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a b s t r a c t

The present work proposes another path for classification of plant species from digital leaf images. Plant

leaves can have an assortment of unmistakable elements like green and non-green hue, simple and com-

pound shape and distinctive vein designed surfaces, a solitary arrangement of elements may not be suf-

ficiently adequate for a viable classification of heterogeneous plant sorts. A hierarchical architectural

design is proposed where numerous components are joined together for a more powerful and strong clas-

sification of the visual data. The study likewise incorporates the arrangements of customization of the

feature extraction modules and classifiers for best execution. The database itself is sectioned in light of

conspicuous components by visual discriminators, as this enhances proficiency. As new layers can be

added to the current system to take into account up to this point obscure leaves with new qualities,

the design likewise provides options of adaptability. Another Feature based Shape Selection Template

(FSST) is proposed for the choice of shape features for various sorts of leaves. Broad examinations are

completed on two openly accessible databases including green, non-green, simple and compound leaves

with variations in shape, size and designs about exhibit the advantages of the proposed strategy over best

in class procedures.

� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Plants are the one of the basic component of the earth respon-

sible for protecting the World’s environment. They give suste-

nance, protect, medicines, fuel and keep up a sound breathable

climate. Be that as it may, as of late an ever-increasing number

of plants are at the very edge of termination because of ceaseless

de-forestation. Thus, to monitor the plants, assembling a plant

database for speedy and effective grouping and classification is

an essential stride. The vast majority of these systems depend on

extraction of visual components like hue, texture and shape and

their portrayals as information models for correlations and classi-

fication. Albeit different parts of a plant like blossom, bud, natural

product, seed, root can be utilized for distinguishing, leaf based

classification is the most widely recognized and viable approach.

A number of visual features, data modeling techniques and clas-

sifiers have been proposed for plant leaf classification. TheManifold

learning based dimensionality reduction algorithm is used (Zhang

et al., 2016) in plant leaf recognition as the algorithms can select

a subset of effective and efficient discriminative features in the leaf

images. For plant leaf recognition a dimensionality reduction

method based on local discriminative tangent space alignment

(LDTSA) is used where the manifold learning based dimensionality

reduction algorithm is applied to reduce the size of the neighbor-

hood matrix generated from the within class neighborhood and

between class neighborhood is estimated. Deng et al. (2016)

focuses on the spectral classification of weeds and crops for detect-

ing the weeds in crop fields. The Principal Component Analysis

(PCA) is used to determine the characteristic wavelengths (CW).

Anjomshoae and Rahim (2016) used a template-based method for

overlapping rubber tree leaf identification. Initially, the key point

based feature extraction method is adopted using the Scale Invari-

ant Feature Transform (SIFT). The steps used in the SIFT method is

finding the scale space extreme by the difference of Gaussian, key

point localization by principal curvature, orientation assignment
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by gradient directions and key point descriptor. An automated

identification of plant species using leaf shape descriptor used by

Salve et al. (2016a,b) addresses the automatic classification of

plants and simplifies taxonomic classification process. In this

research work, the authors use Zernike moments (ZM) and His-

togram of Oriented Gradient (HOG) method as a shape descriptor.

Scharr et al. (2016) compares several leaf segmentation solutions

on a unique and first-of-its-kind dataset containing images from

typical phenotyping experiments. Four methods are presented:

three segment leaves by processing the distance transform in an

unsupervised fashion and the other via optimal template selection

and Chamfer matching. De Souzaa et al. (2016) uses the simulated

annealing, differential evolution and particle swarm optimization

methods, which is based on the silhouette measure, to achieve

the set of optimal parameters for leaf shape characterization. The

combination of texture features and shape features is used by Liu

and Kan (2016) for the identification of plant leaf. Texture features

are derived from local binary patterns, Gabor filters and gray level

co-occurrence matrix while shape feature vector is modeled using

Hu Moment invariants and Fourier descriptors. Modified Local bin-

ary patterns (MLBP) approach is used by Naresh and

Nagendraswamy (2016) for classification of plant leaves based on

texture features. Here mean and standard deviation of the pixels

is considered instead of considering a hard threshold like normal

LBP. The Angle View Projection (AVP) is used by Prasad et al.

(2016) for plant leaf identification. The AVP shape profile curve (a

set of four shapelets) is extracted from the leaf images. The 1-D Dis-

crete Cosine Transform (DCT) compactness is applied over the 1-D

AVP shape curve to extract the features of the leaf image. Caoa et al.

(2016) uses R-angle for the leaf shape characterization. R-angle

describes the curvature of the contour by measuring the angle

between the intersections of the shape contour with a circle of

radius R centered at points sampled around the contour. Varying

the parameter R of the proposed R-angle describes the notation of

scale, which indicates a coarse-to-fine description of the local cur-

vature. Visual parameters include length, width, area, perimeter is

used by Sakai et al. (1996) and leaf contour shape is used by Wang

et al. (2000) for the classification of plant leaves. Different data

modeling techniques used include orthogonal discriminant projec-

tion (Zhang et al., 2016), the focus is on the spectral classification of

weeds and crops for detecting the weeds in crop fields. The Princi-

pal Component Analysis (PCA) is used to determine the character-

istic wavelengths (Deng et al., 2016), multidimensional

embedding sequence similarity (Fotopoulou et al., 2013), fuzzy

logic (Wang and Feng, 2002), Fourier descriptors (Yang and

Wang, 2012), Recognizing leaf images based on Ring Projection

Wavelet Fractal Feature is used by Wang et al. (2010), Zernike

moments is used by Kadir et al. (2012) to build foliage plant iden-

tification systems. Zernike moments were combined with other

features: geometric features, color moments and gray-level co-

occurrence matrix (GLCM). The geometric features include aspect

ratio, circularity, irregularity, solidity, convexity and two types of

vein features are used. The vein features is constructed by using

the morphological opening operation. The color moment features

include the mean, standard deviation, skewness and kurtosis. After

that the GLCM based features are extracted which include the

energy, contrast, local homogeneity pair of pixels, entropy and cor-

relation, In Salve et al. (2016a,b) an automated identification of

plant species using leaf shape descriptor addresses the automatic

classification of plants and simplifies taxonomic classification pro-

cess. In this research uses Zernike moments (ZM) and Histogram of

Oriented Gradient (HOG)method as a shape descriptor, local binary

descriptors (LBD) uses (Wang et al., 2014; Le et al., 2014) used ker-

nel descriptor (KDES) based plant leaf identification. Before the fea-

ture extraction, the leaf images are segmented using theWatershed

algorithm. After that the images are converted to the grayscale

image. To extract the KDES feature, first the patch level features

are extracted from the leaf images. Here three types of kernels

are considered: gradient, local binary pattern and color. After

extracting the patch level features, the K-means algorithm is

applied to build the dictionary. After that the features are extracted

from the image level using the spatial pyramid matching through-

out several layers, (Markos et al., 2015) uses morphological charac-

terization, a variety of classifiers and comparisonmetrics have been

used viz. neural networks (Aakif and Khan, 2015; Kumar et al.,

2012) describes the mobile app for identifying plant species using

automatic visual recognition. First of all a binary leaf/non-leaf clas-

sifier is applied to all inputs. After that color based segmentation is

applied to segment the leaf from an un-textured background. After

the segmentation, the stems are removed from the binary images

by the top-hat morphological operation. After the preprocessing

the features are extracted by the curvature of the leaf’s contour

over multiple scales. The histograms of the curvature values at each

scale are computed and those histograms are concatenated to form

the histograms of curvature over scale feature. In Kalyoncu and

Toygar (2015) the leaf image recognition is done using geometric

features, multiscale distance matrix and moment invariant. Before

the feature extraction segmentation of the leaf image is done by the

simple adaptive threshold method over the blue channel. For the

feature extraction moment invariant, convexity, perimeter ratio,

multiscale distance matrix, average margin distance and the aver-

age margin peak height, peak height variance, average peak dis-

tance and peak distance variance are extracted from the contour

of the leaf image. Chaki et al. (2015) uses Shape based modeling

scheme based on curvelet transform and invariant moments and

texture based modeling scheme based on Gabor filter and Gray

Level Co-occurrence Matrix(GLCM) with neuro-fuzzy classifier.

In the vast majority of the works inspected, a solitary arrange-

ment of elements and classifiers have been utilized to segregate

between leaf classes in a given dataset of plant leaf pictures. Such

an approach functions admirably when the leaf classes in the data-

set are for the most part homogeneous and could be separated by a

single arrangement of components. However, in Nature, plant

leaves can have for all intents and purposes unbounded sorts of

varieties in geometric arrangements, form shapes, hue, texture

examples and additionally could be basic, compound, twisted or

even fragmented (parts of the leaf missing). To take into account

such heterogeneous varieties, a solitary approach is normally

insufficient, rather a hierarchical architectural approach is essen-

tial where each layer utilizes a particular visual characteristic

and is connected to an arrangement of custom classifiers. Results

from various layers can in this manner be combined together for

a more complete comprehension of the leaf features which

prompts a powerful classification plot. Additionally, such designs

can have arrangements for versatility, by adding new layers to take

into account new leaves with various attributes.

This paper establishes the framework of such a hierarchical

architecture approach for plant leaf classification and exhibits its

advantages over a solitary included plan. The arrangement of the

paper is as per the following area: segment 2 diagrams the pro-

posed approach with discussions on feature calculation and order

plans, segment 3 provides points of experimentation and results,

segment 4 analyzes the proposed approach opposite other contem-

porary methodologies, while segment 5 mentions the general con-

clusions and degrees for future research.

2. Proposed approach

A block diagram depicting major functional blocks and data

flow pathways of the proposed approach is shown in Fig. 1.
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A query image (Q) is first subjected to a set of pre-processing

operations in a pre-processing layer (P-L) before being redirected

to an appropriate module in the feature extraction layer (F-L)

where its visual characteristics are represented as feature vectors,

which are then fed to a classifier layer (C-L) for identification and

classification. The P-L consist of a pre-processing module (PP) to

normalize the scaling and orientation factors of a leaf so that it

can be compared with other leaves of different characteristics.

The output from the PP module is a normalized query (NQ) along

with a segment number (S) assigned based on the leaf aspect ratio

(length by width). The normalized query is fed to a hue discrimina-

tor (C/D) which looks at its hue to identify whether the leaf is green

or non-green. While most leaves are green and are difficult to iden-

tify based on their hue alone, a few leaves have striking non-green

hues which can be used easily for their identification due to their

dissimilarities with the multitude of green leaves. To take advan-

tage of this fact, non-green leaves (flagged as CG = 0) are fed to a

hue module (CO) in the feature extraction layer (F-L) while green

leaves (CG = 1) are redirected along a different path for modeling

their textures and shapes. The query passes along a texture dis-

criminator (T/D) which is a user input (U I/P) or manual input,

nominally inactive (TG = 0) up to a shape discriminator (S/D) for

extraction of shape features. In some cases however for leaves with

prominent texture patterns and ambiguous or similar shapes, the

texture discriminator can be activated (TG = 1) to redirect the

query to a texture module (TX) instead. The S/D checks whether

the leaf is simple (SG = 0) or compound (SG = 1) and redirects it

to the simple shape (SS) or compound shape (SC) modules of the

feature layer. In the second step, feature vectors are generated

from the color, shape and texture modules of the F-L to mathemat-

ically represent the visual features of a leaf. This work uses a 12-

element hue vector COF(1) . . . COF(12), a 20-element vector for

simple shapes SSF(1) . . . SSF(20), a 10-element compound shape

vector SCF(1) . . . SCF(10) and a 144-element texture vector

TX(1) . . . TX(144). Although simple leaves have less complicated

shapes than compound leaves, finer variations between them

entails a larger feature vector for more reliable classification. In

the third step, the feature vectors are fed to a set of custom classi-

fiers in the classifier layer (C-L) to discriminate between various

classes of leaves with different color, shape and texture properties.

The following sections provide details on each of these layers and

modules. To test the effectiveness of this approach experimenta-

tions are performed on 96 classes of leaves, which includes 20

classes of non-green leaves, 42 classes of simple green leaves with

prominent shapes, 24 classes of simple green leaveswith prominent

textures, and 10 classes of compound green leaves. Results and

accuracies obtained are tabulated in the experimentations section.

Algorithm 1 Proposed_Approach (Q)

Input Query Image: RGB Image Q

Output Class: CL1. . .20 (Non-Green), CL21. . .62 (Simple Green

Shape), CL87. . .96 (Compound Green Shape), CL63. . .86

(Texture)

1: NQ pre_process (Q)

2: [NOP1, NOP2] Hue_Discriminator (NQ)

3: if length (NOP2)/2 > length (NOP1)

4: CG 0

5: else

6: CG 1

7: end if

8: if CG = 0

9: COF F-L_CO (NQ)

10: CL1. . .20 C-L_CO (COF)

11: else

12: TG Texture_Discriminator (NQ)

13: if TG = 0

14: SG Shape_Discriminator (NQ)

15: if SG = 0

16: SSF F-L_SS (NQ)

17: CL21. . .62 C-L_SS (SSF)

18: else

19: SCF F-L_SC (NQ)

20: CL87. . .96 C-L_SC (SCF)

21: end if

22: else if TG = 1

23: TXF F-L_TX (NQ)

24: CL63. . .86 C-L_TX (TXF)

25: end if

26: end if

Fig. 1. Hierarchical architecture of the proposed approach.
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Algorithm 2 pre_process (I)

Input: RGB image (I)

Output: Normalized image (NI)

1: h  Orientation (I)

2: IR  Rotate (I,h)

3: IRT  Background_Shrunk (IR)

4: [W, H]  size (IRT)

5: AR W / H

6: if 1.0 � AR � 1.9

7: NI IRT (W/1, W)

8: else if 2.0 � AR � 2.9

9: NI IRT (W/1.5, W)

10: else if 3.0 � AR � 3.9

11: NI IRT (W/2.5, W)

12: else if 4.0 � AR � 4.9

13: NI IRT (W/3.5, W)

14: else if 5.0 � AR � 5.9

15: NI IRT (W/4.5, W)

16: else if 6.0 � AR � 6.9

17: NI IRT (W/5.5, W)

18: end if

Algorithm 3 Hue_Discriminator (I)

Input: RGB image (I)

Output: Number of Green Pixels (NOP1), Number of Non-

Green Pixels (NOP2)

1: IH  rgb2hsv (I)

2: NOP1 0

3: NOP2 0

4: for all pixels

5: if 90 > IH > 150

6: NOP1 NOP1 + 1

7: else

8: NOP2 NOP2 + 1

9: end if

10: end for

Algorithm 4 Background_Shrunk (I)

Input: RGB Image (I)

Output: RGB Image (B)

1: [row, col] size (I)

2: for p 1 to row

3: if I (p,:) == 0

4: continue

5: else

6: uppermost p

7: break

8: end if

9: end for

10: for p 1 to column

11: if I (:, p) == 0

12: continue

13: else

14: leftmost p

15: break

16: end if

17: end for

18: for p column to 1

19: if I (:, p) == 0

20: continue

21: else

22: rightmost p

23: break

24: end if

25: end for

26: for p row to 1

27: if I (p,:) == 0

28: continue

29: else

30: lowermost p

31: break

32: end if

33:end for

34: B I (uppermost: lowermost, leftmost: rightmost)

Algorithm 5 Texture_Discriminator (I)

Input: RGB image (I)

Output: Flag (TG)

1: IG  rgb2gray (I)

2: T1  mean (mean (IG))

3: IB1  IG > T1
4: IR  Ridge_Filter (IG)

5: T2  mean (mean (IR))

6: IB2  IR > T2
7: if sum (sum (IB2)) > sum (sum (IB1)) / 4

8: TG 1

9: else

10: TG 0

11: end if

Algorithm 6 rgb2gray (I)

Input: RGB image (I)

Output: Gray image (IG)

1: for all pixels

2: IG  0.2989 * R + 0.5870 * G + 0.1140 * B

3: end for

Algorithm 7 Orientation (I)

Input: I(x,y) (RGB Image of size P x Q)

Output: h (Orientation Angle in degree)

1: Mij  
PP

x¼1
PQ

y¼1ðxÞ
iðyÞ jf ðx; yÞ=PP

x¼1
PQ

y¼1f ðxÞ
2: lij  

PP
x¼1

PQ
y¼1ðx� lXÞ

iðy� lYÞ
jfðx; yÞ=

PP
x¼1

PQ
y¼1f ðxÞ==

lx andly is the mean of x and y component

3:h 1
2 arctanð2l11=l20 � l02Þ

Algorithm 8 rgb2hsv (I)

Input: I (RGB Image)

Output: H (Hue Matrix of corresponding RGB)

1: R I (:,:, 1)

2: G I (:,:, 2)

3: B I (:,:, 3)

4: R’  R/255

5: G’  G/255

(continued on next page)
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6: B’  B/255

7: Cmax  max (R’, G’, B’)

8: Cmin  min (R’, G’, B’)

9: D  Cmax – Cmin

10: if D = 0

11: H  00

12: end if

13: if Cmax = R’

14: H 600 � G0�B0
D

mod6
� �

15: end if

16: if Cmax = G’

17: H 600 � B0�R0
D
þ 2

� �

18: end if

19: if Cmax = B’

20: H 600 � B0�R0
D
þ 2

� �

21: end if

2.1. Pre-processing module (PP)

A leaf picture can have varying sizes, rotational angles and

translation factors because of which they initially should be stan-

dardized. The pre-processing layer (PP-L) introduces the classifica-

tion framework by forcing certain rules for normalizing these

elements. A leaf picture (Q) is regularly a color picture (in RGB

space) arranged at an arbitrary orientation and having an irregular

size, Fig. 2(a). To distinguish the rotational angle by which the leaf

is slanted to the horizontal, the angle between the major axis of the

leaf and the x-axis is calculated. The major axis is then turned to

adjust the leaf along the level bearing, as in Fig. 2(b). To normalize

the translation factors concerning the source, the foundation is

contracted until the leaf just fits inside its bounding rectangle,

Fig. 2(c).

A leaf picture can be of discretionary size, henceforth the sys-

tem additionally requires rescaling them to pre-characterized

measurements. However, since the perspective (proportion of sig-

nificant hub to minor pivot) of different leaves are extraordinary,

scaling them all to a solitary size can mutilate the leaf shape and

influence the acknowledgment execution, particularly where

shape based elements are utilized. To limit this twisting, distinc-

tive leaf sorts are scaled to various pre-characterized sizes called

‘‘segments” contingent upon their angle proportion esteems (R).

The variation of the size of leaves seen in sample leaves, six dis-

tinctive section sizes with relating names are characterized to

which a leaf picture is scaled to, with next to zero mutilation.

Table 1 gives points of interest of the viewpoint proportions

and relating fragment numbers, names and measurements. Here

R = 1.0 compares to a circle while bigger esteems signify ovals

with littler statures (lines) and bigger widths (sections). For com-

putational accommodation, the width of all leaves is settled at

300 pixels. A standardized picture (NQ) from the PP module is

appeared in Fig. 2(c).

2.2. Hue discriminator (C/D)

Hue is a noteworthy visual component utilizing which items

can be recognized. The majority of the leaves are however green

in hue, so separating leaves dependably in light of just hue is trou-

blesome. However, a periodic non-green leaf may effectively be

perceived by utilizing its hue data. A hue discriminator is utilized

to isolate out non-green leaves from green ones. To do this the dis-

criminator changes over the hue of the leaf from RGB to HSV hue

space, as the last is outwardly more uniform i.e. measure up to

increases in hue esteems prompts level with changes in visual

observation. Since the essential green hue happens at 120 degrees

on the hue wheel, a 30-degree precise division on either side is uti-

lized for distinguishing green clears out. The total number of non-

green (90� � H � 150�) and green (90� > H > 150�) pixels are

counted. If number of non-green pixel/2 > number of green pixel,

the leaf picture is labeled non-green (CG = 0), otherwise as green

(CG = 1). Non-green leaves are sent to the hue module for recogni-

tion while green leaves are sent to the shape and texture modules

for advance portrayal. The activities of the C/D can be abridged as:

NQðRGBÞ � � > NQðHSBÞ

if 90
�
6 H 6 150

�
; CG ¼ 1

otherwise; CG ¼ 0

2.3. Texture discriminator (T/D)

The objective of a texture discriminator is to identify leaves

with prominent texture patterns or vein structure on the leaf sur-

face, which can be used to characterize them. See Fig. 3. Simple

green leaves, are fed to the T/D unit for texture discrimination.

A ridge filter is used to accentuate the ridge patterns of the leaf

surface. The image is subsequently binarized and the total propor-

tion of white pixels in the image along with an appropriate thresh-

old is used to discriminate between textured and non-textured

leaves. See Fig. 4. Leaves with high texture content are identified

by setting a binary texture flag TF to 1.

The texture discriminator with a flag TG = 0 and redirects it to

the shape discriminator for shape based processing. In some cases

however when shape based modeling do not produce reliable

results because of unclear contours or similar shapes between

different leaf classes, a user input can switch the flag to TG = 1. This

Fig. 2. Pre processing steps of a leaf image (a), (b), (c).

Table 1

Segments, aspect ratios and dimensions.

Segment

No. (S)

Segment

Name

Aspect ratio

(R)

Segment Dimensions

(row, col)

1 Square 1.0 � R � 1.9 300/1, 300

2 Very Wide 2.0 � R � 2.9 300/1.5, 300

3 Wide 3.0 � R � 3.9 300/2.5, 300

4 Medium 4.0 � R � 4.9 300/3.5, 300

5 Narrow 5.0 � R � 5.9 300/4.5, 300

6 Very Narrow 6.0 � R � 6.9 300/5.5, 300

Fig. 3. Non-textured vs. textured leaf.
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can redirect the NQ to a texture module (TX) for texture based

processing.

2.4. Shape discriminator (S/D)

The first step in shape based modeling is the separation of a

simple from a compound leaf. Simple leaves are characterized by

a single leaf blade while compound leaves have multiple leaflets

within a single unit. See Fig. 5.

A shape discriminator is utilized to isolate out the two sorts. To

do this the leaf picture is first binarized by utilizing a threshold and

the binary picture replaces all pixels in the picture with luminance

more noteworthy than the threshold with 1 (white) and replaces

every single other pixel with 0 (dark). From that point onward, a

morphological erosion operation is applied to it utilizing a 3 � 3

structure component made up of 1 s. Repeating this progression

a fitting number of times, prompts the dynamic disintegration of

the white pixels bringing about the continuous division of the leaf-

lets from each other, as in Fig. 6. A connected component labeling

utilizing 8-way connectivity is then applied to score the quantity of

particular objects in the picture. If the number is 1 or less the leaf

picture is labeled as simple (SG = 0), otherwise as compound (SG =

1). The quantity of times the morphological operation is repeated is

streamlined in view of exploratory outcomes. Simple leaves are

diverted to the SS module and compound leaves to the SC module

of the component layer.

Algorithm 9 Shape Discriminator (I)

Input: I (RGB Image)

Output: SG

1: IG  rgb2gray (I)

2: IB = IG > mean (mean (IG))

3: IE  Erode (IB, S)

4: NOB Connected_Component (IE)

5: if NOB � 1

6: SG 0

7: else

8: SG 1

9: end if

Algorithm 10 Erode (I, S)

Input: I (Binary Image), S (Structuring Component)

Output: E (Erosion Transformed Image)

1: E I � S = {c | c + s 2 I " s 2 S}

Algorithm 11 Connected_Component (I)

Input: I (Binary Image)

Output: N (Number of objects)

1: for all I(x,y) 2 I

2: if I(x,y) = 0

3: Proceed to the next pixel I(x + 1, y)

4: else if I (x-1, y-1) has a label

5: Assign the label to the pixel I (x,y)

6: else if neither I(x-1, y) nor I(x, y-1) is not labelled

7: Increment label numbering and assign the latest label to I

(x, y)

8: else if I(x-1, y) � I(x, y-1) is labelled

9: Assign the label to I(x,y)

10: else if both I(x-1, y) and I(x, y-1) are labelled

11: Assign the label of I(x-1, y) to I(x, y)

12: Record the equivalence if labels of I(x-1, y) and I(x, y-1)

are not identical

13: end if

14: end for

15: N max (max (label of I))

2.5. Hue module (CO)

The target of the hue module is to extricate hue data from a leaf

picture which can be utilized for its order. The hue of a non-green

leaf is demonstrated by disintegrating into the H, S, V channels. To

limit hue varieties over the leaf surface, the surface is partitioned

into four quadrants and standard deviations of the segment chan-

nels over every quadrant is linked to have the 12-component hue

highlight vector (COF) as appeared in Eq. (1). The subscripts 1 to

4 assign the quadrant number. Fig. 7 delineates the procedure.

COF ¼ fa;b; cg ð1Þ

Fig. 5. Simple leaf vs. compound leaf.

Fig. 6. (a) The binary version of a compound leaf (b) After erosion.

Fig. 7. A non-green leaf and its decomposition into H (top-right), S (bottom-left)

and V (bottom right) channels.

Fig. 4. Ridge patterns of non-textured and textured leaves.
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where

a ¼ frðH1Þ; rðH2Þ; rðH3Þ; rðH4Þg

b ¼ frðS1Þ; rðS2Þ; rðS3Þ; rðS4Þg

c ¼ frðV1Þ; rðV2Þ; rðV3Þ; rðV4Þg

2.6. Simple shape module (SS)

The goal of the SS module is to extract shape data from a simple

leaf picture which can be utilized for its characterization. Shape

based demonstrating of a simple leaf is instated by breaking down

how shape highlights differ with shapes i.e. which features are

upgraded for which shapes. As a major aspect of the pre-

processing operation, leaves have been isolated into 6 sections in

light of their aspect ratio (R). Some essential shape extraction tech-

niques are chosen and another Feature based Shape Selection Tem-

plate (FSST) rule is developed for each segment as various sorts of

leaf shapes may require distinctive arrangement of shape for char-

acterization. An arrangement of four fundamental shape parame-

ters in particular significant pivot length (M), minor hub length

(N), leaf region (A), leaf form edge (P) alongside six inferred param-

eters, E (randomness), F (frame factor), G (proportion of edge to

real hub), R (angle proportion), S (proportion of border to the

sum of principal axes), T (rectangularity), are utilized for shape

representation. These are characterized below.

E ¼ p½1� ðN=MÞ2� ð2Þ

F ¼ 4pA=P2 ð3Þ

G ¼ P=M ð4Þ

R ¼M=N ð5Þ

S ¼ P=ðMþNÞ ð6Þ

T ¼M 	N=A ð7Þ

To lead the enhancement investigation, a FSST is produced

where leaves are represented by their nearest geometrical part-

ner i.e. ovals. The aspect ratio R of the ovals is fluctuated from

1.0 to 6.9 in increments of 0.1 to create 60 tests clubbed into

6 sections according to Table 1. See Fig. 8. Each line in the fig-

ure shows a section and every segment portrays varieties

inside a segment. As the aspect ratio expands, the presence

of the ovals inside each section look very comparable as is

apparent from the last 3 rows in the figure. This legitimizes

the clubbing of higher aspect ratio over 7 into a similar seg-

ment 6.

For every oval, the accompanying elements are figured: A, E,

F, G, P, S, T. To characterize the ellipses, each section is dealt

with as a class and the ovals inside a fragment as the examples

inside each class. It is clear that last couple of ovals of each frag-

ment are inalienably like the initial couple of ovals of the follow-

ing portion. To consider the partial overlap between the classes,

a fuzzy classifier is utilized which produces weight factors for

each specimen demonstrative of its participation over all classes.

Experimentation demonstrate best grouping outcomes are cre-

ated if the first and last specimens are utilized for preparing

and the rest of the 8 tests for testing. The consequences of

grouping are utilized to produce the accompanying upgraded

feature set for each class which is from this time onward alluded

to as rules:

The SS module utilizes the fragment number S, obtained from

the PP module, to redirect approaching leaf pictures into 6 sub-

modules SSR-1 to SSR-6, according to Table 1. These sub-modules

figure elements to create a 20-component highlight vector SSF (1)

to SSF (20) according to Table 2. These standards are from this time

onward alluded as FSST rules.

Fig. 8. Ellipses of varying aspect ratios used for generating the Feature based Shape Selection Template (FSST) and conducting analysis tests.
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2.7. Compound shape module (SC)

A compound leaf has attributes which tend to change along its

shape. To characterize the variety, a compound leaf is separated

into five segments along the significant pivot, named P1 to P5.

See Fig. 9

For each parcel four elements are figured viz. real pivot length

(M), minor-hub length (N), leaf zone (A), leaf border (P) and other

inferred highlights as follows: R, T, S, F, G. The tenth element

named progressive centroid (H) is ascertained by utilizing a recur-

sive system to separate each partition and processing the outright

total of the x-coordinate of the centroids. The 10 features consti-

tute the partition shape vector (Ui) for the i-th segment.

Ui ¼M;N;A;P;R;T; S; F;G;H

The partition vector for each partition is added up to form the

10-element feature vector for the entire leaf (SCF).

SCF ¼ fUP1 þ UP2 þ UP3 þ UP4 þ UP5g ð8Þ

2.8. Texture module (TX)

The objective of the texture module is to extract texture infor-

mation from a leaf surface which can be used for its classification.

A fuzzy hue and texture descriptor is used where hue information

is combined with texture to improve recognition accuracies. The

procedure is mentioned in brief in the following sections for the

convenience of the reader.

2.8.1. Fuzzy hue descriptor

The hue descriptor is generated using a 3-step process:

Step 1: Generation of 8 hue areas

Hue of a picture is communicated in the HSV (Hue-Saturation-

Value) space. Channel H is isolated into 8 fuzzy zones in view of the

reaction of an arrangement of Coordinate Logic Filter (CLF) on

extraordinarily built counterfeit pictures. These zones are: (0)

Red to Orange, (1) Orange, (2) Yellow, (3) Green, (4) Cyan, (5) Blue,

(6) Magenta and (7) Blue to red.

Step 2: Generation of 10-bin hue histogram

Channel S is isolated into two fuzzy zones named as 0 and 1,

while channel V is partitioned into three fuzzy regions named as

0, 1 and 2. In light of an arrangement of fuzzy derivation adminis-

ters, the above hues are consolidated to produce a 10-container

histogram, as determined underneath. Table 3 shows the Bin infor-

mation obtained from different values of Hue, S and V. 
 symbol

represents any value.

The output of this stage is a 10-bin histogram, where each bin

represents a preset hue viz. (0) Black, (1) Gray, (2) White, (3)

Red, (4) Orange, (5) Yellow, (6) Green, (7) Cyan, (8) Blue and (9)

Magenta.

Step 3: Generation of 24-bin hue histogram

In the third stage, two separate fuzzy membership function par-

titions the S and V channels into 2 fuzzy areas each assigned as 0

and 1. Three fuzzy induction rules assign a hue as ‘‘unadulterated”

if S = 1 and V = 1, a hue as ‘‘light” if S = 0 and V = 1, and a hue as

‘‘dull” if s = 0 or 1 and V = 0. Utilizing these derivations governs

the 10-bin histogram is extended to a 24-bin histogram as takes

after:

(a) If the input hue corresponds to bins 0, 1 or 2 (i.e. black, gray,

white),

then it is represented as it is in the output bins

(b) If the input hue corresponds to bins 3 to 9,

then inference rules separates out each hue into three variants:

pure, light, dark

The yield of the third stage is the era of a 24-bin hue histogram

as beneath: (0) dark, (1) Gray, (2) White, (3) Dark red, (4) Red, (5)

Light red, (6) Dark orange, (7) Orange, (8) Light orange, (9) Dark

yellow, (10) Yellow, (11) Light yellow, (12) Dark green, (13) Green,

(14) Light green, (15) Dark cyan, (16) Cyan, (17) Light cyan, (18)

Dark blue, (19) Blue, (20) Light blue, (21) Dark fuchsia, (22)

Magenta, (23) Light red.

Fig. 9. Processing a compound green leaf.

Table 3

Hue, S, V bin information.

Hue Channel S Channel V Hue_Bin


 
 0 Black


 0 1 Gray


 0 2 White

Red to Orange 1 1 or 2 Red

Orange 1 1 or 2 Orange

Yellow 1 1 or 2 Yellow

Green 1 1 or 2 Green

Cyan 1 1 or 2 Cyan

Blue 1 1 or 2 Blue

Magenta 1 1 or 2 Magenta

Magenta to red 1 1 or 2 Red

Fig. 10. Edge type diagram.

Table 2

Rules & segments.

Rule Feature

Rule 1 for Square Segment A, E, F, G

Rule 2 for Very Wide Segment A, E, P, T

Rule 3 for Wide Segment P, T

Rule 4 for Medium Segment A, E, S

Rule 5 for Narrow Segment A, P, F, G, T

Rule 6 for Very Narrow Segment A, E
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2.8.2. Texture descriptor

The texture descriptor is generated using the five filters of

MPEG-7 Edge Histogram Descriptor (EHD). These are used to

define the edges as vertical, flat, 45� corner to corner, 135� inclin-

ing and non-directional. The edge type diagram is shown in Fig. 10.

The whole picture is separated into various picture squares.

Each picture piece is again sub-isolated into 4 sub squares. Let

a0, a1, a2, a3 be the normal dim levels of the 4 sub-squares of a

particular picture piece. The channel coefficients for vertical, flat,

45� corner to corner, 135� inclining and non-directional edges are

assigned as: Fv, Fh, F45d, F135d and Fnd. For the (i,j)-th picture

obstruct the edge extents figured from its constituent sub-pieces

are characterized as takes after:

Evði; jÞ ¼ ja0ði; jÞ 	 Fvð0Þ þ a1ði; jÞ 	 Fvð1Þ þ a2ði; jÞ 	 Fvð2Þ
þ a3ði; jÞ 	 Fvð3Þj ð9Þ

Ehði; jÞ ¼ ja0ði; jÞ 	 Fhð0Þ þ a1ði; jÞ 	 Fhð1Þ þ a2ði; jÞ 	 Fhð2Þ
þ a3ði; jÞ 	 Fhð3Þj ð10Þ

E45dði; jÞ ¼ ja0ði; jÞ 	 F45dð0Þ þ a1ði; jÞ 	 F45dð1Þ þ a2ði; jÞ
	 F45dð2Þ þ a3ði; jÞ 	 F45dð3Þj ð11Þ

E135dði; jÞ ¼ ja0ði; jÞ 	 F135dð0Þ þ a1ði; jÞ 	 F135dð1Þ
þ a2ði; jÞ 	 F135dð2Þ þ a3ði; jÞ 	 F135dð3Þj ð12Þ

Endði; jÞ ¼ ja0ði; jÞ 	 Fndð0Þ þ a1ði; jÞ 	 Fndð1Þ þ a2ði; jÞ
	 Fndð2Þ þ a3ði; jÞ 	 Fndð3Þj ð13Þ

The maximum of the magnitudes is calculated from the above

edge magnitudes

Emax ¼ max ðEv; Eh; E45d; E135d; EndÞ ð14Þ

This is subsequently used to normalize the magnitudes

E0v ¼ Ev=Emax;

E0h ¼ Eh=Emax;

E045d ¼ E45d=Emax;

E0135d ¼ E135d=Emax;

E0nd ¼ End=Emax

The framework characterizes each Image Block in a two-stage

process: to begin with, the framework figures the maximum

esteem. The maximum esteem must be more noteworthy than

the characterized limit for the Image Block to be delegated a Tex-

ture Block; else it is named a Non-Texture Block (Linear). In the

event that the Image Block is named a Texture Block, every E’

esteem is put on the pentagonal outline of Fig. 8 along the line

relating to advanced channel from which it was figured. The

graph’s middle compares to esteem 1 and the external edge relates

to esteem 0. If any m esteem is more noteworthy than the edge on

hold where it takes an interest, the Image Block is characterized

into the specific sort of edge. In this way, an Image Block can take

an interest in more than one edge sort.

The yield of this stage is portrayal of a picture square utilizing a

6-canister surface histogram: non-edge, non-directional edge, flat

edge, vertical edge, 45� corner to corner, 135� inclining.

2.8.3. Combined descriptor

For an info picture NQ, the fuzzy hue descriptor initially pro-

duces a 24-bin hue descriptor in light of the hue hue contained

in the picture. For each receptacle, the surface descriptor produces

a 6-bin texture descriptor to evaluate the texture introductions.

The consolidated descriptor in this manner creates a 24 � 6 = 144

component feature vector TX (1) to TX (144).

2.9. Classification layer

The i-th leaf class is portrayed by a gathering of n part pictures,

isolated into preparing and testing tests. Amid the training stage,

the 12-component hue, the 20-component simple shape, the 10-

component compound shape and 144-component texture vectors

Fig. 11. Samples of 96 classes of the dataset.
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are registered from the training samples. The components are put

away in a plant database (PDB) fragmented into the comparing

parts: hue, shape (simple), shape (compound) and surface. This

guarantees correlations amid the testing stage will just happen

inside one of these subsets as dictated by a proper discriminator.

The flowline portrayed in Fig. 1 is utilized for characterization of

a test. Characterization for both the hue and shape modules is fin-

ished utilizing a neuro-fuzzy classifier (NFC) in view of a scaled

conjugate inclination calculation. The inspiration of utilizing a neu-

ral classifier emerges from the way that like most example

acknowledgment issues, there is no settled numerical model in

view of which information tests could be characterized, rather it

should be done exclusively on the premise of a non-straight

mapping between an arrangement of info and yield perceptions.

Since a specific leaf test can have similitude with numerous

classes, a fluffy classifier is utilized as it represents probabilities

of a specimen for having a place with a few classes not at all like

a neural system which forces elite characterization. In view of

the test leaf sort the seeking procedure dependably happens inside

a fitting subset of the aggregate database, which improves the

computational load. For the arrangement of the surface elements,

the Euclidean separation is utilized, since a 144-component vector

on a neural classifier can conceivably expand union time and com-

putational load.

3. Experimentations and results

3.1. Dataset

Experimentation are finished utilizing 1920 leaf pictures iso-

lated into 96 classes, gathered from Plantscan dataset and Flavia

dataset. Out of 20 pictures for every class, 10 are utilized for

preparing and 10 for testing. Fig. 11 demonstrates tests of each

class in the data set. Classes 1 to 20 contain non-green leaves,

classes 21 to 62 contain basic leaves which are recognized by their

shapes, classes 63 to 86 contain basic leaves distinguished by their

texture, and classes 87 to 96 contain compound leaves.

3.2. Preprocessing

The pre-processing step involves the sample images rescaled to

standard segment sizes. Table 4 depicts the segment numbers of

simple leaves belonging to classes 21 to 62.

3.3. Recognition of non-green leaves

The variation of color features defined in Eq. (1) over the 20

classes (class 1 to 20) is shown in Fig. 12. The H, S, V components

of the feature, averaged of all training samples for each class, are

depicted.

Table 5 shows recognition results for non-green leaves which

includes class 1 to class 20 i.e. 20 classes with 10 test samples

per class (200 samples). Overall accuracy is 100%. Fig. 13 shows

the NFC class label outputs for 200 test samples.

3.4. Recognition of simple leaves using shape features

Prior to the acknowledgment of simple green leaves the pic-

tures are diverted to one of the six sub-modules SSR-1 to SSR-6

in view of their section number S. The current dataset contains

15 classes for Square section (21 to 35), 8 classes for Very Wide

(36 to 43), 3 classes for Wide (44 to 46), 5 classes for Medium

(47 to 51), 8 classes for Narrow (52 to 59) and 3 classes for Very

Narrow (60 to 62). See Table 3.

Square Segment is represented by FSST Rule-1 which incorpo-

rates four features: A, E, F, G, effective over 15 classes (21 to 35).

Fig. 14 demonstrates the variety of these features arrived at the

average for each of the classes.

Fig. 12. Variation of color features over 10 classes of non-green leaves.

Fig. 13. NFC based class output labels for 200 non-green test samples.

Table 4

Segments & classes.

Class Segment Class Segment Class Segment

21–35 1 36–43 2 44–46 3

47–51 4 52–59 5 60–62 6

Table 5

Percent recognition rates for non-green leaves.

Class Acc Class Acc Class Acc Class Acc Class Acc

1 100 2 100 3 100 4 100 5 100

6 100 7 100 8 100 9 100 10 100

11 100 12 100 13 100 14 100 15 100

16 100 17 100 18 100 19 100 20 100

Fig. 14. Variation of features over classes in square segment.
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The performance results using NFC are in Table 6. Overall accu-

racy is 92.7%. Fig. 15 shows the NFC class label outputs for 150 test

samples.

Very Wide Segment is represented by FSST Rule-2 which incor-

porates four features: A, E, F, T, effective over 8 classes (36 to 43).

Fig. 16 demonstrates the variety of these features averaged for

each of the classes.

The performance results using NFC are in Table 7. Overall accu-

racy is 88.8%. Fig. 17 shows the NFC class label outputs for 80 test

samples.

Wide Segment is represented by FSST Rule-3 which incorpo-

rates two features: P, T, effective over 3 classes (44 to 46). Fig. 18

demonstrates the variety of these features averaged for each of

the classes.

The performance results using NFC are in Table 8. Overall accu-

racy is 100%. Fig. 19 shows the NFC class label outputs for 30 test

samples.

Medium Segment is represented by FSST Rule-4 which incorpo-

rates three features: A, E, S effective over 5 classes (47 to 51).

Fig. 20 demonstrates the variety of these features averaged for each

of the classes.

The performance results using NFC are in Table 9. Overall accu-

racy is 94%. Fig. 21 shows the NFC class label outputs for 50 test

samples.

Narrow Segment is represented by FSST Rule-5 which incorpo-

rates five features: A, P, F, G, T effective over 8 classes (52 to 59).

Fig. 22 demonstrates the variety of these features averaged for

each of the classes.

The performance results using NFC are in Table 10. Overall

accuracy is 83.8%. Fig. 23 shows the NFC class label outputs for

80 test samples.

Very narrow Segment is represented by FSST Rule-6 which

incorporates two features: A, E effective over 3 classes (60 to 62).

Fig. 24 demonstrates the variety of these features averaged for

each of the classes.

The performance results using NFC are in Table 11. Overall

accuracy is 100%. Fig. 25 shows the NFC class label outputs for

30 test samples.

Table 6

Percent recognition rates for square segment.

Class Acc Class Acc Class Acc Class Acc Class Acc

21 100 22 100 23 90 24 100 25 100

26 90 27 90 28 100 29 80 30 100

31 100 32 100 33 80 34 80 35 80

Fig. 15. NFC based class output labels for 150 simple green test samples belonging

to Square segment.

Fig. 16. Variation of features over classes in Very Wide segment.

Fig. 17. NFC based class output labels for 80 simple green test samples belonging to

Very Wide segment.

Fig. 18. Variation of features over classes in Wide segment.

Table 7

Percent recognition rates for very wide segment.

Class Acc Class Acc Class Acc Class Acc Class Acc

36 90 37 100 38 100 39 100 40 80

41 70 42 100 43 70

Table 8

Percent recognition rates for wide segment.

Class Acc Class Acc Class Acc

44 100 45 100 46 100

Fig. 19. NFC based class output labels for 30 simple green test samples belonging to

Wide segment.
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The overall accuracy for 42 classes of simple green leaves is

(92.7 + 88.8 + 100 + 94 + 83.8 + 100)/6 = 93.2%.

To cross-check whether the picked features for each section

gives ideal execution, each list of capabilities is connected over

all portions and exactness comes about are looked at. Table 12

demonstrates the similar precision. It demonstrates that for Square

Segment, the best outcomes are created by Rule-1 (92.7%), for Very

Wide section, the best outcomes are delivered by Rule-2 (88.8%),

for Wide portion, the best outcomes are created by Rule-3

(100%), for Medium segment, the best outcomes are delivered by

Rule-4 (94%), for Narrow section, the best outcomes are delivered

by Rule-5 (83.8%), for Very Narrow segment, the best outcomes

are created by Rule-6 (100%). Fig. 26 demonstrates a plot of how

different rules (along the level pivot) deliver percent exactness

for each section.

This gives test affirmation of the way that rules and capabilities

when tweaked in view of leaf sort have a tendency to give

Fig. 20. Variation of features over classes in Medium segment.

Table 9

Percent recognition rates for medium segment.

Class Acc Class Acc Class Acc Class Acc Class Acc

47 100 48 100 49 90 50 90 51 90

Fig. 21. NFC based class output labels for 50 simple green test samples belonging to

Medium segment.

Fig. 22. Variation of features over classes in Narrow segment.

Fig. 23. NFC based class output labels for 80 simple green test samples belonging to

Narrow segment.

Table 10

Percent recognition rates for narrow segment.

Class ACC Class Acc Class Acc Class Acc Class Acc

52 60 53 80 54 80 55 100 56 90

57 80 58 100 59 80

Fig. 24. Variation of features over classes in Very Narrow segment.

Table 11

Percent recognition rates for very narrow segment.

Class ACC Class Acc Class Acc

60 100 61 100 62 100
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preferred outcomes over when a solitary arrangement of compo-

nents is connected for each leaf sort. This is the reason for the

enhanced execution of the various leveled architecture.

3.5. Recognition of compound leaves

Green compound leaves are characterized using a 10-element

vector applied over the 10 classes (87 to 96). Fig. 27 shows the vari-

ation of these features averaged for each of the classes.

The performance results using NFC are in Table 13. Overall

accuracy is 94%. Fig. 28 shows the NFC class label outputs for

100 test samples.

Fig. 25. NFC based class output labels for 30 simple green test samples belonging to

Very Narrow segment.

Fig. 26. Variation of accuracy for each rule applied to each segment.

Fig. 27. Variation of features over 10 classes.

Table 12

Cross validation of recognition rates.

Feature Square Very Wide Wide Medium Narrow Very Narrow

SSR1 92.7 55 93.3 92 62.5 96.7

SSR2 91.3 88.8 96.7 82 76.3 96.7

SSR3 85.3 62.5 100 70 61.3 96.7

SSR4 83.3 76.3 93.3 94 62.5 100

SSR5 91.3 70 96.7 86 83.8 90

SSR6 41.3 71.3 90 76 56.3 100

Table 13

Percent recognition rates for compound leaves.

Class Acc Class Acc

87 100 92 60

88 100 93 100

89 100 94 100

90 100 95 70

91 100 96 100
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3.6. Recognition of simple leaves using texture features

Leaves whose diagram shapes are not noticeable i.e. can’t be

demonstrated with adequate precision, or not one of a kind i.e.

bearing close likenesses with different classes, can’t be dependably

separated utilizing shape feature. For such leaves texture based

components utilizing combined descriptors are utilized for group-

ing, as clarified previously. Fig. 29 demonstrates the varieties of the

144-component highlight vectors found the middle value of for 10

classes.

The precision got by applying these features over 24 classes (63

to 86) are organized in Table 14. The general exactness for 24

classes is 95.4% acquired by utilizing Euclidean separations as

order metric.

4. Analysis

The present work is contrasted with other contemporary works,

by applying a portion of the methodologies found in surviving

writing to the current dataset to watch their exhibitions. It should

be specified here that a large portion of these current methodolo-

gies have been intended for basic green leaves which would repre-

sent their low classification rates when connected to non-green

takes off. As the current methodologies are for the classification

of the simple leaves, the correlation is done just with the basic leaf

pictures of aggregate 86 classes and the last 10 classes are

excluded in the examination.

In Aakif and Khan (2015) leaf shapes are displayed utilizing

Fourier descriptors, morphological components and shape charac-

terizing features. For the current dataset, it was discovered that the

smooth sinusoidal premise capacities were unacceptable for dis-

playing the transient signs happening along sharp leaf forms. Like-

wise, as the blend of above said three sorts of components (add up

to six elements) are utilized for arrangement, there can be an

opportunity to build the ideal opportunity for the order. General

precision is 29.8%. Fig 30 looks at exactness of the past approach

(blue) with the present approach (red).

In Yang and Wang (2012) leaf shapes are displayed utilizing

Fourier descriptors. For the current dataset, it was discovered that

the smooth sinusoidal premise capacities were unsatisfactory for

demonstrating the transient signs happening along sharp leaf

shapes. General exactness is 23.02%. Fig. 31 compares the exact-

ness of the past approach (blue) with the present approach (red).

Hierarchical clustering utilized as a part of Naresh and

Nagendraswamy (2016) clusters the leaf pictures relying upon

the likeness of the texture. In the event that the picture of the leaf

does not contain any conspicuous structure or if the nature of the

checked information is poor, at that point this strategy for cluster-

ing the pictures depending the texture reduce recognition rates.

Fig. 28. NFC class output labels for 100 compound green test samples.

Fig. 29. Variation of CEDD features over 10 classes.

Table 14

Percent recognition rates using texture features.

Class Acc Class Acc Class Acc Class Acc Class Acc

63 100 64 90 65 100 66 100 67 90

68 90 69 100 70 100 71 100 72 100

73 100 74 100 75 100 76 60 77 100

78 90 79 100 80 100 81 100 82 90

83 90 84 100 85 90 86 100

Fig. 30. Accuracy using approach (Aakif and Khan, 2015) (blue) and current

approach (red).

Fig. 31. Accuracy using approach (Yang and Wang, 2012) (blue) and current

approach (red).
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General precision is 47.2%. Fig. 32 compares class exactness of the

past approach (blue) with the present approach (red).

In Salve et al. (2016a,b) the Zernike minute and HoG technique

is utilized as shape descriptor for the order of takes off. HoG

depends generally on the piece estimate, cell size and number of

introduction receptacles, which have a tendency to be distinctive

for various shapes. General exactness is 27.4%. Fig. 33 looks at class

precision of the past approach (blue) with the present approach

(red).

In Kalyoncu and Toygar (2015) the Moment Invariant, convex-

ity, perimeter ratio, multi scale distance ratio, average edge separa-

tion, and margin statistics is utilized for the order of leaves

utilizing LDC. As every one of the elements are shape highlights,

the leaf pictures with comparable shapes may not be taken care

of by this approach. General exactness is 48.1%. Fig. 34 analyzes

class exactness of the past approach (blue) with the present

approach (red).

5. Conclusions and future scopes

This article proposes a set of techniques for using various visual

attributes for classifying heterogeneous leaf sorts contrasting in

hue, shape and surface. Hue based displaying is utilized for non-

green leaves, shape based procedures are utilized for simple and

compound leaves with clear forms, and surface based procedures

are utilized for leaves with ambiguous or similar shapes. New FSST

approach is utilized for the choice of shape highlights for various

leaf classes. A progressive approach is taken after which comprises

of a pre-processing venture, for normalizing the scale and intro-

duction of various leaves, a hue investigation step which includes

extraction of hue highlights, a shape examination step including

shape based demonstrating and a surface examination venture to

show surface examples of the leaf surface. Each layer comprises

of modules for custom treatment of various leaf sorts and discrim-

inators for picking the suitable module for consequent preparing.

NFC based grouping is done to exploit fuzzy likenesses between

entire leaves for the hue and shape layers and Euclidean separation

is utilized for segregating surface elements.

The benefits of utilizing a multi-leveled approach include the

following: (1) gives an extent of consolidating numerous visual

elements to produce a more total comprehension of the visual data

(2) gives an extent of customization as highlight modules and clas-

sifiers can be enhanced for particular visual attributes (3) gives an

extent of enhancing efficiency as discriminator modules use seek

operations inside divided segments of the database (4) gives an

extent of adaptability through extra layers in the system.

Future directions of research for improving the system would

involve handling fragmented leaves where parts of the leaf surface

areas are missing.
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