Header menu link for other important links
X
Relationship between Hydrogen-Atom Transfer Driving Force and Reaction Rates for an Oxomanganese(IV) Adduct
A.A. Massie, , J.D. Parham, E. Nordlander, T.A. Jackson
Published in American Chemical Society
2018
PMID: 29974738
Volume: 57
   
Issue: 14
Pages: 8253 - 8263
Abstract
Hydrogen atom transfer (HAT) reactions by high-valent metal-oxo intermediates are important in both biological and synthetic systems. While the HAT reactivity of FeIV-oxo adducts has been extensively investigated, studies of analogous MnIV-oxo systems are less common. There are several recent reports of MnIV-oxo complexes, supported by neutral pentadentate ligands, capable of cleaving strong C-H bonds at rates approaching those of analogous FeIV-oxo species. In this study, we provide a thorough analysis of the HAT reactivity of one of these MnIV-oxo complexes, [MnIV(O)(2pyN2Q)]2+, which is supported by an N5 ligand with equatorial pyridine and quinoline donors. This complex is able to oxidize the strong C-H bonds of cyclohexane with rates exceeding those of FeIV-oxo complexes with similar ligands. In the presence of excess oxidant (iodosobenzene), cyclohexane oxidation by [MnIV(O)(2pyN2Q)]2+ is catalytic, albeit with modest turnover numbers. Because the rate of cyclohexane oxidation by [MnIV(O)(2pyN2Q)]2+ was faster than that predicted by a previously published Bells-Evans-Polanyi correlation, we expanded the scope of this relationship by determining HAT reaction rates for substrates with bond dissociation energies spanning 20 kcal/mol. This extensive analysis showed the expected correlation between reaction rate and the strength of the substrate C-H bond, albeit with a shallow slope. The implications of this result with regard to MnIV-oxo and FeIV-oxo reactivity are discussed. Copyright © 2018 American Chemical Society.
About the journal
JournalData powered by TypesetInorganic Chemistry
PublisherData powered by TypesetAmerican Chemical Society
ISSN00201669