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ABSTRACT 

This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by 

sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a 

wave frame of reference moving with the velocity of the waveby using the long wavelength and low 

Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation 

method by choosing W e  as the perturbation parameter. The expressions for velocity, stream function and 

pressure gradient are obtained. The features of the flow characteristics are analyzed through graphs and the 

obtained results are discussed in detail. It is noticed that the peristaltic pumping gets reduced due to an 

increase in the phase difference of the traveling waves. It is also observed that the size of the trapping bolus is 

a decreasing function of the permeability parameter and the Weissenberg number. Furthermore, the results 

obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-

Newtonian fluid phenomena, especially the Peristaltic flow phenomena. 

Keywords: Trapping phenomena; Peristaltic transport; Phan-thien-tanner fluid; Porous medium; Asymmetric 

channel. 

NOMENCLATURE 

1,a 1b amplitudes of the waves 

c wave speed  

1 2d d
 

width of the channel 

/d dt  material derivative 

k  relaxation time 

0k  permeability

p pressure

Re  Reynolds numbers respectively 


s Oldroyd’s upper-convected derivative 

t time 

tr trace 

( , )u v
 

velocities in wave frame
 

We
 

Weissenberg number 

 ,X Y
 

where X   and Y  axes are taken

respectively parallel and transverse to 

the direction of wave propagation  


 dynamic viscosity 


phase difference varying in the range 

0 .  
 

 wave length

 

( , )U V velocities in laboratory frame

,P p pressures in the laboratory and wave

frames respectively.

 wavenumber

 permeability parameter.

1. INTRODUCTION

Peristalsis is a mechanism for pumping fluid in a 

tube by means of a moving contractile ring around 

the tube, which pushes the material onward. The 

peristaltic wave generated along the flexible wall 
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of the tube provides an efficient means for the 

transport of fluids in living organisms and in 

industrial pumping. It is an inherent property of 

many smooth muscle tubes, since stimulation at 

any point causes a contractile ring around the tube. 

In general, peristalsis induces two types of fluid 

movements, namely propulsive and mixing. The 

peristaltic propulsive movement is observed in the 

esophagus, bileduct, the ureter and other glandular 

ducts through the body. The mixing property of 

peristalsis is speculated to be in the digestion of 

food in stomach and such other biological 

systems. Also the principle of peristalsis is 

adapted by engineers to pump the industrial fluids 

which are to be kept away from the pumping 

machinery. Shapiro et al. (1969) reported initial 

studies on peristaltic flow of viscous fluid. Since 

then, the mathematical models obtained by a train 

of periodic sinusoidal waves in an infinitely long 

two-dimensional symmetric channel or 

axisymmetric tubes containing Newtonian or non-

Newtonian fluid were investigated by several 

researchers (Jaffrin and Shapiro, 1971; Shukla and 

Gupta, 1982; Srivastava and Srivastava, 1984; 

Mishra and Ramachandra Rao, 2003;Vajravelu et 

al., 2005a, 2005b).       

 

In recent years, physiologists observed that the 

intra-uterine fluid flow due to myometrial 

contractions is peristaltic type of motion and it may 

occur in both symmetric and asymmetric channels 

(Devries et al., 1990). Eytan et al. (1999) reported 

that the non-pregnant woman uterine contractions 

are very complicated since they are composed of 

variable amplitudes, a range of frequencies, and 

different wave lengths. Also, observed that the 

width of the sagittal cross-section of the uterine 

cavity increases toward the fundus and the cavity is 

not fully occluded during the contractions. Eytan 

and Elad (1999) developed a mathematical model of 

peristaltic flow induced by wave trains with phase 

differences moving independently on the upper and 

lower walls to simulate intra uterine fluid motion in 

the sagittal cross section of the uterus. They have 

obtained a time dependent flow solution in a fixed 

frame through the lubrication approach.  

 

As we know, there are certain biofluids (for 

example, blood, saliva, gastric juice) whose 

characteristics cannot be described by the 

Newton’s law of velocity, especially those with 

high molecular weight leads to the development of 

non-Newtonian fluid mechanics. Hence some 

investigators have recently engaged in making 

progress in peristaltic flows of non-Newtonian 

fluids (Elshehawey and Mekhemier, 1994; Usha 

and Ramachandra Rao,1997; Kothandapani and 

Srinivas, 2008; Hakeem and Naby, 2009; Nadeem 

and Akram, 2010;Narahari and Sreenadh, 2010; 

Sreenadh et al., 2011; Hayat et al., 2011, 2012a, 

2012b;Noreen Sher Akbar and Nadeem, 2012; 

Vajravelu et al., 2009, 2012, 2014; Sucharitha et 

al., 2013; Rathod and Laxmi, 2014; Riaz et al., 

2014; Noreen and Nadeem 2014;Hina et al., 2015; 

Ravikiran, and Radhakrishnamacharya, 2015). 

For solving non-linear differential equations, we 

employ pure numerical approach and/or analytical 

approach. Both of these approaches have their own 

advantages and disadvantages. Scientists and 

engineers follow one or both the approaches to 

resolve and study their mathematical models for 

better understanding and application. Analytical 

methods contain: Perturbation method (PM), 

Adomian decomposition method (ADM), homotopy 

analysis method (HAM), optimal homotopy 

asymptotic Method (OHAM), differential transform 

method (DTM) etc. (for details see Beg et al. 2013, 

2014; Rashidi et al. 2009; and Edalatpanah and 

Rashidi 2014). These methods have certain 

advantages over the commonly used numerical 

methods. 

Viscous flow through a porous medium is of 

fundamental importance in ceramic engineering, 

ground water hydrology, petroleum technology, 

powder metallurgy, industrial filtration and such 

other fields. Also, in the springs of the geothermal 

region, water is known to be an electrically 

conducting fluid. Flow through porous media has 

been studied by a number of researchers (Srinivas 

and Kothandapani, 2009; Lakshminarayana et al., 

2013; Anjali Devi and Kayalvizhi, 2010, 2013; 

Tripathi, 2013; Agoor andEldabe, 2014; Ramesh 

and Devakar, 2015). Hayat et al. (2008) 

investigated the influence of partial slip on the 

peristaltic flow in a porous medium. The Effect of 

heat transfer on the peristaltic flow of an 

electrically conducting fluid in a porous space was 

studied by Hayat et al. (2009). Vajravelu et al. 

(2011) discussed the influence of heat transfer on 

the peristaltic transport of a Jeffrey fluid in a 

vertical porous stratum. Singh and Rathee (2011) 

presented the analysis of non-Newtonian blood 

flow through stenosed vessel in a porous medium 

under the effect of magnetic field. 

 

Motivated by the above studies, in the present 

paper, the peristaltic transport of Phan-Thien-

Tanner fluid in an asymmetric channel with 

porous medium is investigated. The governing 

equations of Phan-Thien-Tanner fluid model are 

solved by a perturbation technique. The 

expressions for stream function, pressure gradient 

and pressure rise have been obtained. The effects 

of various physical parameters on the velocity, the 

pressure rise and the trapping phenomenon are 

discussed through graphs.    

2. MATHEMATICALFORMULATI

ON 

We consider an incompressible Phan-Thien-Tanner 

fluid flow in an asymmetric channel with porous 

medium, of width 1 2d d . Let c  be the speed by 

which sinusoidal wave trains propagate along the 

channel walls. Consider the rectangular coordinate 

system  ,X Y where X  and Y  axes are taken 

respectively parallel and transverse to the direction 

of wave propagation. The wall surfaces are modeled 

by 
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 1 1 1

2
Y H d a Cos X ct




      
, 

 2 2 1

2
Y H d b Cos X ct

 


        
,           (2.1) 

where  is the phase difference varying in the 

range 0 .   Here, 0  correspond to 

symmetric channel with waves out of phase and

   with waves in phase, and further 

andddba 2111 ,,,  satisfy the condition 

2 2 2

1 1 1 1 1 22 cos ( )a b a b d d     so that walls 

will not intersect with each other. The basic 

equations of motion are the following: 

Continuity equation ߘ. ࢂ = 0.                             (2.2) 

Momentum equation ߩ ௗࢂௗ௧ =  (2.3)               .ࢀݒ݅݀

The constitutive equations for PTT model are ࢀ = ࡵ݌− + ࢙,               (2.4) ݂൫ݎݐሺ࢙ሻ൯࢙ + ࢑࢙∇ =   ,ࡰߤ2

∇ݏ (2.5)  = ௗ௦ௗ௧ − .ݏ ∗ܮ − .ܮ ࡸ (2.6)              ,ݏ =  (2.7)              ,ࢂ݀ܽݎ݃

where p  is the pressure, I is the identity tensor, Vis 

the velocity, T is the Cauchy stress tensor,   is the 

dynamic viscosity, sis an extra-stress tensor, D is 

the deformation-rate tensor, k  is the relaxation 

time, 
s  denotes Oldroyd’s upper-convected 

derivative, /d dt  the material derivative, tr is the 

trace and asterisk denotes the transpose. 

Function f  in the linearized PTT model which 

satisfies  

   1 ( ).
k

f tr tr



 s s               (2.8) 

Note that the PTT model reduces to an upper 

convected Maxwell model (UCM) when the 

extensional parameter is zero. 

We introduce the transformations between fixed 

and wave frames as 

 
, , ,

, ( , ),

x X c t y Y u U c

v V p x P X t

    

 
        (2.9) 

Using the equation (2.9) the governing equations in 

the wave frame can be written as 

0,
u v

x y

 
 

 
             (2.10) 

0

( ),
xyxx

u v u
x y

Sp S
u c

kx x y





  
  

  

 
    
  

        (2.11) 

0

,

yx

yy

Sp
u v v

x y y x

S
v

ky





    
    

    


 



         (2.12) 

2 2

2 ,

xx xx
xx xx xy

S S u u
f S k u v S S v

x y x y

u

x


    
    

     






             

(2.13) 

2 2

2 ,

yy yy
xx yx yy

S S v v
f S k u v S S v

x y x y

v

y


    
    

     






              

(2.14) 

0,
zz zz

zz
S S

f S k u v
x y

  
   

   
           

(2.15) 

[
xy xy

xy xx

xy xy

S S v
f S k u v S

x y x

v u
S S

y x

  
  

  

 
 
 

       

          ] ,yy

u u v
S

y y x

   

                  

(2.16) 

1 ( ).xx yy zz
k

f S S S



   

          

(2.17) 

The boundary conditions are 

1

2

,
2

, .
2

q
u c at y = H

y

q
u c at y = H

y






   




    

         

(2.17a) 

The non-dimensional quantities and the expressions 

for velocity in terms of stream function are given by 

2
1 1

1

1 2 1 2 1 1
1 2

1 1 1 1 1

1 1

1 1 10

, , , , , , ,

, ,Re , , , ,

, , , , ,

and , .

ij
ij

x y u v d d p ct
x y u v p t

d c c c

H H cd d a b
h h d a b

d d d d d

S d kc d q
S We F

c d cd cdk

u v
y x


     




 


 


       



     


     

 

  
  

(2.18)  
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The conditions in (2.1) can be written as  

 
 

1 21 cos 2 ,

cos 2 .

h a x h

d b x



 

  

                              
(2.19) 

Using the above non-dimensional quantities and the 

long wavelength approximation the basic equations 

reduce to 

2 1 ,
xySdp

dx y y


  

     
           

(2.20) 

0,
p

y




                              (2.21)  

2

2
2 ,xx xyf S We S

y





            

(2.22) 

0, 0,yy zzf S fS              (2.23) 

2 2

2 2
,xx yyf S W e S

y y

  
  

 
          

(2.24) 

and the non-dimensional boundary conditions are 

 

 

1

2

, 1 1 cos 2 ,
2

, 1 cos 2 ,
2

F
at y = h a x

y

F
at y = h d b x

y

 

  


   




    


 

              

(2.25)  

where F is the mean flow rate in the wave frame. 

 

The flux at any axial station in the fixed frame is  

1

2

1 2( 1) .

h

h

Q u dy h h F    
                             

(2.26) 

The average volume flow rate over one period of 

the peristaltic wave is defined as 

 1 2

0 0

1 1
1 .

T T

Qdt h h F dt F d
T T

        

                                                           

(2.27) 

From the equation (2.23) we have 0, 0yy zzS S   

and from equation (2.20) we get

 2 .x y

dp
S y y

dx
   

          

(2.28) 

With the help of (2.23) and (2.24) we can write   

22 .
xx xy

S We S
             

(2.29) 

From the equations (2.17), (2.23) and (2.29) we 

obtain  

2
2 3

2
2 .xy xyS We S

y

 
 


           

(2.30) 

Substituting (2.28) into (2.30) we get 

 

 

2
2

2

3
2 22 .

dp
y y

dxy

dp
W e y y

dx

  

  


  



    
 

        

(2.31) 

3. PERTURBATION SOLUTION 

Equation (2.31) is non-linear, its exact solution is 

not possible, and hence we employ the perturbation 

technique to find the solution. For perturbation 

solution, we expand the flow quantities in a power 

series of the small parameter 2We  as follows: 

 
 
 

 

2 4
0 1

2 4
0 1

2 4
0 1

2 40 1

.

W e O W e

F F W e F O W e

W e O W e

dpdp dp
W e O W e

dx dx dx

  

  

  



   


   

   

             

(3.1) 

Using the above expressions in equations (2.25) and 

(2.31), we obtain a system of equations of different 

orders. 

3.1   System of Order 0
W e  

The governing equations and boundary conditions 

of the zeroth-order problem are 

 
2

20 0
02

,
dp

y y
dxy

  
  


              

(3.2) 

 

 

0 0
0 1

0 0
0 2

, 1 1 cos 2 ,
2

, 1 cos 2 .
2

F
at y = h a x

y

F
at y = h d b x

y


 

  


    




       


                

(3.3)    

The solution of the zeroth - order problem is given 

by 

0
0 1 2 2

1
cosh sinh 1 ,

dp
c y c y y

dx
  


     
 

  (3.4) 

and the axial velocity is        

0
0 1 2 2

1
sinh cosh 1 .

dp
u c y c y

dx
   


     
 

  (3.5) 

3.2   System of Order 2W e  

The governing equations and boundary conditions 

of the first-order problem are 

32
2 201 1

1 02
2 ( ) ,

dpdp
y y y

dx dxy

            
 

                                                             

(3.6) 
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1 1
1 1

1 1
1 2

, 0 ,
2

, 0 .
2

F
at y = h

y

F
at y = h

y






 




  


  

            (3.7)    

The solution of the first-order problem is given by 

   

 

0
1 3 4 2

3 2
31 15 32

5 6 34 33

36 35

2
27 37 38

3 4 5 6
39 40 41 42

2
28 43 44

3 4
45 46 47

1
cosh sinh 1

1
cosh3 sinh3 cosh2

4

sinh2

sinh

cosh

dp
c y c y y

dx

L y L y L y

L y L y y L L y

y L L y

L L y L y
y

L y L y L y L y

L L y L y
y

L y L y L y

  


  







     
 

  

   

 

  
 
     

 


   5 6
48

,
L y

 
 
  

               

(3.8) 

and the corresponding first-order axial velocity is        

 

   

 
 

21
1 3 4 31 152

32 5 6

71 33 72 35

2 3 4 5
73 74 75 76 77 78

2 3 4 5
79 80 81 82 83 84

1
sinh cosh 3 2

3
sinh3 cosh3

4

sinh2 2 cosh2 2

sinh

cosh .

dp
u c y c y L y L y

dx

L L y L y

y L L y y L L y

y L L y L y L y L y L y

y L L y L y L y L y L y

   


  

   





    

  

   

     

     

                

(3.9) 

The final expression for the axial velocity is given 

by 

2
0 1.u u We u 

             
(3.10) 

The pressure gradient is obtained as 

20 1dp dp dp
We

dx dx dx
              (3.11) 

where 

20 0
1
4

1
dp F

dx L


 
   

 
and 1 1 3 21

1 3 1

.
F Ld p

dx L




  
).123(

         

 

The non-dimensional pressure rise and the non-

dimensional friction forces per unit wave length in 

the wave frame are given by 

1

0

,
dp

p dx
dx

  
             

(3.13)  

 

 
1

1 1

0

,
dp

F h dx
dx

 
             

(3.14)   

 
1

2 2

0

.
dp

F h dx
dx

 
            

(3.15)

 
Fig. 1. Velocity profiles for different σ with 

fixed a=0.4, b=0.4, d=1, ø=π/8, F=1.5, We=0.01. 

 

 
Fig. 2. Velocity profiles for different We with 

fixed a=0.4, b=0.4, d=1, ø=π/8, F=1.5, σ=1.5. 

 

 

Fig. 3. Velocity profiles for different  with fixed 

a=0.4, b=0.4, d=1, F=1.5, σ=1.5, We=0.05. 

 

4. RESULTS AND DISCUSSION 

The expression for velocity in terms of y is given by 

the equation (3.10). Velocity profiles are plotted in 

Figures 1-6 to study the effects of the different 

parameters such as the permeability parameter , 
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Weissenberg number ,We   phase difference  and 

amplitudes a, b on the velocity distribution. Fig.1 and 

Fig.2 are drawn to study the effect of  andW e . We 

notice that the velocity profiles are parabolic. Also 

observe that the velocity increases with decreasing and

W e  increasing . This may be due to the increment 

of elastic forces over the viscous forces in the non-

Newtonian fluid flow. Further the increase in the 

permeability reduces resistive forces and hence 

increases the fluid velocity in the channel. From Fig.3, 

we notice that the velocity decreases with an increase 

in . Fig.4 and Fig.5 are plotted to study the effects of 

a and b  on the velocity. We observe that the velocity 

increases with increasing , .a b  Fig.6 depicts that the 

velocity decreases with an increase in d.  
 

 

Fig. 4. Velocity profiles for different a with fixed 

b=0.4, d=1, x=0, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 

 
Fig. 5. Velocity profiles for different b with fixed 

a=0.4, x=0, d=1, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 

 
Fig. 6. Velocity profiles for different d with fixed 

a=0.4, b=0.4, x=0, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 
Fig. 7. Velocity profiles for different σ with fixed 

a=0.4, b=0.4, d=1, ø=π/8, We=0.15. 

 

 
Fig. 8. Velocity of pressure rise for different We 

with fixed a=0.4, b=0.4, d=1, ø=π/8, σ=1.5. 

 

 
Fig. 9. Velocity of pressure rise for different  

with fixed a=0.4, b=0.4, d=1, We=0.02, σ=1.5. 

 
We have calculated the pressure rise p  in terms of 

the mean flow rate   from equation (3.11). Fig.7 

shows the effect of  on p . We observe that for a 

given , the pressure rise decreases with 

increasing   initially and coincide at a point 

 0.5, 0  and after this point the situation is 

reversed. The effect of W e is shown in Fig.8. It can 

be seen that the pressure rise increases with an 

increase in W e which is due to the enhancement of 

frictional forces in the channel. From Fig.9 we 

observe that the pressure rise decreases with 
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increasing . From Fig.10, we notice that the 

frictional forces have the opposite behavior when 

compared with the pressure rise. 

 

 
Fig. 10. Variation of frictional force (at y=h1) for 

different σ with fixed a=0.4, b=0.4, d=1, ø=π/8 

We=0.02. 

 

(a) 
 

(b) 
 

(c) 

Fig. 11. Streamlines for a=0.3, b=1.3, ø=π/6, 

We=0.001, F=10 and for different values of σ(a) 

σ=1, (b)σ1.05, (c)σ=1.15. 

 

(a) 

(b) 

(c) 

Fig. 12. Streamlines for a=0.3, b=0.3, d=1.2, σ=1, 

We=0.001, F=10 and for different values of ø(a) 

ø=0, (b)ø=π/8, (c) ø =π/3. 

 
The results obtained for pumping characteristics are 

validated with the work of Hayat et al. (2011). They 

reported that p has direct relation to Hartmann 

number and the applied magnetic field provides 

hindrance to flow. In the present analysis porous 

medium resists the flow similar to applied magnetic 

field. Our results agree well with the behavior of the 

pressure rise due to the influence of permeability 
1k (or ) 

 which is similar to the results of Hayat 

et al. (2011) for Hartmann number. Further it is 

noticed that the present work (for porous medium) 

and the results of Hayath et al. (2011) (for magnetic 

case) yield similar conclusions on the effect of 

phase difference  of the peristaltic waves 

describing the asymmetry of the channel. 

5. TRAPPINGPHENOMENA 

The formation of an internally circulating bolus of 
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fluid by closed streamlines is called trapping and 

this trapped bolus is pushed ahead with the 

peristaltic wave. The effects of ,  and We on the 

streamlines are shown in Figures 11 to 13. It is 

observed that the size of the trapping bolus 

decreases with increasing ,  and We  Also it is 

noticed that the bolus disappears at 1.15   and 

0.02.We   

 

(a) 

(b) 

(c) 

Fig. 13. Streamlines for a=0.3, b=0.3, d=1.3, σ=1, 

ø=π/6, F=10 and for different values of We (a) 

We =0.001, (b) We =0.01, (c) We =0.02. 

6. CONCLUSIONS 

The peristaltic transport of Phan-Thien-Tanner fluid 

in an asymmetric channel with porous medium 

under the assumptions of long wavelength and low 

Reynolds number is studied in this paper. The 

analytical expressions are obtained for the velocity, 

stream function and pressure gradient. The features 

of the flow characteristics are analyzed by plotting 

graphs and discussed in detail.  

 We observe that the velocity increases with 

increasing permeability parameter  and 

amplitudes , .a b  The velocity decreases with an 

increase in Weissenberg number ,W e phase 

difference   and amplitude d.  

 The pressure rise decreases with increasing  in 

the pumping region and opposite behavior is 

observed in the co-pumping region. Also the 

pressure rise increases with an increase in W e

whereas it decreases with increasing  .  

 We notice that both the frictional forces have 

the opposite behavior when compared with the 

pressure rise. 

 It is observed that the size of the trapping bolus 

decreases with increasing ,  and W e . 

 The results obtained for pumping and co-

pumping regions are validated with the work of 

Hayat et al. (2011). 
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