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ABSTRACT
Doubly truncated data are sometimes encountered in several applications, mainly in survival and astronomical data analysis.
This occurs when the data falls between two points. In this study, we focus on the Shannon entropy measure of doubly truncated
randomvariables.We propose ordering and various aging properties based on thismeasure. Characterizations of some useful life
distributions are obtained. It is showed that under certain condition, the proposedmeasure determines the distribution function
uniquely. Some results on discrete distributions are presented. Finally, applications are given.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Analyzing uncertainty in truncated data have received wide attention from several authors in last two decades due to its relevance in various
applied fields such as reliability theory, survival analysis, astronomy and economy. Double truncation of survival data occurs when event
time of an individual lies within a certain interval. An individual is not observed if its event time does not lie in a pre-determined interval.
In this case, the investigator has no information about this individual. There are several situations which lead to doubly truncated (interval)
data. Few examples are given below.

• In astronomy, due to resolution of telescopes, the luminosity of stars may be undetected if it is either too dim or too bright (see Efron
and Petrosian [1]).

• In survival analysis, generally one has information about the lifetime of a mechanical component/system in a particular time interval.

• In biological science, the data of induction times in AIDS are doubly truncated since HIV was unknown before the year 1982. Thus
infected patients would have been incorrectly discarded when developing AIDS before 1982 (see Bilker and Wang [2]).

For some applications of doubly truncated data in biomedical problems, we refer to Stovring and Wang [3], Zhu and Wang [4] and Mor-
eira et al. [5]. In this paper, we consider Shannon differential entropy (see Shannon [6]) for the doubly truncated data. The Shannon
entropy for doubly truncated random variable was proposed by Sunoj et al. [7]. Later, it was studied by Misagh and Yari [8]. Let X be a
nonnegative random variable or random lifetime of a component with cumulative distribution function (cdf) F(x), survival function (sf)
F(x) and probability density function (pdf) f(x). The hazard and reversed hazard rate functions of X are denoted by 𝜆F(x) = f(x)/F(x)
and 𝜂F(x) = f(x)/F(x), respectively. The pdf of the doubly truncated random variable X[t1,t2] = (X|t1 < X < t2) is f(x)/ΔF, whereΔF = F(t2) − F(t1) and 0 < t1 < x < t2 < ∞. X[t1,t2] can be thought of the time to failure of a system which fails in the interval (t1, t2),
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where (t1, t2) ∈ 𝔻 = {(x, y)|F(x) < F(y)}. The Shannon entropy of X[t1,t2] is given by

SX(t1, t2) = − ∫
t2

t1

( f(x)ΔF )

ln
( f(x)ΔF )

dx. (1.1)

This is called the doubly truncated entropy. In particular, (1.1) reduces to the residual (left truncated) entropy when t2 → ∞, to the past
(right truncated) entropy when t1 → 0, and to the usual differential entropy when t1 → 0 and t2 → ∞. The expression in (1.1) quantifies
the expected uncertainty of the random lifetime X of a system given that the system has survived up to time t1 and has been found to
be down at time t2. It plays a significant role in studying different characteristics of a reliability component which fails in a time interval.
Further, there exist two distributions which do not have the same doubly truncated entropy though they have same entropy. This motivates
us to study properties of the doubly truncated entropy given by (1.1). For some recent developments on information theoretic measures for
doubly truncated random variables, we refer to Kundu [9,10].

Next, we recall few preliminary results which are useful in the rest of the paper. The failure rate function of a nonnegative random variable
X with cdf F(x) and pdf f(x) can be generalized for doubly truncated random variable (see Navarro and Ruiz [11]). The generalized failure
rate (GFR) functions of X are given as

h1(t1, t2) = f(t1)ΔF and h2(t1, t2) = f(t2)ΔF . (1.2)

Note that h1(t1,∞) = 𝜆F(t1) and h2(0, t2) = 𝜂F(t2). Navarro and Ruiz [11] studied the GFR functions given by (1.2) in detail. Authors
showed that they determine the distribution function uniquely. Below, we state few definitions from Shaked and Shanthikumar [12].

Definition 1.1. Let X and Y be two nonnegative random variables with cdfs F(x) andG(x), sfs F(x) and G (x) , pdfs f(x) and g(x) and hazard
rate functions 𝜆F(x) and 𝜆G(x), respectively. Then

i. X is said to be smaller than Y in usual stochastic ordering, denoted by X ≤st Y if F(x) ≤ G(x) for all x.
ii. X is said to be smaller than Y in likelihood ratio ordering, denoted by X ≤lr Y if g(x)/f(x) is increasing in the union of the supports of

X and Y.
The paper is arranged as follows: In Section 2, we define a new uncertainty order for two doubly truncated distributions.We obtain sufficient
conditions under which the proposed order holds. New aging classes of lifetime distributions based on the doubly truncated entropy are
proposed and some associated results are obtained in Section 3. In Section 4, we provide characterizations of some useful continuous
distributions based on (1.1) including its uniqueness property. In Section 5, we discuss the concept of discrete doubly truncated entropy
and obtain characterization result. Further, based on the doubly truncated entropy, how to choose a better system is presented in Section 6.
Some concluding remarks have been added in Section 7.

Throughout the paper, we assume that the terms increasing and decreasing are used in nonstrict sense. All expectations, differentiations
and integrations whenever used are assumed to exist. The random variables are taken to be nonnegative.

2. ORDER BASED ON DOUBLY TRUNCATED ENTROPY

In Example 2.1, we notice that even though the Shannon entropy of two units with random lifetimes X and Y are same, their corresponding
expected uncertainty contained in the conditional distribution of X given t1 < X < t2 is not same to that contained in the conditional
distribution of Y given t1 < Y < t2.Motivated by this, in this section, we define order based on the Shannon entropy for doubly truncated
random variable and study its properties.

Definition 2.1. LetX andY be two nonnegative and absolutely continuous randomvariables with pdfs f(x), g(x) and cdfs F(x), G(x), respec-
tively. ThenX is said to be smaller (larger) thanY in doubly truncated entropy order, denoted byX ≤DTE (≥DTE)Y, if SX(t1, t2) ≤ (≥) SY(t1, t2)
for all 0 < t1 < t2 < ∞.
Note that in particular, if t2 → ∞ (t1 → 0), doubly truncated entropy order defined above becomes residual (past) entropy order. See,
for instance, Ebrahimi and Pellerey [13], Nanda and Paul [14] for some properties on the residual and past entropy orderings. The phys-
ical interpretation of X ≤DTE (≥DTE) Y can be easily understood from Definition 2.1. Let SX(t1, t2) and SY(t1, t2) quantify the amount of
uncertainties of two mechanical components/systems with lifetimes X and Y. Then X ≤DTE (≥DTE)Y implies that the expected uncertainty
contained in the conditional density of X given that t1 < X < t2 about the predictability of the failure time of the first component is less
(greater) than that of Y given that t1 < Y < t2 about the predictability of the failure time of the second component.

In the following, we consider example to show that there exist distributions which satisfy doubly truncated entropy order. It also illustrates
the importance of the doubly truncated entropy over the Shannon entropy.Pdf_Folio:262
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Example 2.1

Let X and Y be two random variables with respective pdfs f(x) = (2− x)/2 for x ∈ (0, 2) and g(x) = x/2 for x ∈ (0, 2).One may easily show
that SX = 0.5 = SY, that is, the Shannon entropies of the distributions corresponding to X and Y are equal. Further

SX(t1, t2) = − ∫
t2

t1

(

2(2 − x)
(4t2 − t22) − (4t1 − t21)

)

ln

(

2(2 − x)
(4t2 − t22) − (4t1 − t21)

)

dx (2.1)

and

SY(t1, t2) = − ∫
t2

t1

(

2x
t22 − t21

)

ln

(

2x
t22 − t21

)

dx. (2.2)

To compare SX(t1, t2) and SY(t1, t2), we plot (2.1) and (2.2) by Mathematica software, which are presented in Figure 1. The graphs of
Figure 1 show that SX(t1, t2) ≤ SY(t1, t2) and hence X ≤DTE Y.
Stochastic orders have been a useful tool in many diverse areas of probability and statistics. In economics and finance, it plays an important
role to obtain various bounds and inequalities. It is also used to compare different stochastic systems in reliability and life testing studies (see
Shaked and Shanthikumar [12]). For the random variables X and Y considered in Example 2.1, it is easy to check that X ≤lr Y. Also, in this
case X ≤DTE Y. Looking at this result, one may think about the possibility of the implication “ X ≤lr Y ⇒ X ≤DTE Y.” But this implication
does not hold in general, which is shown in the following counterexample. That is, the likelihood ratio order does not imply the doubly
truncated entropy order in general. Mathematically,

X ≤lr Y ⇏ X ≤DTE Y.
Counterexample 2.1

Let X and Y be two random variables with cdfs F(x) = 2x− x2 and G(x) = x2, respectively, where x ∈ (0, 1). It is easy to check that X ≤lr Y.
However, X ≰DTE Y, since SX(t1, t2) − SY(t1, t2) = 0.040183 (> 0) at (t1 = 0.7, t2 = 0.9) and SX(t1, t2) − SY(t1, t2) = −0.065154 (< 0) at
(t1 = 0.1, t2 = 0.6).
Thus, naturally the question arises: under which conditions likelihood ratio order follows doubly truncated entropy order? We find the
answer of this question in the following theorem.

Theorem 2.1 Let X and Y be two nonnegative and absolutely continuous random variables having pdfs f(x) and g(x), respectively and X ≤lr

(≥lr)Y. Then
i. X ≥DTE Y if f(x) is increasing (decreasing) in x > 0.
ii. X ≤DTE Y if g(x) is decreasing (increasing) in x > 0.

Figure 1 It represents the plots of (2.1) and (2.2) as described in Example 2.1.
Pdf_Folio:263
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Proof. Assume that X ≤lr (≥lr)Y. Then making use of Theorem 1.C.5 of Shaked and Shanthikumar [12], we obtain [X|t1 < X < t2] ≤st
(≥st) [Y|t1 < Y < t2] . Moreover, from the assumption given by (i), we have f(x)/ΔF is increasing (decreasing) function in x. Thus from
(1.A.7) of Shaked and Shanthikumar [12], we obtain

E
(

ln
( f(X)ΔF ) | t1 < X < t2

) ≤ E
(

ln
( f(Y)ΔF ) | t1 < Y < t2

) . (2.3)

Further, the doubly truncated Kullback–Leibler measure ( see Misagh and Yari [8]) can be written as

KLY,X(t1, t2) = ∫
t2

t1

(g(x)ΔG )

ln
(g(x)/ΔG

f(x)/ΔF )

dx

= −SY(t1, t2) − ∫
t2

t1

(g(x)ΔG )

ln
( f(x)ΔF )

dx

≥ 0. (2.4)

The knowledge of (2.3) and (2.4) allows us to get SX(t1, t2) ≥ SY(t1, t2), which implies X ≥DTE Y. This completes the proof of the first part
of theorem. The proof of the second part is similar to that of the first part, and is therefore omitted here for the sake of brevity.

In order to show the applicability of the above theorem we consider the following consecutive examples.

Example 2.2

Let X and Y be two random variables with pdfs f(x) = 2x and g(x) = 3x2, respectively, where x ∈ (0, 1). It is easy to show that X ≤lr Y.Also,
f(x) is increasing in x > 0.Hence from Theorem 2.1, we have X ≥DTE Y.
Example 2.3

Let X and Y be two random variables following exponential distributions with pdfs f(x) = 𝜆1 exp{−𝜆1x} and g(x) = 𝜆2 exp{−𝜆2x}, respec-
tively, for x > 0 and 𝜆1, 𝜆2 > 0. For 𝜆1 > 𝜆2, it is not hard to show thatX ≤lr Y.Therefore, an application of Theorem 2.1 providesX ≤DTE Y,
since the pdf of Y is decreasing in x > 0.
Remark 2.1. From Theorem 1.C.5 of Shaked and Shanthikumar [12], we know that

X ≤lr Y ⇔ X[t1,t2] ≤st Y[t1,t2].
Thus the above results which are true for the likelihood ratio order, are also true for X[t1,t2] ≤st Y[t1,t2].
The following theorem shows that the doubly truncated entropy order is closed under increasing transformations.

Theorem 2.2 Let X and Y be two nonnegative and absolutely continuous random variables. Define 𝜙(X) = aX+ b and 𝜙(Y) = aY+ b, where
a > 0 and b ≥ 0. Then for t1 > b, 𝜙(X) ≤DTE (≥DTE)𝜙(Y) if X ≤DTE (≥DTE)Y.
Proof. For a nonnegative and absolutely continuous random variable X, under the given assumption and from Theorem 4.1 of Kundu [9],
it can be shown that

S𝜙(X)(t1, t2) = SX
(

t1 − b
a , t2 − b

a

) + ln a. (2.5)

This observation completes the proof of the theorem.

3. NEW CLASS OF LIFETIME DISTRIBUTIONS BASED ON DOUBLY TRUNCATED ENTROPY

The classes of life distributions have various applications in reliability engineering, survival analysis and biological science. Based on some
aspects of aging, life distributions can be classified. These classifications can be useful in modeling survival data. See, for instance, Barlow
and Proschan [15], Zacks [16] and Lai and Xie [17]. Thesemotivations and reasons lead theoreticians and reliability practitioners to propose
nonparametric classes of distributions based on the notion of the Shannon entropy when random variables are truncated from left, as well
as right. See for example, Ebrahimi and Pellerey [13], Ebrahimi [18], Ebrahimi and Kirmani [19] and Nanda and Paul [14]. In the present
section, we propose a nonparametric class of distributions based on the doubly truncated Shannon entropy given by (1.1).Pdf_Folio:264
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Definition 3.1. Anonnegative and absolutely continuous random variableX is said to be increasing doubly truncated entropy in t2, denoted
by IDTE (t2), if and only if for any fixed t1, SX(t1, t2) is increasing in t2.
Remark 3.1. FollowingNourbakhsh and Yari [20], another class based on the decreasing behavior of the doubly truncated Shannon entropy
can be constructed. A nonnegative random variable X is said to be decreasing doubly truncated entropy in t1, denoted by DDTE (t1), if and
only if for any fixed t2, SX(t1, t2) is decreasing in t1.Note that Nourbakhsh and Yari [20] proposed this class for doubly truncated generalized
entropy. They have not studied this in detail. Below, we study this class with the class defined in Definition 3.1 in detail.

Remark 3.2. From (2.5), we note that the nonparametric classes described above are closed under increasing scale and location transfor-
mations.

There are many distributions which belong to these classes. For example, the uniform distribution belongs to IDTE (t2) class and the
exponential distribution with mean 𝜆 > 0 belongs to DDTE (t1) class. Indeed, both the distributions belong to both DDTE (t1) and IDTE
(t2) class. The following counterexamples show that there exist distributions which are not monotone in terms of the doubly truncated
entropy, in t1 for any fixed t2, and in t2 for any fixed t1.
Counterexample 3.1

Let X be a random variable with distribution function F(x) = 1 − (a/x)b, x > a, a > 0, b > 0. Consider a = 1 and b = 10. We plot the
doubly truncated entropy for this distribution in Figure 2(a), which shows that the doubly truncated entropy is not monotone in t1 for some
fixed t2.
Counterexample 3.2

Consider a nonnegative random variable with distribution function

F(x) = { exp{−1/2 − 1/x}, 0 ≤ x ≤ 1,
exp{−2 + x2/2}, 1 ≤ x ≤ 2.

(3.1)

Figure 2(b) represents the graphical plot of SX(t1, t2) for the random variable with distribution function given by (3.1). It shows that SX(t1, t2)
is not monotone in t2 for some fixed t1.
The following theorem shows that there exists no nonnegative random variable having increasing (decreasing) doubly truncated entropy in
t1(t2) for any fixed t2(t1). That is, the classes IDTE (t1) and DDTE (t2) are empty.

Theorem 3.1 Let X be a nonnegative and absolutely continuous random variable with cdf F(x). Then
i. SX(t1, t2) can not be an increasing function in t1 for any fixed t2.

ii. SX(t1, t2) can not be a decreasing function in t2 for any fixed t1.
Proof. Using L-Hospital’s rule, the proof follows along the similar arguments of that of Theorem 2.2 of Khorashadizadeh et al. [21].

(a) (b)

Figure 2 Figures (a) and (b) represent graphs of SX(t1, t2) for the random variables as described in Counterexamples 3.1 and 3.2, respectively.
Pdf_Folio:265
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Theorem 3.2 Let X be a nonnegative and absolutely continuous random variable. Define Z = aX + b, where a > 0 and b ≥ 0 are constants.

i. If X belongs to DDTE (t1), then Z belongs to DDTE (t1).
ii. If X belongs to IDTE (t2), then Z belongs to IDTE (t2).
Proof. From Definition 3.1 and (2.5), the proof follows.

The following example can be viewed as an application of Theorem 3.2.

Example 3.1

Let X be a random variable with pdf f(x|a, b, 𝛼, 𝛽) = 𝛼(x−𝛽)2 for a < x < b,where 𝛼 = 12/(b−a)3, 𝛽 = (a+b)/2, and−∞ < a < b < ∞.
This is known as U-quadratic distribution which is useful in electronics and communication. For example, reference signals for a Stochastic
Analog-to-Digital Converter can be generated by a simple resistor ladder which follows the U-quadratic distribution. Here, it is easy to show
that X and cX + d, where c > 0 and d ≥ 0 belong to both DDTE (t1) class and IDTE (t2) class.

There are several situations where one may be interested to know whether DDTE (t1) and IDTE (t2) properties of a nonnegative random
variable X are inherited by a transformation of X. The following consecutive theorems provide us partial answer to that.

Theorem 3.3 Let X be a nonnegative and absolutely continuous random variable belongs to DDTE (t1) class. If 𝜙 is a nonnegative, strictly
increasing, concave function, then 𝜙(X) also belongs to DDTE (t1) class.

Proof. From Theorem 4.1 of Kundu [9] we have

S𝜙(X) (t1, t2) = SX
(𝜙−1 (t1) , 𝜙−1 (t2)

) + E [(ln𝜙′ (X)) |𝜙−1 (t1) < X < 𝜙−1 (t2)] , (3.2)

where 𝜙(x) is strictly increasing. Under the given assumptions, SX(𝜙−1(t1), 𝜙−1(t2)) decreases with respect to t1 for fixed t2.The second term
of the right hand side expression of (3.2) also decreases in t1. Combing these with (3.2), the theorem is proven.

Theorem 3.4 Let X be a nonnegative and absolutely continuous random variable belonging to IDTE (t2) class. If 𝜙 is a nonnegative, strictly
increasing, convex function, then 𝜙(X) also belongs to IDTE (t2) class.

Proof. The proof is analogous to that of Theorem 3.3 and is therefore omitted here for the sake of brevity.

As an application of Theorems 3.3 and 3.4, we consider the following example.

Example 3.2

Let X be a random variable following exponential distribution with pdf f(x|𝜆) = 𝜆 exp{−𝜆x}, where x > 0 and 𝜆 > 0. It is easy to see that X
belongs to both DDTE (t1) class and IDTE (t2) class. Consider the transformation Y = 𝜙(X) = X1/𝛼, 𝛼 > 0, which is nonnegative, strictly
increasing and convex (concave) function for 0 < 𝛼 < 1 (𝛼 > 1). Moreover, 𝜙(X) follows Weibull distribution with distribution function
G(x) = 1 − exp{−𝜆x𝛼}, x > 0. Therefore, Theorems 3.3 and 3.4 yield that Weibull distribution also belongs to both DDTE (t1) class and
IDTE (t2) class.

The following theorem provides upper bounds of SX(t1, t2) in terms of the GFR functions for the distributions belonging to the classes
defined above. We omit the proof since the results can be easily obtained.

Theorem 3.5 Let X be a nonnegative and absolutely continuous random variable.

i. If X belongs to DDTE(t1) class, then SX(t1, t2) ≤ 1 − ln h1(t1, t2).
ii. If X belongs to IDTE(t2) class, then SX(t1, t2) ≤ 1 − ln h2(t1, t2).
4. SOME CHARACTERIZATION RESULTS AND BOUNDS

Characterizations of statistical distributions are important concept inmodeling statistical data as these are useful to describe the distribution.
Because of this, several authors studied characterizations of various statistical distributions. For some characterization results based on
left truncated (residual) and right truncated (past) entropies, we refer to Belzunce et al. [22] and Nanda and Paul [14]. In this section, we
obtain some characterization results based on SX(t1, t2) given by (1.1). Misagh and Yari [8] showed that under some conditions, the doubly
truncated entropy uniquely determines the distribution function. We obtain characterization based on the condition involving the conceptPdf_Folio:266
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of generalized conditional mean of X[t1,t2]. It is given by

𝜇X(t1, t2) = ∫
t2

t1

xf(x)ΔF dx, (4.1)

which has been used in various contexts of reliability theory involving stochastic orders and characterizations of doubly truncated random
lifetimes. The following lemma is useful to prove our next theorem.

Lemma 4.1 (Navarro and Ruiz [11]) GFR functions h1(t1, t2) and h2(t1, t2) of the random variable X determine the distribution function
uniquely.

Theorem 4.1 Let X be a nonnegative and absolutely continuous random variable such that SX(t1, t2) = 𝜇X(t1, t2). Then SX(t1, t2) determines
the distribution function uniquely.

Proof. Differentiating (1.1) with respect to t1 (for any fixed t2) and t2 (for any fixed t1) we get𝜕SX(t1, t2)𝜕t1 = h1(t1, t2)[SX(t1, t2) + ln h1(t1, t2) − 1] and (4.2)

𝜕SX(t1, t2)𝜕t2 = −h2(t1, t2)[SX(t1, t2) + ln h2(t1, t2) − 1], (4.3)

respectively. Further from (4.1), we have 𝜕𝜇X(t1, t2)𝜕t1 = h1(t1, t2)[𝜇X(t1, t2) − t1] and (4.4)

𝜕𝜇X(t1, t2)𝜕t2 = −h2(t1, t2)[𝜇X(t1, t2) − t2]. (4.5)

Thus, from the given assumption and (4.2), (4.3), (4.4), (4.5), we obtain

ln h1(t1, t2) + t1 − 1 = 0 and (4.6)

ln h2(t1, t2) + t2 − 1 = 0. (4.7)

Therefore, for any fixed t2 and arbitrary t1, h1(t1, t2) is a positive solution of the equation g1(x) = 0, where g1(x) = ln x+ t1 − 1 and for any
fixed t1 and arbitrary t2, h2(t1, t2) is a positive solution of the equation g2(x) = 0, where g2(x) = ln x + t2 − 1.Moreover, it is easy to show
that both the equations g1(x) = 0 and g2(x) = 0 have unique positive solutions x = h1(t1, t2) and x = h2(t1, t2), respectively. Hence, using
Lemma 4.1, the proof follows.

Next, we present a proposition for symmetric random variable. The proof is simple and thus omitted for brevity.

Proposition 4.1 Let X be a nonnegative, absolutely continuous and symmetric random variable with support [0, a], with finite a. Assume that
it is symmetric with respect to a/2. Then

SX(t1, t2) = SX(a − t2, a − t1).
As an application of Proposition 4.1, we consider the following example.

Example 4.1

Suppose X follows uniform distribution in (0, 1).Here X is symmetric with respect to 1/2. Then, SX(t1, t2) = SX(1− t2, 1− t1) = ln(t2 − t1).
Remark 4.1. From (4.4) and (4.5), it is not hard to see that 𝜕𝜇X(t1,t2)𝜕t1 ≥ 0 and 𝜕𝜇X(t1,t2)𝜕t2 ≥ 0, that is, the generalized conditional mean in
(4.1) is increasing in t1 (for fixed t2) and in t2 (for fixed t1). Observing this, we remark that there exists a relevant difference between the
generalized conditional mean and the doubly truncated Shannon entropy. From Counterexamples 3.1. and 3.2, we observe that the doubly
truncated entropy is not necessarily increasing in t1 (for fixed t2) and in t2 (for fixed t1).

Hereafter, we provide characterizations for some useful lifetime distributions such as exponential, Pareto and finite range distributions.
These distributions have prominant applications in real life problems. Exponential distribution is widely used in describing lifetimes of
components, service times in queueing systems, time periods between two successive occurrences in a Poisson process. Pareto distributionPdf_Folio:267
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has been an important model to investigate the city population, insurance risk and business failures. Finite range distributions are used to
model data in reliability and life testing experiments and econometrics. First, we obtain the expressions of the doubly truncated entropy for
these distributions in terms of the GFR functions, which are presented in Table 1.

Theorem 4.2 Let X be a nonnegative and absolutely continuous random variable with pdf f(x) and cdf F(x). Then the following relationship:

SX(t1, t2) = (1
b

) [(1 + at1)h1(t1, t2)(1 − ln f(t1)) − (1 + at2)h2(t1, t2)(1 − ln f(t2)) + c] + ln(F(t2) − F(t1)), (4.8)

where a, b and c are constants, holds if and only if X follows

i. exponential distribution with cdf F(x) = 1 − exp{−𝜆x}, x > 0, 𝜆 > 0 for c = 0.
ii. Pareto distribution with cdf F(x) = 1 − (1 + px)−q, x > 0, p > 0, q > 0 for c > 0.

iii. finite range distribution with cdf F(x) = 1 − (1 − 𝛼x)𝛽 , 0 < x < 1/𝛼, 𝛽 > 0, 𝛼 > 0 for c < 0.
Proof. Assume that the relation given in (4.8) holds. Then from (1.1) and (4.8), we obtain

b ∫
t2

t1

f(x) ln f(x)dx = (1 + at1)f(t1)(ln f(t1) − 1) − (1 + at2)f(t2)(ln f(t2) − 1) − c(F(t2) − F(t1)). (4.9)

After differentiating (4.9) with respect to ti, i = 1, 2, and simplifying we get

f′(ti)
f(ti)

= −(

b + c
1 + cti

) , (4.10)

which implies that the random variable X respectively follows exponential, Pareto and finite range distributions for c = 0, c > 0 and c < 0.
With the help of the Table 1, the converse part of the theorem can be verified by direct calculation. This completes the proof of the theorem.

Remark 4.2. It is remarked that the results in Theorem 3.5 of Nourbakhsh and Yari [20] do not reduce to the Theorem 4.2 when 𝛽 tends
to 1. Specifically, when 𝛽 approaches to 1, the right-hand side expression of the Equation (5.4) of Nourbakhsh and Yari [20] is not equal to
that of (4.8) of the present paper.

It is worth mentioning that the closed form expression of SX(t1, t2) for some lifetime distributions may not be available due to difficulty in
the computation. For these cases, the boundsmay be helpful to get some idea about the amount of uncertainty contained in the distribution.
In the following, we obtain some bounds for SX(t1, t2).
Proposition 4.2 Let X be a nonnegative and absolutely continuous random variable. Then

SX(t1, t2) ≥ 1 − E [( f(X)ΔF ) | t1 < X < t2] . (4.11)

≤ t2 − t1 − 1 (4.12)

Table 1 Probability density functions and the expressions of SX(t1, t2).
Distribution pdf SX(t1, t2)
Exponential f(x) = 𝜆 exp{−𝜆x}, 1− ln𝜆 + t1h1(t1, t2)− t2h2(t1, t2)+ ln [exp{−𝜆t1} − exp{−𝜆t2}] .

x > 0,𝜆 > 0.
Pareto f(x) = pq

(1+ px)q+1 , − ln(pq)+ ln
(

(1+ pt1)−q + (1+ pt2)−q)+(q+ 1
q

) [(1+ pt1)h1(t1, t2) ln(1+ pt1)− (1+ pt2)h2(t1, t2) ln(1+ pt2)+ p] .
x > 0,
p, q > 0.

Finite range f(x) = 𝛼𝛽(1−𝛼x)𝛽−1, − ln(𝛼𝛽)+ ln
(

(1−𝛼t1)𝛽 − (1−𝛼t2)𝛽)+ (1− 𝛽)𝛼𝛽 [(1−𝛼t1)h1(t1, t2) ln(1−𝛼t1)− (1−𝛼t2)h2(t1, t2) ln(1−𝛼t2)+𝛼] .
0 < x < 1/𝛼,𝛽, 𝛼 > 0.

Pdf_Folio:268



R. Moharana and S. Kayal / Journal of Statistical Theory and Applications 19(2) 261–273 269

Proof. The bounds given in (4.11) and (4.12) can be obtained from the well-known inequalities ln x ≤ x−1 and x−1 ≤ x ln x, where x > 0,
respectively.

There is a wide class of distributions having monotone density functions. Next, we obtain bounds of the doubly truncated entropy for the
distributions having monotone densities in terms of the GFR functions.

Proposition 4.3 Let X be a nonnegative and absolutely continuous random variable with cdf F(x) and pdf f(x). If f(x) is decreasing (increasing)
in x, then

− ln h1(t1, t2) ≤ (≥)SX(t1, t2) ≤ (≥) − ln h2(t1, t2), (4.13)

where h1(t1, t2) and h2(t1, t2) are defined in (1.2).

Proof. Let f(x) be decreasing (increasing) in x. Then for t1 ≤ x ≤ t2, we have

f(t1)ΔF ≥ (≤) f(x)ΔF ≥ (≤) f(t2)ΔF . (4.14)

Thus from (4.14) and after some calculations, the required result follows.

Example 4.2

Consider a random variable which follows half logistic distribution with cdf F(x) = 1 − exp {−x}
1 + exp {−x} and pdf f(x) = 2 exp {−x}

(1 + exp {−x})2 , where

x > 0. The GFR functions of X are given by

h1(t1, t2)= 2 exp{−t1}
(1+exp{−t1})2

1−exp{−t2}
1+exp{−t2} − 1−exp{−t1}

1+exp{−t1}
(4.15)

and

h2(t1, t2) = 2 exp{−t2}
(1+exp{−t2})2

1−exp{−t2}
1+exp{−t2} − 1−exp{−t1}

1+exp{−t1}
. (4.16)

Moreover, it is easy to verify that the density function f(x) is decreasing in x > 0. Thus, as an application of Proposition 4.3, one can easily
obtain the bounds of SX(t1, t2).
5. DISCRETE DOUBLY TRUNCATED RANDOM VARIABLE AND SOME CHARACTERIZATION

RESULTS

Attention on the study of discrete failure data came relatively late in comparison to its continuous analogue. In recent past, several authors
have given a considerable attention to study some information theoretic and reliability measures for left truncated, right truncated and
doubly truncated random variables. See, for instance, Belzunce et al. [22], Nanda and Paul [14], Khorashadizadeh et al. [23], Kumar
et al. [24] and Asha et al. [25]. In this section we obtain some characterization results for the Shannon entropy of discrete doubly truncated
random variable.

Let X be a discrete random variable, which takes the values x1, x2, … , xl with probabilities p1, p2, … , pl, respectively, where l ∈ N. Here,
N represents the set of natural numbers. Denote pl = P(X = xl) and P(l) = P(X ≤ xl) the probability mass function and distribution
function of X, respectively. We denote P(X = l|i ≤ X ≤ j) the probability mass function of the doubly truncated random variable X with
left truncation at xi and right truncation at xj, where i < j and i, j ∈ N. It is given by

P(X = l|i ≤ X ≤ j) = pl
P(j) − P(i − 1) , (5.1)

where 1 ≤ i < l < j ≤ ∞. Note that for i = 1, (j = ∞) (5.1) reduces to the probability mass function of the right (left) truncated discrete
random variable. The GFR functions are given by (see Navarro and Ruiz [11])

hi(i, j) = pi
P(j) − P(i − 1) (5.2)
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and

hj(i, j) = pj
P(j) − P(i − 1) . (5.3)

Then the discrete doubly truncated entropy is given by

̃SX(i, j) = − j∑
k=i

( pk
P(j) − P(i − 1)

)

ln
( pk
P(j) − P(i − 1)

) . (5.4)

Note that when j = ∞, then (5.4) becomes discrete residual entropy (see Belzunce et al. [22]) and when i = 1, then it reduces to discrete past
entropy (see Nanda and Paul [14]). They studied some characterization results for residual and past entropy of discrete random variables.
The generalized conditional mean for the doubly truncated discrete random variable is given by

MX(i, j) = j∑
k=i

k
pk

P(j) − P(i − 1) . (5.5)

The following theorem shows that ̃SX(i, j) determines the distribution function uniquely.

Theorem 5.1 Let X be a random variable with discrete distribution function P(t). If ̃SX(i, j) is increasing in i (for fixed j) and decreasing in j
(for fixed i), then ̃SX(i, j) uniquely determines the distribution function.

Proof. From (5.4) we have

j∑
k=i

pk ln pk = (P(j) − P(i − 1))
(

ln(P(j) − P(i − 1)) − ̃SX(i, j)) . (5.6)

Now replacing i by i + 1 in (5.6) and then subtracting from (5.6), we obtain

pi ln pi = [P(j) − P(i − 1)] [ln(P(j) − P(i − 1)) − ̃SX(i, j)]−[P(j) − P(i)] [ln(P(j) − P(i)) − ̃SX(i + 1, j)] . (5.7)

Further, replacing j by j + 1 in (5.6) and then subtracting we get

pj+1 ln pj+1 = [P(j + 1) − P(i − 1)] [ln(P(j + 1) − P(i − 1)) − ̃SX(i, j + 1)]−[P(j) − P(i − 1)] [ln(P(j) − P(i − 1)) + ̃SX(i, j)] . (5.8)

Now consider fix j. Then substituting pi = [P(j) − P(i − 1)] − [P(j) − P(i)] and 𝜆i = (P(j) − P(i))/(P(j) − P(i − 1)) in (5.7) and after some
simplifications we get

g1(x) = (1 − x) ln(1 − x) + x ln x + ̃SX(i, j) − x ̃SX(i + 1, j) = 0, (5.9)

where x = 𝜆i, 𝜆i ∈ (0, 1). Further, we take fix i. Then substituting pj+1 = [P(j+1)−P(i−1)]−[P(j)−P(i−1)] and 𝜃j = (

P
(

j
) − P (i − 1)

) /
(

P
(

j + 1
) − P (i − 1)

)

in (5.8) we obtain

g2(x) = (1 − x) ln(1 − x) + x ln x + ̃SX(i, j + 1) − x ̃SX(i, j) = 0, (5.10)

where x = 𝜃j, 𝜃j ∈ (0, 1). Now we will show that for fixed j, g1(x) = 0 in (5.9) has a unique positive solution x = 𝜆i for all i. It is easy to see
that

g1(0) = ̃SX(i, j) ≥ 0 and g1(1) = ̃SX(i, j) − ̃SX(i + 1, j) ≤ 0, (5.11)

and hence there exists at least one root of g1(x) = 0 in (0, 1). Now differentiating (5.9) with respect to x we get

g ′1(x) = − ̃SX(i + 1, j) + ln( x
1 − x ). (5.12)

Again, g″1 (x) = 1
x(1 − x) , which is positive in (0, 1). It implies that g1(x) is convex in (0, 1). Thus using (5.11) we can say that for fixed j,

g1(x) = 0 has a unique positive solution in (0, 1) for all i. Using similar arguments, it can be proved that for fixed i, g2(x) = 0 has also a
unique positive solution in (0, 1) for all j. Further, 1−𝜆i = hi(i, j) and 1−𝜃j = hj+1(i, j+ 1), where hi(i, j) and hj+1(i, j+ 1) are discrete GFR
functions of X. It is known that discrete GFR functions uniquely determine the distribution function (see Navarro and Ruiz [11]). Hence
the proof is completed.Pdf_Folio:270
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Remark 5.1. For j = ∞, Theorem 5.1 reduces to Theorem 2 of Belzunce et al. [22].

Theorem 5.2 The discrete uniform distribution with support {1, 2, … , n} is characterized by ̃SX(i, j) decreasing in i (for fixed j) and increasing̃SX(i, j) in j (for fixed i) if and only if ̃SX(i, j) = ln(j − i + 1), where 1 ≤ i < j ≤ n and i, j ∈ N.
Proof. In case of discrete uniform distribution with support {1, 2, … , n},

̃SX(i, j) = − j∑
k=i

(

1
j − i + 1

)

ln
(

1
j − i + 1

)

= ln(j − i + 1). (5.13)

Further, suppose ̃SX(i, j) = ln(j − i + 1), for 1 ≤ i ≤ j ≤ n and i, j ∈ N. Then from (5.9) g1(x) = 0 has unique solution when g1(uj) = 0.
Now, using (5.12), we get that

uj = (

1 + exp{− ̃S(i + 1, j)})−1 = j − i
j − i + 1 .

Thus, g1(x) = 0 has unique solution given by x = uj.Moreover, 𝜆i is a solution of (5.9). Hence 𝜆i = (j− i)/(j− i+ 1) is the unique solution
of g1(x) = 0. Again from (5.10), g2(x) = 0 has a unique solution. Similar argument shows that 𝜃j = (j − i + 1)/(j − i + 2) is the unique
solution of g2(x) = 0.Hence, the theorem is established.

Remark 5.2. Theorem 5.2 is a generalization of Remark 3 of Belzunce et al. [22] and Theorem 5.1 of Nanda and Paul [14]. The respective
particular cases can be obtained by taking j = n and i = 1.
Remark 5.3. In general, ̃SX(i, j) does not uniquely determine a probability mass function p. For example, if X has Bernoulli distribution
B(1, p) with P(X = 1) = p and P(X = 0) = 1 − p, 0 < p < 1 then one can verify that

̃SX(i, j) = { 0, if i = j,−p ln p − (1 − p) ln(1 − p), if i ≠ j.

Here, the discrete doubly truncated Shannon entropy is same for Bernoulli distributions B(1, p) and B(1, 1 − p).
6. MOST ACCEPTABLE SYSTEM

From the study carried out in the previous sections, we observe that in general no relationship between the orders in Definition 1.1 and our
proposed order exists. Similar observations were noticed by Ebrahimi and Pellery [13] and Nanda and Paul [14] for the Shannon entropy
when random lifetimes are truncated from left and right. Further, in a specified time interval a system is said to be better if it lives longer
and there is less uncertainty about its survival time. This notion motivates us to consider the following definition. It can be useful to the
reliability engineers in choosing the most acceptable system.

Definition 6.1. Let X and Y be the random lifetime of two systems. Then the system with lifetime X is mostly acceptable than the system
with lifetime Y in

A. DTE-lr order if X ≤DTE Y and X ≥lr Y.
B. DTE-st order if X ≤DTE Y and X ≥st Y.
It is obvious that (A) ⇒ (B). In the following we consider an example of a mostly acceptable system.

Example 6.1

Let us consider a parallel systemofn componentswith lifetimeYi, i = 1, 2, … , n.Assume thatYi’s are independent and identically distributed
with a common pdf g(x) = 1 and cdf G(x) = x, where 0 < x < 1. Then X = max{Y1,Y2, … ,Yn} be the system lifetime. The cdf of X is
F(x) = [G(x)]n = xn, x ∈ (0, 1). Clearly, X ≥lr Yi, i = 1, 2, … , n. Further SYi

(t1, t2) = ln(t2 − t1) and

SX(t1, t2) = (n − 1
n

) − ln
(

n
tn2 − tn1

) −(

n − 1
tn2 − tn1

)

(

tn2 ln t2 − tn1 ln t1
) .

Since analytically it is hard to compare SX(t1, t2)with SYi
(t1, t2), therefore we plot the difference SX(t1, t2)−SYi

(t1, t2) inMathematica software
(see Figure 3) and notice that this difference is always take negative values in its domain. Hence we conclude that X ≤DTE Yi. This facts
ensure us that a parallel system described above is mostly acceptable than a single component system in DTE-lr order.Pdf_Folio:271
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Figure 3 It represents the graph of SX(t1, t2)− SYi
(t1, t2) as described

in Example 6.1.

The following theorem shows that the orders defined in Definition 6.1 are closed under affine transformations of the form 𝜙(t) = at + b,
where a > 0 and b ≥ 0.
Theorem 6.1 Consider Z1 = aX + b and Z2 = aY + b, a > 0 and b ≥ 0, where X and Y are absolutely continuous random lifetimes of two
components. Assume t1 > b. If X is mostly acceptable than Y in DTE-lr (DTE-st) order, then Z1 is mostly acceptable in Z2 in DTE-lr (DTE-st)
order.

Proof. Proof follows from Theorem 2.2 and the properties of the orderings given by Definition 1.1. Thus, it is omitted.

7. CONCLUSION

In this paper, we consider Shannon entropy of a doubly truncated random variable and study its properties. We introduce a new order
based on doubly truncated entropy and study its connection with other stochastic order. A new class of lifetime distributions based on the
doubly truncated entropy is proposed. Characterizations of some life distributions are obtained. Some results on discrete distributions are
also addressed here. Finally, based on doubly truncated entropy, how to choose the better system is discussed.
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