Header menu link for other important links
X
Performance investigation of novel multi stage multi effect sorption thermodynamic system for heating and cooling applications
Published in Elsevier BV
2019
Volume: 161
   
Abstract
Performance of novel multi stage multi effect sorption thermodynamic system for heating and cooling applications (MSTS-HCA) is investigated using finite volume method (FVM) with a metal hydride pair of La0.9Ce0.1Ni5, MmNi4.4Al0.6, LaNi4.7Al0.3 and MmNi3.7Co0.7Mn0.3Al0.3. Numerical code is generated to solve governing equations to determine the transferable amount of hydrogen, bed temperature variation and heat loads between paired reactors. The numerical code is validated with experimental pressure concentration isotherms (PCIs) of these metal hydrides measured at operating temperatures of 20 ℃, 45 ℃, 140 ℃ and 180 ℃, using Sievert's apparatus. The slope and hysteresis factors are identified from PCI validation results which are needed for further performance investigation. Upon performance investigation through finite volume method and thermodynamic analysis, it is observed that the novel MSTS-HC can able to produce 424 kJ cooling output with cooling capacity of 0.29 kW, 412 kJ high temperature heat output with heating capacity of 0.22 kW and 729 kJ low temperature heat output with pumping capacity of 0.41 kW at a total low grade heat input of 530 kJ with overall COP and specific alloy output of 2.98 and 622 W/340 g of metal hydride, respectively. In addition, the detailed flow chart demonstrating the steps involved in performance analysis of novel MSTS-HCA through computation fluid dynamics (CFD) simulation is presented. © 2019 Elsevier Ltd
About the journal
JournalData powered by TypesetApplied Thermal Engineering
PublisherData powered by TypesetElsevier BV
ISSN1359-4311
Open Access0