifying brain activities and functions.

Massively parallel systems formed using "GPGPUs" can be used for gaining performance using three

approaches: (1) decomposing the "electroencephalogram(EEG)" series (2) changing synchronization

measures for multivariate EEG (3) reducing the dimensions for large scale "parallel factor

analysis".[5]

3. Performance evaluation

For evaluating parallel applications one of major parameter is scalability. Given workload is scalable

if by increasing number of processing elements the application can use the available pool of

processors and improve the performance.

Speedup(S):

Speedup(S) of parallel solution by comparing with sequential solution of given application is ratio of

running time of sequential solution (T1) to running time of parallel solution on N processors (TN) as

shown in equation:1.

Parallel efficiency(E):

Parallel efficiency(E) can be obtained by dividing speedup(S) by total number of processing elements

as shown in equation:2.

S(N) = T1/ TN

(1)

E(N) = S(N) / N = T1/ (N1 *TN)

(2)

6

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Ideal speedup or linear speedup is N and that can be achieved using N processing elements if TN =

T1/N which leads to "parallel efficiency" 1.0. The linear speedup is theoretical and cannot be achieved

in practical situation as some portion of any application is serially executable which cannot be

parallelize.

Speedup metrics can be classified as:

1. Strong scaling or fixed size speedup

2. Weak scaling or fixed time speedup

3. Memory bounded speedup

Strong scaling speedup is calculated using Amdahl's law which states that "achievable speedup of

given workload(w) is identified using portion of program's code which can be executed in serial

manner only". If we take N as infinite number of computing resources then we get upper bound of

speedup as 1/(Serial_fraction).

S(N) =T1(w) /TN(w)

=T1(w) / (Serial_fraction * T(w) + ((1 - Serial_fraction) * T1(w))/N)

=1/ (Serial_fraction + (1 - (Serial_fraction)/N)

(3)

Weak scaling speedup is calculated using Gustafson's law which states in optimistic way that "as

size of problem increases the serial portion of code is not always appropriate to assume. The parallel

computing resources can be deployed to solve large problem in time bound manner. Workload can be

divided into sequential (ws) and parallel (wp) parts. Here it is assumed that parallel part scales in linear

way with increase of processors."

S(N) =T1(ws + N * wp) /T1(ws +wp)

S(N) = (Serial_fraction * T1(w) + N * (1 - Serial_fraction) * T1(w)) / T1(w)

 = N + (1 - N) * Serial_fraction

Memory bounded speedup is higher than weak scaled speedup for applications where problem size

increases more linearly with increase in number of processing elements because of constraints of

memory i.e. arithmetic calculations increase faster than requirements of memory.[6]

4. HPC hardware and software

4.1 HPC hardware

Differences between multi-core and modern graphics processing units:

Multi-core processors
 Each core (generally <10) works as an independent processing element having complete instruction

set and out-of-order execution or dynamic scheduling (i.e. each core can execute different tasks and

instructions are processed according to which operands are available at given instance of time rather

than program order). Multi-core processors can be homogeneous (i.e. contains similar cores) or

heterogeneous (i.e. contains different kind of cores). "Hyperthreading" may be supported (i.e. each

core can execute two hardware threads at same time). Generally they are used to maximize speed of

execution for sequential programs). Design is optimized for sequential code performance by using ILP

(Instruction Level Parallelism). Large cache memory for data and instruction are provided to hide

instruction and data latency.

Graphics processing units

GPUs contain hundreds of SIMD cores having limited instruction set and heavily multithread, in-order

execution and single-instruction issue processors. A single SIMD instruction can execute multiple

operations on different operands so to take advantage of SIMD instructions our code should be in form

of vectors means independent instructions of similar type has to be identified and these selected

instructions are replaced by SIMD instructions. Control and instruction cache are shared among other

7

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

cores. Design is optimized for multimedia intensive applications. Maximum chip area and power used

for floating point calculation so design focus is on providing large number of numeric computation

engines. Large memory bandwidth is provided for moving data to GPU as well as small cache

memory is provided to control bandwidth requirements for applications.

Figure 1 Simplified architecture of multi-core processor and GPU

4.2 Software

As surveyed in [7], parallel programming models can be classified as:

4.2.1. Pure Parallel Programming Models

4.2.1.1. POSIX threads

Thread is known as light weight process and it has program counter (PC) and stack memory. The

"Pthreads, or Portable Operating System Interface (POSIX) Threads" is a collection of C types and

procedures. "Pthread" is developed using a header file "pthread.h" and library which is useful

for "fork/join" based parallel programming. This model provides dynamic memory allocation using

heap memory and shared global variables. For giving exclusive access of shared variables to threads

mutex and semaphore constructs are supported. Author suggests that this model is not suitable for

HPC applications due to scalability issues(i.e. number of threads created in program are independent

of number of available processors in the system).

4.2.1.2. OpenMP (Open Multiprocessing)

"OpenMP" is used for shared memory parallel programming. It is a "multithreading interface" to

create HPC applications by providing abstract compiler directives in C, C++ or Fortran languages to

create threads, provide synchronization and manage memory in shared memory environment. It

follows block structured fork/join model for creating parallel regions in the programs. Each parallel

regions is executed by the created threads as single individual task. This approach is also known as

"work sharing". So parallel loop based structures, "Single Program Multiple Data (SPMD)" and

fork/join structures are benefited using "OpenMP". Apart from higher level abstraction in terms of

compiler directive, this model supports "application specific synchronization primitives" which ease

the programmers burden for managing synchronization explicitly in programs; unlike in "Pthreads".

8

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Figure 2 OpenMP architecture

4.2.1.3. Message passing

"Message passing" programming model is used to create distributed memory parallel programs. While

comparing with "OpenMP"; communication among different processes is carried out by passing

messages rather than sharing variables. "Message Passing Interface (MPI)" is de facto standard for

creating large scale programs for HPC applications using distributed memory architecture. It supports

"SPMD" and "master/worker" programming patterns. "MPI" is good for portable applications and

"task parallel" programs which consist of dynamic data structures and unstructured calculations.

Nowadays "MPI" supports combination of "message passing" and "multithreading" with inherent

thread safety levels.

4.3. Heterogeneous parallel programming

Due to emergence of "general purpose graphics processing units (GPGPUs)" which provides

traditional GPUs as accelerator for general purpose computations using different "APIs".

4.3.1. CUDA

"Compute Unified Device Architecture(CUDA)" API is created by NVIDIA for creating applipcations

which can take advantage of massively parallel graphics processors to perform general purpose

computations. "CUDA" model provides high level abstractions and compilers directives for C, C++

and Fortran languages. The terminology is briefly provided here. For this model, CPU known as host

as other device (i.e. GPUs, signal processors, application specific SoCs etc.) are interfaced and

managed by CPU. As seen in architecture of HPC hardware, "GPU" consist of collection of

"streaming multiprocessors (SMs)" which executes a large number of threads in parallel manner. The

threads are logically organized into two level hierarchy of grid and blocks. Each thread has a unique

"ThreadID". The block may contain one of three kind of hierarchy i.e. one dimensional, two

dimensional or three dimensional for data structures like vector, matrix and complex number or

volume respectively. This model is well suited for "SPMD" pattern which can take advantage of

SIMD based GPUs. Thread creation and management is done by CUDA implicitly whereas

distribution of work among threads is provided by the programmer in terms of number of blocks per

grid and number of threads per block. Block of threads creates a workgroup which is executed on

SMs. "Global function" with "CUDA" primitives is created with appropriate thread hierarchy and

synchronization. As shown in Fig. [3] global and shared memory are provided. Constant memory is

"read only" for device(GPU) and shared memory is accessed by all threads in the block.

9

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Figure 3 "CUDA" architecture and memory

model

Figure 4. "OpenCL" simplified Model

4.3.2. OpenCL

As shown in Fig. 6, it is used for general purpose heterogeneous parallel computing. While comparing

with "CUDA", it supports heterogeneous devices of different vendors and its open royalty free

standard.

4.3.3. DirectCompute and TPL(Task Parallel Library) by Microsoft

Microsoft supports GPU programming using DirectCompute. "TPL" provides compiler directive and

programming constructs to take advantage of multi-core processors in "MS .NET" environment.

4.3.4. AMD ATI Stream

It is used by AMD multi-core GPUs. It gives support for data and task based parallel programming.

4.3.5. Intel Array Building blocks(ArBB)

It provides general purpose "vector parallel programming" for mathematical and data intensive

calculations. It is made of standard C++ library and implicitly uses Intel's Thread Building Blocks

(TBB).

5. Implementation

We have used multi-core processor Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz. Maximum

single core frequency is 3.10 GHz using Intel Turbo Boost Technology. It has 4 Cores or ALUs. Intel

Hyper-Threading Technology is supported so two threads can be executed per core hence total 8

logical processors are available in the system. 8 GB of RAM is provided in the system. Nvidia

GeForce GT 540M graphics card is installed.

5.1 Profiling

For understanding working of CUDA and OpenMP based application behaviour on the given

hardware and software; profiling is done using of visual profiler of NVIDIA Nsight in Visual Studio

2015. Such kind of profiling using benchmarks provides better optimization criteria for throughput

computing workloads as they tend to be application domain specific and contain similarity patterns or

design patterns implicitly. With the available hardware and software we are showing basic steps to

10

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

differentiate two kind of performance analysis tools: (1) profiling which generates statistical report

based on executed instruction in specific time interval and (2) tracing which store all the events in

program execution with reference to timestamp and sort the events by comparing initial time.

/*Sample code for using OpenMP and CUDA: cuda_openmp.cu (Source Reference: NVIDIA toolkit

documentation)*/

#include "cuda_runtime.h"

#include "device_launch_parameters.h"

#include <omp.h>

#include <stdio.h>

#include <helper_cuda.h>

#include <stdlib.h>

#include <cuda.h>

using namespace std;

// a simple kernel for multiplying

__global__ void kernelMultiplyConstant(int *g_a, const int b)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 g_a[idx] *= b+12345;

 printf("%d ,", g_a[idx]);

}

int main(int argc, char *argv[])

{

 int num_gpus; // number of CUDA GPUs

 cudaGetDeviceCount(&num_gpus);//identify GPU in system

 if (num_gpus < 1)

 {

 printf("no CUDA capable devices were detected\n");

 return 1;

 }

 // display CPU and GPU configuration

 printf("number of host CPUs:\t%d\n", omp_get_num_procs());

 printf("number of CUDA devices:\t%d\n", num_gpus);

 for (int i = 0; i < num_gpus; i++)

 {

 cudaDeviceProp dprop;

 cudaGetDeviceProperties(&dprop, i);

 printf(" %d: %s\n", i, dprop.name);

 }

 int n = num_gpus * 8192 *100;

 int nbytes = n * sizeof(int);

 int *a = 0;

 int b = 99;

 a = (int *)malloc(nbytes);

 if (0 == a)

 {

 printf("couldn't allocate CPU memory\n");

 return 1;

 }

11

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

 for (int i = 0; i < n; i++)

 a[i] = i;

 omp_set_num_threads(num_gpus*8);// create 8 as many CPU threads as there are CUDA devices

 #pragma omp parallel

 {

 int cpu_thread_id = omp_get_thread_num();

 int num_cpu_threads = omp_get_num_threads();

 // set and check the CUDA device for this CPU thread

 int gpu_id = -1;

 cudaSetDevice(cpu_thread_id % 2); // "% 2" allows more CPU threads than GPU devices

 cudaGetDevice(&gpu_id);

 printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id, num_cpu_threads,

gpu_id);

 int *d_a = 0;

 int *sub_a = a + cpu_thread_id * n / num_cpu_threads;

 int nbytes_per_kernel = nbytes / num_cpu_threads;

 dim3 gpu_threads(128); // 128 threads per block are allocated

 dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads));

 cudaMalloc((void **)&d_a, nbytes_per_kernel);

 cudaMemset(d_a, 0, nbytes_per_kernel);

 cudaMemcpy(d_a,sub_a,nbytes_per_kernel, cudaMemcpyHostToDevice);

 kernelMultiplyConstant<<<gpu_blocks, gpu_threads>>>(d_a, b);

 cudaDeviceSynchronize();

 cudaMemcpy(sub_a,d_a,nbytes_per_kernel, cudaMemcpyDeviceToHost);

 cudaFree(d_a);

 }

 if (a)

 free(a); // free CPU memory

 getchar();

 return 0;

}

5.2 Description

The functions which are executed on GPU are known as kernel function. This is explicitly mention to

differentiate between kernel workloads and parallel function of CUDA program.

kernelMultiplyConstant() is kernel function. Thread hierarchy is created in kernel. Every thread

created in for executing on GPU has same code with unique thread-id. So portion of array is divided

among the threads according to workload distribution from main() function. cudaMalloc() is used for

allocating memory on GPU's RAM.cudaMemset() is used to initialize the memory block. Kernel

function is called form main using <<< block, threads per block>>> directive of CUDA. For doing

calculations using GPU array is copied from host(i.e. CPU's RAM) to device (i.e. GPU's RAM) using

cudaMemcpy() function. After performing required operation on array elements in GPU, the array is

copied back to CPU's RAM for further calculations.

omp_set_num_threads() is used to create CPU threads using OpenMP library. #pragma omp parallel

directive spawns number of thread and replicate code among them.

Fig. 5, 6 briefly shows the summery of profiling and tracing of the program.

12

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

Figure 5 Timeline of program execution

Figure 6 Function calls with associated threads

Using profiling and tracing data we can find the detailed time analysis and space analysis of program

for finding regions which requires optimization.

6. Conclusion

Multi-core processors and graphics processors provide promising way to improve performance of

HPC applications and throughput computing workloads. Throughput computing applications are

domain specific so optimization according to deployed hardware and software plays major role in

improving performance. Scalability is an important factor as performance analysis metric for HPC

applications. Parallel programming paradigm creates new challenges in term of debugging and

profiling due to massively threaded parallel systems.

7. Future work

Implementation of different throughput computing workloads on HPC hardware and software for

finding application specific optimization criteria for multi-core architecture based software

development.

13

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

References

[1] Sutter H and Larus J 2005 Software and the concurrency revolution Queue 3 54-62

[2] Lee V W, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A D, Satish N and Smelyanskiy M

2010 Debunking the 100X GPU vs . CPU Myth : An Evaluation of Throughput Computing on
CPU and GPU 451–460

[3] Chen B Y, Ieee S M, Chhugani J, Dubey P, Ieee F, Hughes C J, Ieee M, Kim D, Kumar S, Ieee

M, Lee V W, Nguyen A D, Ieee M, Smelyanskiy M, and Ieee M 2008 Convergence of

Recognition , Mining , and Synthesis Workloads and Its Implications 96

[4] Ecuyer P L, Munger D, Oreshkin B, and Simard R 2017 ScienceDirect Random numbers for

parallel computers : Requirements and methods, with emphasis on GPUs Mathematics and

Computers in Simulation 135 3–17

[5] Chen D, Hu Y, Cai C, Zeng K and Li X 2016 Brain big data processing with massively parallel

computing technology : challenges and opportunities

[6] Sun X H and Ni L M 1993 Scalable Problems and Memory-Bounded In: Journal of Parallel and

Distributed Computing 19 27–37

[7] Diaz-montes J and Nin A 2012 A Survey of Parallel Programming Models and Tools in the Multi

and Many-Core Era A Survey of Parallel Programming Models and Tools in the Multi and Many-

Core Era 19–21

[8] Molka D 2017 Performance Analysis of Complex Shared Memory Systems

