Header menu link for other important links
PPHE-automatic detection of sensitive attributes in a privacy preserved Hadoop environment using data mining techniques
K. Umapathy,
Published in Inderscience Publishers
Volume: 14
Issue: 3
Pages: 296 - 319
Online social networks (OSN) has become highly popular, where users are more and more lured to reveal their private information. To balance privacy and utility, many privacy preserving approaches have been proposed which does not meet well users personalized requirements. In this paper, we present a privacy preserved Hadoop environment (PPHE) which automatically detects sensitive attributes using data mining techniques. This work considers Twitter which contains private information such as email addresses, mobile numbers, physical addresses, and date of births. First, we authenticate each Twitter user using the integrated algorithm RSA and Elgamal algorithm. Second, we categorize the tweets into private and non-private attributes based on the type-2 fuzzy logic system. Third, we apply a data suppression technique for private tweets and finally share the user's content based on their similarity information. Content similarity has been evaluated using cosine similarity. Finally we evaluate the system performance in terms of accuracy, precision, recall, and F-measure. © 2021 Inderscience Enterprises Ltd.. All rights reserved.
About the journal
JournalInternational Journal of Computer Aided Engineering and Technology
PublisherInderscience Publishers