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Abstract 

Quantum communication in general helps deter potential eavesdropping in the course of 

transmission of bits to enable secure communication between two or more parties. In this paper, 

we propose a novel quasi-deterministic secure quantum communication scheme using non-

maximally entangled states. The proposed scheme follows a simple procedure, and cases where 

the entanglement required can be significantly reduced to carry out the protocol successfully are 

discussed. Long sequences or the whole sequence of data can be sent after error checking for a 

potential eavesdropper. The maximum qubit efficiency of the proposed protocol is found to 

be 33.333%. 

 

Keywords Secure communication, Quasi-deterministic secure quantum communication, Quantum 
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1. Introduction 

Quantum cryptography exploits the fundamental postulates of quantum mechanics to ensure 

secure communication between two or more parties. Several quantum communication schemes 

have been proposed since the introduction of the BB84 protocol in 1984 [1]. In the BB84 protocol, 

the sender makes use of the rectilinear (R) or diagonal (D) basis to encode information in single 

photons [2]. The quantum no cloning theorem prevents a malicious third party (Eve) from copying 

the quantum state during the transmission process. The bases used are publicly announced by both 

the sender (Alice) and the receiver (Bob). They both reject the bits that were generated through 

different bases. The remaining bits that were generated through the same basis are preserved. A 
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subset of these bits are chosen at random and the error rate is calculated, which is expected to be 

within a certain threshold value. If not, the presence of eavesdropper is disclosed. Alternatively 

the Ekert protocol relies on the non-locality of a shared maximally entangled pair between the 

sender and receiver. If the measurement is performed by Alice and Bob in a compatible basis, 

sifted bits are generated after publicly announcing the bases [3].  

Quantum key distribution (QKD) schemes like the BB84 and the Ekert protocol are not used 

to send bits directly, but instead help establish a private key between the sender and the receiver. 

After establishing the key, bits are sent through a classical channel using an encryption algorithm. 

On the other hand, quantum secure direct communication (QSDC) schemes and deterministic 

secure quantum communication (DSQC) schemes are used to communicate directly over a 

quantum channel without involving key generation [4]. The first direct communication scheme 

was proposed by Long and Liu [5]. Over the years, QSDC schemes using single photons, entangled 

states and superdense coding have been proposed [6-9]. QSDC using single photons was 

experimentally realized in 2016 [10]. A practical QSDC scheme with a secure communication rate 

of 50 bps was also implemented [11]. An experimental free space setup was also implemented 

recently using single photons [12]. DSQC on the other hand uses classical bits to read out the 

information encoded in the quantum state. DSQC was first proposed by Shimizu and Imoto [13]. 

A quasi-secure direct communication scheme using EPR pairs, called the ping pong protocol was 

proposed later on [14]. DSQC using EPR pairs and pure entangled states were proposed in 2006 

[15-16]. DSQC using a one time pad [17-18], and higher dimensional quantum systems were also 

proposed [19]. 

While most of the proposed schemes use maximally entangled states like Bell states, we have 

shown how non-maximally entangled states can help leverage security. Moreover, the transmission 

of maximally entangled states are more difficult than non-maximally entangled states due to 

decoherence [20]. Hence it is worthwhile to seek quantum communication using non-maximally 

entangled states. The use of non-maximally entangled states for quantum cryptography has been 

minimal in spite of their generation in laboratories. The simple act of rotating the polarizer for the 

pump photons before striking the non-linear crystal in standard parametric down conversion 

experiments can produce such states. In our work, these states are measured by the R (measurement 

along 0°, 90° to produce |0⟩, |1⟩) or D (measurement along 45°, 135° to produce |+⟩, |−⟩) basis 

similar to the BB84 protocol, and the measurement result is counted as the bit. Utilizing measuring 

correlations through entanglement is possible only when the same basis is used. The results 0° or 45° are counted as 0 bit, and 90° or 135° are counted as 1 bit. 

The protocol deals with one-way communication from Alice to Bob. Random bits are sent 

probabilistically using non-maximally entangled states. Two cases for achieving perfect secrecy 

with reduced entanglement are also discussed. Our protocol uses a one time pad where half of the 

bits are transmitted using the classical channel. Since the use of non-maximally entangled states 

introduces imperfections for Bob’s bits, it can be referred to as a quasi-DSQC scheme. Unlike 

most other DSQC schemes, our protocol does not involve the application of any quantum gates, 

thereby reducing circuit complexity.  



The paper is organized as follows. Section 2 describes the steps involved in the protocol. 

Section 3 elucidates the security of the given protocol. Section 4 is used for discussing the various 

cases of quantum states and how they affect security. Section 5 concludes the paper. 

 

2. The protocol 

In this section, we introduce the protocol formally. Let N be the sequence of 𝑛 number of 

classical bits to be sent by Alice. The steps involved in the protocol are as follows (see Fig. 1): 

 

1. Alice generates a two qubit non-maximally entangled state α|00⟩ + β|11⟩, where α, β ∈C and |α|2 + |β|2 = 1. 

2. She sends one of the qubits in the entangled pair to Bob, after which they both measure 

their qubit using the R or D basis randomly.  

3. If Bob’s measurement outcome is 0, he discerns the bit as 0. If he measures 1, it is a 1 bit. 

4. After 𝑛 number of iterations of transmitting and measuring qubits using Steps 1-3, Bob 

ends up with a sequence N1 having 𝑛 bits. Alice and Bob exchange their basis information 

(whether R or D) through a classical channel. This information can be represented as a 

sequence with R and D representing 0 and 1 respectively. 

5. Bob discards the bits that are generated through different bases while noting their positions. 

Simultaneously Alice notes the same positions of bits in N, where the bits in these positions 

were discarded from N1 due to incompatible bases. Let the new sequence of bits derived 

from these positions in N be A. Also, let the number of bits in the sequence A be 𝑑. Both 

Alice and Bob have now generated a separate sequence of sifted bits (bits generated using 

the same basis) P and Q respectively which will have 𝑛 − 𝑑 number of elements. As one 

can see in the below security analysis, 𝑑 ≈  𝑛 − 𝑑 ≈  𝑛/2. 

6. Bob selects a subset of his sifted bits from Q and sends it along with its respective position 

to Alice through the classical channel. 

7. Alice compares it with the corresponding original bits in P and checks for any error (if the 

subset of the elements of P and Q are unequal). 

8. If the error rate of sifted bits is above a threshold value, Eve’s presence is disclosed and 

the process is terminated at this point. If the error rate is under a threshold value, Alice 

applies XOR to each bit in A and the corresponding sifted bit, A ⨁ P and this result is 

disclosed to Bob through the classical channel. Let this new bit sequence be G.  

9. Bob receives G and applies XOR with his sifted bits, G ⨁ Q = A ⨁ P ⨁ Q, which is 

equivalent to A if P and Q are equal. Bob introduces this result in the position of discarded 

bits with the previously received sifted bits Q. Hence Bob obtains 𝑛 bits, of which bits in 

Q are random. 

10. Alice announces the position of those bits in Q that are different from the actual sequence 

of bits in N (since they are the same as in P). Bob simply complements the corresponding 

bits in Q. Thus, Bob is left with the final sequence of 𝑛 bits. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Quasi-DSQC protocol between Alice and Bob: dashed arrow indicates quantum 

channel while the normal ones indicate classical channel 

 

 

ALICE 

Sends one qubit from α|00⟩ +β|11⟩: n times 

Measures along R/D basis Measures along R/D basis 

Sifted bits: P, checks if P ≅ Q after 

exchanging bits;                    

unsent bits: A 

Sifted bits: Q, checks if P ≅ Q 

after exchanging bits;                   

discards other bits 

Sends A ⨁ P Computes A ⨁ P ⨁ Q 

Position of bits to be 

complemented in P 

Complements corresponding bits 

in Q 

BOB 



3. Security 

If Alice and Bob employ the same bases, their measurement outcomes are the same due to the 

correlation in the entangled state. If Eve intercepts Alice’s photons and uses a different basis, her 

outcome is random. Hence she sends a randomized bit to Bob which might be different from the 

one that Alice measures from her qubit. This reveals the presence of Eve. If the error rate calculated 

by Alice in Step 8 exceeds a certain percentage, the presence of Eve can be known. The error rate 

can be calculated as follows: 

Error Rate = Probability of Eve making an error × Probability of Bob making an error 

                   =  50% ×  50% 

                  =  25%  

The threshold error rate is therefore 25%. Due to incompatible bases, Bob loses 50% of the 

bits. This can be retrieved by a one time pad using the sifted bits. Alice applies XOR with the bits 

that Bob lost and the sifted bits. Each of these sequences would have about 50% of the total bits 

sent by Alice. After Alice sends Bob these new bits, Bob applies XOR with the sifted bits and the 

new bits that Alice sent. Note that the sifted bits are known only to Alice and Bob. Let s be a sifted 

bit and f be a corresponding bit that Bob lost and must receive from Alice. Bob receives s ⨁ f from 

Alice. With that Bob computes 

                                𝑠 ⨁ (𝑠 ⨁ 𝑓)  =  (𝑠 ⨁ 𝑠) ⨁ 𝑓 =  0 ⨁ 𝑓 =  𝑓.                                       (1) 

Hence Bob receives the previously discarded bits. He has now received all 𝑛 bits, where some 

are randomly complemented. If the transmission is free from eavesdropping, Alice can correct this 

by announcing the position of the wrong bits. Since the sifted bits are obtained randomly, Eve does 

not obtain any useful information before disclosing her presence. Hence, the proposed protocol 

offers a solution for communicating against an eavesdropping strategy. Alice can keep a track on 

the result of Bob’s qubit due to the correlation. However, a small percentage of the bits are lost 

due to the use of non-maximally entangled states. This is explained in the following section. 

 

4. Role of various quantum states in security 

We use concurrence, 𝐶 = 2|α𝛽|, as a measure of entanglement, where 𝐶 =  1 for a maximally 

entangled state and less than 1 for a non-maximally entangled state (0 <  𝐶 ≤  1) [21]. In the 

given entangled state in the protocol, substituting for |0⟩, |1⟩ with |0⟩ =  1√2 (|+⟩ + |−⟩) and |1⟩ = 1√2 (|+⟩ − |−⟩) gives, 

 α|00⟩ + β|11⟩ = 12 {(α + β)[|+ +⟩ + |− −⟩] + (α − β)[|+ −⟩ + |− +⟩]}. (2) 

This new representation on the RHS must be considered for the case when both Alice and Bob 

use the D bases for sifting bits. It can easily be seen that the state is not fully correlated when using 

the D bases. With a small probability, say 𝑃𝑑, where 𝑃𝑑 = 0.5|α − β|2 = 0.5(1 − 𝐶), the state 



produces valid but different sifted bits while using the D basis. The error among all sifted bits 

is 0.5𝑃𝑑, because there is no such error while using the R bases. This error rate remains the same 

even after the one time pad transmission. The relation between this bit error and 𝐶 is summarized 

in Fig. 2 for decreasing 𝐶. It can be seen that the number of valid bits transmitted to Bob decreases 

with decrease in entanglement.  

Additionally, classical bits are used in error checking and for the cipher apart from qubits. It is 

therefore important to quantify the efficiency of the scheme. The theoretical qubit efficiency of a 

protocol is defined as  

 

                                                                 𝜂 =  𝑐𝑞 + 𝑏 ,                                      (3) 

 

where 𝑐 is the number of bits received by Bob, 𝑞 is the number of qubits transmitted by Alice and 

b is the number of classical bits exchanged between Alice and Bob [22]. Here 𝑐 = 1 − 0.5𝑃𝑑, 𝑞 =1 and 𝑏 = 1 + 0.5 + 0.5 = 2, where 𝑏 includes the basis exchanged, bits from the one time pad 

and the position of bits to be complemented. Thus 𝜂 =  (2 − 𝑃𝑑)/6 = (3 + 𝐶)/12, which varies 

between 0.25 and 0.333 depending on the entanglement. 

 

 

Fig. 2 Relation between error probability in sifted bits (0.5𝑃𝑑), qubit efficiency with respect to 

concurrence 



If the parties are not satisfied with the protocol not confirming to 100% error free bits, they 

can sacrifice bits to ensure that it is the case. Let the concurrence be 𝐶𝑅 when R basis is used, and 𝐶𝐷 when D basis is used. Before using the one time pad, the generated sifted bits can be free of the 

discussed error within one of the two following cases. 

i. When 0 < 𝐶𝑅 < 1 and 𝐶𝐷 = 1 (average is greater than 0.5), the parties can obtain at 

most 𝑛 error free sifted bits from 2𝑛 entangled states. This is because 𝑃𝑑 = 0 

when 𝐶𝐷 = 1, causing no error due to sifted bits. Here 50% of the total number of 

qubits are sifted while also being error free, given that the error rate after checking is 

within the threshold. 

 

ii. When 0 < 𝐶𝑅 ≤ 1  and 0 < 𝐶𝐷 < 1 (average is greater than 0), the parties can obtain 

at most 𝑛 error free sifted bits from 4𝑛 entangled states. This is because the parties 

must discard all sifted bits generated from the D basis as it has a non-zero 

probability, 𝑃𝑑, of being unreliable. Nevertheless, before discarding them, Alice must 

use all or a random subset of these sifted bits generated using D basis for error checking. 

She should ensure that 𝑃𝑑 < 0.5(1 − 𝐶𝐷) < 0.5, to make sure that Eve does not 

intercept and resend after measuring solely with the R basis. The usual error checking 

should also be carried out with a subset of the sifted bits generated from the R basis. 

 

Alice can prepare various entangled states by rotating the pump polarization in her setup with 

respect to the vertical or horizontal by an angle Ɵ.  A general non-orthogonal two qubit entangled 

state can be expressed as (𝜀|00⟩ + |11⟩)/√𝜀2 + 1 where 0 < 𝜀 ≤ 1 and the degree of 

entanglement, 𝜀 =  𝑡𝑎𝑛 Ɵ [23]. Hence, Alice can control α and β by controlling Ɵ to produce 

different states.  

 

5. Conclusion 

In the proposed quasi-DSQC scheme, different bases are used along with entangled states to 

achieve secure communication. The first part of the protocol is similar to the BBM92 QKD 

protocol [24]. The proposed scheme can also be favorable for transmitting qubits as non-

maximally entangled states are more robust in specific decoherence models. Most importantly, it 

is difficult to retain maximally entangled states during transmission in practical scenarios. One 

half of the sequence of bits is sent by generating sifted bits and the other half uses a one time pad 

with the sifted bits. The position of bits to be complemented among the sifted bits is announced 

by Alice at the end. The scheme also shows how theoretically error free quantum communication 

can be achieved with non-maximally entangled states at the cost of increased number of entangled 

states. The resulting qubit efficiency of the protocol is between 25% and 33.333% depending on 

the concurrence. By handing the responsibility of state preparation to Alice (unlike many other 

schemes based on entanglement in existing literature), the possibility of Eve introducing entangled 

states in her favor is removed. However, difficulty with practical realization due to error in 



transmitting entangled states, such as in the described protocol remains. Quantum repeaters, which 

can be used to mitigate this, is still a growing line of research in itself [25]. 
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