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 Abstract: Peristaltic motion of a Bingham fluid in contact with a Newtonian fluid in a Vertical 

 channel has been  studied under long wavelength and low Reynolds number suspicions. The 

flow is investigated in a wave frame of reference moving with velocity of the wave. The 

solution is acquired for stream function, velocity field, friction  force and the pressure rise in 

several sectors over one cycle of wavelength. The impacts of yield stress on the frame of 

interface are contemplated. It is discovered that the time-averaged flux against pressure rise is 

decreasing with an increase in the yield stress and viscosity ratio and it is also identified that 

the frictional force has unsimilar behavior with pressure rise 

  

 

 1. Introduction 
The conversation peristalsis stems from the Grecian word peristalikos, which means fastening and 

compacting. It is utilized to describe a progressive wave of recession along a channel or tube whose 

cross-sectional range subsequently differs. In physiology, it has been observed to be engaged with 

numerous natural organs. Specifically, peristalsis might be a fundamental system for pee transport 

from kidney to bladder through the ureter, development of chyme in the gastrointestinal tract, transport 

of lymph in the lymphatic vessels and the vasomotion of little veins. In addition, peristaltic pumps are 

composed by engineers for directing destructive fluids without contact with the walls of the pumping 

apparatus. Applying a wave frame of reference, Jaffrin and Shapiro [1] made a point by point 

investigation on the peristaltic pumping of a viscous fluid under long wave length and low Reynolds 

number suppositions. 

It is distinguished in some physiological frameworks, such as throat and ureter that the wall of the 

structure doing the pumping is normally covered with a fluid with various properties from those of the 

fluid being pumped. In order to have an understanding about the result of fluid covering on the motion, 

the single fluid analysis of peristaltic pumping is extended to two fluid analysis by including 

peripheral layer of distinct viscosity. This investigation was first done by Shukla et al. [2] for channel 

and axisymmetric geometries. For non-uniform axisymmetric tubes, Srivastava and Srivastava [3] 

made an important contribution in peristaltic pumping. Brasseur et al. [4] made a significant 

contribution on the peristaltic motion of two immiscible fluids in a channel using flexible walls and 

have demonstrated the deficiency of the examination specified above in the limit of vast peripheral 

layer thickness. This problem is solved for axisymmetric case by Ramachandra Rao and Usha et al. 
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[5]. Usha and Ramachandra Rao [6] discussed the peristaltic pumping of two layered power-law fluids 

in an axisymmetric tube. The interface between the two layers is resolved from a transcendental 

equation in the centre radius. All these authors have specified the interface shape.  Comparani and 

Mannucci [7] analyzed the flow of a Bingham fluid in contact with a Newtonian fluid in a channel. 

Vajravelu et al. [8] studied Peristaltic pumping of a Herschel-Bulkley fluid in contact with a 

Newtonian fluid. Vajravelu et al. [9] discussed Peristaltic transport of a Casson fluid in contact with a 

Newtonian fluid in a circular tube with permeable wall. The authors Narahari and Sreenadh [10], 

Kumar et al. [11] and Hari Prabhakaran et al. [12] studied the peristaltic pumping of a Bingham fluid 

in contact with a Newtonian fluid under the long wavelength approximation. Sreenadh et al. [13] 

discussed the peristaltic motion of a power law fluid in contact with a Jeffrey fluid in an inclined 

channel with permeable walls. Kavitha et al. [14] studied peristaltic transport of a Jeffrey fluid in 

contact with a Newtonian fluid in an inclined channel. 

Motivated by these facts, we propose to talk the peristaltic motion of a Bingham fluid in contact 

with a Newtonian fluid in vertical channel. This ideal may be helpful to comprehend the peristaltic 

motion of blood in vertical small vessels. The velocity field, the stream function, the friction force and 

the pressure rise over one cycle of wavelength are acquired. 

   

2. Mathematical development   
Consider the peristaltic motion of a bio-fluid consisting of two immiscible and incompressible fluids 

of distinct viscosities 1� and 2�  holding the core by a Bingham fluid and peripheral layer by a 

Newtonian fluid in a channel with  half-width a.    

   

 

Figure 1. Schematic diagram of the physical pattern 

 

The wall deformation due to the proliferation of an immense train of peristaltic waves is given by 

2
( , ) cos ( )Y H X t a b X ct

�

�
� � � �           (1) 

where b is the amplitude, �  is the wavelength and c is the wave speed. The resulting distortion of the 

interface isolating the core and peripheral layer is denoted by 1 ( , )Y H X t�  (figure 1) which is not 

known from the earlier. 

 

2.1 descriptions of Motion 
Under the suspicions that length of the channel is an essential numerous of the wavelength , the 

pressure difference over the wavelength is steady and the periodicity of the interface is same as that of 
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the peristaltic wave. The flow frame turns out to be consistent in the wave frame moving with velocity 

c away from the fixed frame ( ,  )X Y  called laboratory frame. The conversion between these two 

frames is given by 

- ,  , ( , ) ( - , ) - , ( , ) ( - , ),x X ct y Y u x y U X ct Y c v x y V X ct Y� � � � ( ) ( , ), -p x P X t Y�� � 	   (2) 

Where �  and 	  are the stream functions in the wave and laboratory frames respectively. Applying 

the non-dimensional quantities 
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where 
( )i

v and 
( )i

u are the �� and �̅   components of velocities in the wave frame � �1, 2i �  indicates 

core and peripheral layers respectively, p is the pressure,  

The governing equations of the motion under the lubrication path (dropping the bars), 
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where 0
 is the yield stress. 

The dimensionless boundary conditions are 
(1)

0� �    at  0y �           (7) 

(1)

0yy� 
�  at 0y �           (8) 

(2)
q� �   = constant at y h�          (9) 

(1)

1q� � = constant at 1y h�                     (10) 

(2)
1y� ��   at y h�                                      (11) 

Where q  and 1q  are the aggregate and the centre fluxes respectively over any cross segment wave 

frame. Further the velocity and the shear stress are continuous over the interface. The peripheral layer 

flux is given by 2 1q q q� � . It takes from the incompressibility of the fluids that q  , 1q  and 2q  are 

independent of x . The average non-dimensional volume flow rate Q  over one period T
c

�
�

� �
� �
� �

 of the 

peristaltic wave is characterized as 

0 0

1
( 1)

T h

Q u dydt
T

� �" " � �
0

1 T

q h dt
T

� �"
0

1 T

q h dt
T

� � "  q 1� �            (12) 

The stream function is obtained by applying the boundary conditions (7) to (11) to each other using the 

boundary conditions at the extremes of the channel given by indicating Q  or the pressure difference 

p#  crosswise over one wavelength 

2.2 Solution 
Solving equations (4) - (6) to each other using the boundary conditions (7) - (11) and  
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(1) (1)

p� ��  at 0y y�            (13) 

(1)
0p� �  at  0y �           (14) 

where 0y  is the upper limit of the plug  flow region and 
(1)

p�  is the stream function in the plug flow 

region. We get the stream function in the core (plug flow region & non-plug flow region) and 

peripheral layer as 
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We obtained the axial pressure gradient  from (4) or (6) as  
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2.3 The description for the Interface  

The streamline of interface is seen from the boundary condition (10). For a given algebra of the 

wave and the time averaged flux ,Q  the distant interface 1( )h x  is solved from (13) with the boundary 

condition (10). Replace (10) in (13) we obtain the algebraic equation governing the interface 1( )h x  as
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Where 1q  and q  are independent of x . Applying  the condition  1 0,  h y$ %� �  at 0x � in equation 

(19), we obtain 
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2.4 The Pumping Characteristics      
Integrate the equation (18) about  � over one wavelength we get the pressure rise (drop) over one 

cycle of the wave as 

1 2 0 3

3
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The dimensionless frictional force � at the wall crosswise over one wavelength is given by 
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3. Results and Discussions 
The frame of the interface for distinct yield stresses is displayed in Figure 2. We notice that the 

deviation of the interface frame for low yield stresses leads to a thinner peripheral-layer in the dilated 

region. The uniform sinusoidal interface frame is never acquired. The frame of the interface for 

distinct viscosity ratios is displayed in Figure 3. The deviation of the interface frame for low viscosity 

ratios leads to a thicker peripheral-layer in the dilated region. The uniform sinusoidal interface frame is 

never acquired. 

The deviation of pressure rise with time averaged flux is determined from equation (21) for distinct 

values of yield stress 0
  using 0.7,$ �  0.6,� �  0.1,� �  1
 �  and is displayed in Figure 4. We 

notice that for a given flux Q , the pressure difference p# decreases with the increasing in 0
 .For a 

given p# , the flux depends on the yield stress and it decreases with increasing in
0
 .The deviation of 

pressure rise with time averaged flux for distinct values of viscosity ratio �  using 0.7,$ �  0.6,� �  

0 0.1,
 �  1
 �  and is displayed in Figure 5. We notice  that for a given flux Q , the pressure difference 

p# decreases with the increasing in � .For a given p# , the flux depends on viscosity ratio and it 

decreases with increasing in � .The deviation of pressure rise with time averaged flux for distinct 

values of gravity parameter 
  using 0.7,$ �  0.6,� �  0.1,� �  0 0.1
 �  and is displayed in Figure 

6. We notice that for a given fluxQ , the pressure difference p# increases with the increasing in 
 .For 

a given p# , the flux depends on the gravity parameter and it increases with increasing in
 . 

The Friction force with time averaged flux is determined from equation (22) for distinct values of 

yield stress 0
  using  0.7,$ �  0.6,� �  0.1,� �  1
 �  and is displayed in Figure 7. We notice that for 

a given flux Q , the Friction force F increases with the increasing in 0
 .For a given F, the flux depends 

on the yield stress and it increases with increasing in 0
 .The Friction force with time averaged flux for 

distinct values of viscosity ratio �  using  0.7,$ � 0.6,� �  
0 0.1,
 � 1
 �  and is displayed in Figure 

8. We notice that for a given flux Q , the Friction force increases with the increasing in � .For a given 

F, the flux depends on viscosity ratio and it increases with increasing in � .The Friction force with 

time averaged flux for distinct values of gravity parameter 
  using  0.7,$ �  0.6,� � 0.1,� �

0 0.1,
 �  and is displayed in Figure 9. We notice that for a given flux Q , the Friction force decreases 

with the increasing in 
 .For a given F, the flux depends on the gravity parameter and it decreases with 

increasing in
 . Also, the frictional force F  has unsimilar behavior in comparison to pressure rise P# . 
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Figure 2. The frame of interface for distinct 0
  using 0.6� � , 0.9� � , 0.4Q � , 0.7$ �    

 
 

Figure 3. The frame of interface for distinct �  using 0.6� � , 0 0.1
 � , 0.4Q � , 0.7$ �  
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Figure 4.The deviation of p# with Q for distinct 0
 using 0.7,$ � 0.6,� � 0.1,� � 1
 � .  

 

Figure 5. The deviation of p# with Q for distinct �  using 0.7,$ � 0.6,� � 0 0.1,
 � 1
 �  
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Figure 6. The deviation of p# with Q for distinct 
  using 0.7,$ � 0.6,� � 0.1,� � 0 0.1
 � .  

 

Figure 7. The deviation of F  with Q for distinct 0
  using 0.7,$ � 0.6,� � 0.1,� � 1
 � .  
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Figure 8. The deviation of F with Q for distinct �  using 0.7,$ � 0.6,� � 0 0.1,
 � 1
 � . 

 

Figure 9. The deviation of F with Q for distinct 
  using 0.7,$ � 0.6,� � 0.1,� �  0 0.1
 � . 
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