Header menu link for other important links
X
Proteomic analysis provides new insights in phosphorus homeostasis subjected to pi (inorganic phosphate) starvation in tomato plants (Solanum lycopersicum L.)
, B.R. Jeong
Published in Public Library of Science
2015
PMID: 26222137
Volume: 10
   
Issue: 7
Abstract
Phosphorus is a major nutrient acquired by plants via high-affinity inorganic phosphate (Pi) transporters. To determine the adaptation and homeostasis strategy to Pi starvation, we compared the proteome analysis of tomato leaves that were treated with and without Pi (as KH2PO4) for 10 days. Among 600 reproducible proteins on 2-DE gels 46 of them were differentially expressed. These proteins were involved in major metabolic pathways, including photosynthesis, transcriptional/translational regulations, carbohydrate/energy metabolism, protein synthesis, defense response, and other secondary metabolism. The results also showed that the reduction in photosynthetic pigments lowered P content under -Pi treatments. Furthermore, high-affinity Pi transporters (lePT1 and lePT2) expressed in higher amounts under -Pi treatments. Also, the accumulation of Pi transporters was observed highly in the epidermis and palisade parenchyma under +Pi treatments compared to -Pi treatments. Our data suggested that tomato plants developed reactive oxygen species (ROS) scavenging mechanisms to cope with low Pi content, including the up-regulation of proteins mostly involved in important metabolic pathways. Moreover, Pi-starved tomato plants increased their internal Pi utilization efficiency by increasing the Pi transporter genes and their rational localization. These results thus provide imperative information about how tomato plants respond to Pi starvation and its homeostasis. Copyright: © 2015 Muneer, Jeong.
About the journal
JournalPLoS ONE
PublisherPublic Library of Science
ISSN19326203