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Abstract The presence of chromium in industrial effluents

has become a huge problem worldwide as hexavalent

chromium is highly toxic to animals due to its ability to

generate reactive oxygen species in cells. The trivalent

state of chromium, on the other hand, is significantly less

toxic and also serves as an essential element in trace

amounts. When industries such as electroplating, tannery,

dyeing and others release their effluents into water bodies,

hexavalent chromium enters the food chain and, conse-

quently, reaches humans in a biomagnified form. Many

remediation processes for removal of hexavalent chromium

have been researched and reviewed extensively. These

include chemical reduction to trivalent chromium, solvent

extraction, chelation and adsorption, among others. It has

been generally concluded that adsorption (and/or subse-

quent reduction) of hexavalent chromium is the best

method. However, relatively little is known about the

potential of using nanoparticles as adsorbents for the

removal of hexavalent chromium from industrial effluents.

This method of nanoremediation is more effective than

conventional remediation methods and is cost-effective for

the industry in the long run. This article reviews the various

remediation methods of hexavalent chromium, with

emphasis on the field of nanoremediation.
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Introduction

Chromium has widespread applications in various indus-

trial processes such as electroplating, printing, dyeing,

tanning and metallurgy. However, improper disposal of

effluents from these industries results in environmental

pollution [1–3]. This has fatal consequences on the envi-

ronment, plants and animals as it exerts carcinogenic,

mutagenic and teratogenic effects and causes tissue dam-

age [4].

Chromium most commonly occurs in trivalent/Cr(III)

and hexavalent/Cr(VI) states [5]. While the trivalent state

of chromium is an important trace element, its hexavalent

state is non-essential and toxic to animals [6] and may

cause dermatitis, lung cancer, kidney and gastric damage,

irritation to respiratory tract and eyes [7]. Continuous

accumulation of toxic Cr(VI) along food chains often leads

to biomagnification, putting humans at great risk [8].

The global requirement of water for industrial uses has

been increasing by leaps and bounds. However, abuse of

this valuable resource and adequate lack of timely treat-

ment often lead to water pollution, resulting in its scarcity.

To overcome this problem, industries need to adopt several

technologies of water purification, for use in manufacturing

processes. There are many conventional processes cur-

rently in use for remediation of Cr(VI) from industrial

effluents. These processes mainly involve immobilisation

of Cr(VI) and/or reduction of toxic Cr(VI) to the less-toxic

Cr(III). The latter can be achieved chemically by means of

a variety of sulphur or iron-based compounds, such as

Fe(II) [9], amorphous FeS2 [10], calcium polysulphide

(CaSx) [11], sodium thiosulphate (Na2S2O3) [12] and many

more. The major disadvantage of chemical reduction is the

generation of a huge amount of toxic sludge. Some other

methods of Cr(VI) removal include membrane filtration,
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solvent extraction, leaching [13, 14] and electrokinetic

procedures [15, 16]. These methods, though commonly

used, have certain limitations. The major disadvantage of

such conventional treatment methods is the high cost,

which dissuades many industries from adopting any

remediation methods.

Another commonly used method involves the adsorption

of Cr(VI) onto various surfaces like titanium dioxide,

goethite, activated carbon, zeolites and many more. In

some cases, reduction to Cr(III) may follow. Biosorption is

a subdivision of adsorption, in which Cr(VI) is adsorbed

onto biomaterials found in abundance in nature, like

microbial biofilms [17, 18]. Adsorption is considered to be

an effective method due to the low initial cost, flexibility in

design and ease of operation [19]. Moreover, adsorption

does not involve the formation of any secondary wastes

such as sludge.

In this context, nanoparticles have gained prominence as

adsorbents of Cr(VI). While choosing suitable nanomateri-

als for environmental remediation, the characteristics usu-

ally explored are size, solubility, surface area, surface

charge and surface chemical composition [20]. Having

large surface areas and being highly stable, nanoparticles

have demonstrated themselves to be excellent adsorbents

for environmental remediation [19]. Due to their high

catalytic activity, some nanoparticles, such as nanoscale

zero-valent iron, are capable of reducing Cr(VI) to Cr(III).

Moreover, using nanoscale zero-valent iron does not pro-

duce intermediate by-products, which are usually observed

when bulk Fe powders are used [21]. This review describes

the various methods used for remediation of Cr(VI) with

special emphasis on the rapidly emerging field of

nanoremediation.

Chromium in industrial effluents

The hexavalent state of chromium, which exists primarily

as the tetrahedral chromate ion in aqueous solution

(CrO4
-2), is able to penetrate cellular membranes using

various permeases, and this penetration of membrane

occurs 500–1000 times more effectively than the trivalent

form [22, 23]. Once inside the cell, Cr(VI) is reduced

enzymatically and/or non-enzymatically to the reactive

intermediates, Cr(V), Cr(IV) and Cr(III) [24], which are

capable of generating reactive oxygen species (ROS) [25].

Under physiological conditions, overproduction of ROS

causes damage to cellular proteins, lipids and DNA [26].

Industries such as electroplating, tannery, paints, petro-

leum and dyeing contain Cr(VI) in their effluents [1]. For

example, textile industries use synthetic dyes to impart

colour to raw materials or products. These dyes contain

many toxic heavy metals, especially chromium [27–29].

Examples of other industries contributing to Cr(VI) pol-

lution are summarised in Fig. 1 [1, 30].

The release of several industrial effluents containing

Cr(VI) into water bodies exposes aquatic life to this toxic

and corrosive element. It readily gets accumulated and

consequently biomagnified in the species at the top of the

aquatic food chain, viz, fishes [31]. This phenomenon

manifests itself physically in fishes in the form of an

increased mortality, erosion of scales, discolouration,

mucous secretion, irregular swimming and disruption of

their osmoregulatory functions [8, 32].

As a result, Cr(VI) enters the terrestrial food chain and

reaches humans in highly biomagnified amounts. This

leads to several health problems such as damage to liver

and kidney, carcinogenesis (mostly lung cancer), geno-

toxicity, neurotoxicity, immunotoxicity, asthma, skin

ulcerations and many more [6, 33–35]. Rats intraperi-

toneally injected with Cr(VI) have been reported to

develop both structural and functional anomalies of the

pituitary and thyroid glands [36]. Potassium dichromate,

administered subcutaneously into rats, had led to accu-

mulation of chromium mainly in the renal cortex [37] and

had caused cellular degradation of the proximal convoluted

tubule and formation of hyaline casts in the lumen of renal

tubules [22]. Hence, there is an urgent need to develop an

effective technique for chromium remediation from

wastewater.

Conventional processes for chromium remediation

Like all heavy metals, Cr(VI) cannot be completely

removed from the environment. However, its toxicity can

be reduced (by reduction to the trivalent state), or it can be

adsorbed onto a surface to be dumped at a different site, or

a combination of both approaches may be used.

The various conventional methods of Cr(VI) remedia-

tion have been reviewed by Kalidhasan et al. [38], and

these methods have been summarised and are compared in

Table 1 [39–69].

The conventional chemical reduction method comprises

of two steps—the reduction of Cr(VI) to Cr(III) by a

reducing agent, at an acidic pH, and the precipitation of

Cr(III) as an insoluble hydroxide at an alkaline pH. The

chemical reductant can be any sulphur-based or iron-based

salt. These two steps can be combined into a single step by

the electrochemical addition of ferrous ion, rather than the

addition of a ferrous salt (FeSO4 or FeCl2) which neces-

sitates the use of an acidic and an alkaline pH, making it a

two-step process. The removal of Cr(VI) by the former can

be illustrated using the following reaction [70]:

CrO�2
4 þ 8Hþ þ 3Feþ2 ! Crþ3 þ 3Feþ3 þ 4H2O
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The major limitation of this method is the formation of

toxic solid sludge during the precipitation of Cr(III) [38].

Moreover, in the treatment of soil contaminated by Cr(VI)

from industrial effluents, the chemical reduction method is

disadvantageous as the contaminated soil needs to be

physically mixed with the reducing agent, making the

entire process labour-intensive. An alternative method

which can be used in this situation is electrokinetic reme-

diation, which involves passing of low-voltage direct cur-

rent through the soil, thus providing in situ remediation

[16]. The toxic metals move towards the electrodes, pri-

marily by electromigration. This method can be further

enhanced by using metal chelators such as citric acid and

polyaspartic acid [15].

Adsorption is the most effective and economical solu-

tion to remediation of Cr(VI), especially if it is coupled

with proper regeneration of the adsorbent [71]. Activated

carbon (AC) is one such highly effective adsorbent, which

resembles granular or powder charcoal and possesses high

porosity, internal surface area and mechanical strength. AC

is especially useful in remediation of low concentrations of

effluent stream. However, commercially available ACs are

not economically feasible, and hence, any material with a

high organic content and low inorganic content can be used

for manufacturing of AC [72]. For example, AC developed

from Tamarind wood activated with zinc chloride has

shown 99% efficiency in removal of Cr(VI) from

wastewater [72]. AC prepared from Fox nutshell and

activated by zinc chloride showed a maximum Cr(VI)

removal efficiency of 99.08% at a pH of 2 [73]. Under the

conditions of pH 2, biomass dose 2.5 g/100 ml and equi-

librium time of 150 min, AC prepared from mango kernel

and activated with H3PO4 reported a maximum Cr(VI)

removal rate of 7.8 mg/g [74].

Another adsorption method is the use of silica-based

adsorbents, which has both reduction and sorption capa-

bilities in a single solid [75]. Mostly prepared by the sol–

gel process, these adsorbents consist of a silica backbone

and attached functional organic groups capable of com-

plexing with the concerned metallic ion [76]. The presence

of hydroxyl groups in the silica gel allows for easy modi-

fication for effective performance [77]. These adsorbents

Fig. 1 Various industries

release Cr(VI) in their effluents
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are considered advantageous as they possess a defined pore

geometry, large surface area, high porosity, good

mechanical strength, high thermal resistance, stability in a

wide range of pH, and are insoluble in water, environ-

mentally benign and cost low [78, 79]. Kumar et al. [80]

used aniline formaldehyde condensate (AFC) as the func-

tional organic group to be attached on the silica backbone

and reported 85% removal of Cr(VI) and 70% removal of

total chromium (Cr(VI) and Cr(III)), while also reporting

56% recovery of chromium from the adsorbent in the

presence of NaOH. The protonated amino (–NH2) groups

of AFC may electrostatically attract CrO4
-2, lead to

reduction of Cr(VI) to Cr(III) and form bonds with Cr(III)

for their adsorption. Similarly, polyaniline (PANI) can

form coordinate bonds with the metal ions and reduce

Cr(VI) to Cr(III) by surface chemical reaction. These

PANI/silica composites have shown a maximum adsorp-

tion capacity of 63.41 mg/g at an equilibrium

Table 1 Conventional remediation methods of Cr(VI)

Sl.

no

Process name Type of process Comments References

1. Liquid–liquid extraction Physical Amine-based extractants (hard bases), preferably long-chain

quaternary ammonium or tertiary amine-based compounds,

typically chosen. Examples include tribenzylamine in toluene,

tetrabutylammonium bromide (pH 1.0) in dichloromethane

and liquid Aliquat-336 (methyl trioctylammonium chloride) in

isoamyl alcohol

[39–44]

2. Reduction to Cr(III) using bisulphate

and subsequent precipitation using

lime or alkali

Chemical Recovery of precipitated Cr(III) possible using H2SO4

Excessive sludge produced during precipitation, making overall

process costly

[45]

3. Adsorption Physical Most commonly used method

Adsorption surfaces include peroxide-modified titanium

dioxide, goethite, zeolite, chitosan and waste slurry and also

include inorganic cationic materials, such as zeolites modified

with quaternary ammonium surfactants, activated carbon

enriched with nitrogen and magnetic lignin composite

adsorbents

[46–51]

5. Solid-phase extraction Physical Solid adsorbents may be inorganic (silica, alumina, activated

carbon, clays, ceramics) or organic (cellulose, graphene

oxide). High selectivity, high pre-concentration factor, ability

to regenerate and capability to treat large volumes of

wastewater at once

[52]

6. Polymer-based chelating ion

exchangers

Physicochemical Anionic resins with a quaternary amine as the attached group

(R4N?Cl-) used for Cr(VI) removal from acidic medium.

Modified polystyrene divinylbenzene (PSDVB) resins can

also be used

[53]

7. Adsorption by biopolymers Physical Include cellulose, chitosan, chitin, lignocellulose and lignin [54, 55]

8. Adsorption by hybrid clay material Physical Organomodified clays such as natural red clay modified by

hexadecyltrimethylammoniumbromide, acid-activated

tetrabutylammonium kaolinite, cetylpyridiniumbromide-

modified montmorillonite and dodecylamine-modified sodium

montmorillonite (NaMMT)

Biopolymer–clay composites such as cellulose with NaMMT

Graphene oxide, in combination with TiO2 or sand to form

composites

EDTA-reduced graphene oxide

[56–63]

9. Polycrystalline haematite Physicochemical Iron displays the ability of physical adsorption of Cr(VI) and its

reduction to Cr(III)

[64]

10. Biomass Biological Adsorption of Cr(VI) on dead fungal biomass (Aspergillus

sydoni)

Reduction of Cr(VI) to Cr(III) using algae such as Chlorella

miniata, certain cyanobacteria, Microbacterium liquefaciens

immobilised in polyvinyl alcohol, Neurospora crassa, and

many more species

[65–69]
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concentration of 50 mg/l [77]. The silica backbone can also

be modified by ionic liquids, imidazolium-based ones

being an attractive option. The imidazolium ring can be

covalently bonded onto silica, linked by alkyl group chains

(provided by silane-coupling agents). These alkyl branches

can be attached to different positions of the imidazolium

ring [81]. In a study by Whang et al. [82], imidazole-

modified silica adsorbent with chloride as counter ion

(SilprIm-Cl) was used to adsorb Cr(VI) with a maximum

capacity of 47.79 mg/g (from an initial concentration of

150 mg/l) at pH of 2. Sulphonic acid-functionalised silica

adsorbent was reported to remove Cr(III) (as CrAc2
?2) at a

rate of 72.8 mg/g at pH 3 [83]. Shevchenko et al. [84]

studied the potential of bifunctionalised mesoporous silica,

with the two functional groups chosen being thiol and

sulphonic acid moieties. This adsorbent suffered from two

main limitations—very little scavenging property of the

material, and the weak interaction between Cr(III) cations

and sulphonate groups. A few years later, Zaitseva et al.

[75] explored another bifunctionalised silica adsorbent,

with the functional groups being mercaptopropyl and

ethylenediaminetriacetate. The former can reduce Cr(VI),

while the latter can ‘‘scavenge’’ the Cr(III) present via

complex formation. Microscale silica gel can also be used

along with granular zero-valent metals as reductants. For

example, granular zero-valent zinc was used along with the

silica gel to satisfactory results. Silica gel prevents the

formation of a passivating film on the surface of the zero-

valent zinc particles [79].

An improvement over the conventionally used ion-ex-

change resins is the use of metal–organic frameworks

(MOFs), which are essentially clusters of metal cations co-

ordinately bonded to polytopic organic linkers. Kumar

et al. [85] have efficiently reviewed the applications of

MOFs in the removal of Cr(VI). Some examples include

1-ClO4, ABT.2ClO4, FIR-54, ZJU-101, 10-SO4, Ag-3,

SLUG-21 and many more. Taking it a step further, Hasan

et al. [86] used an MOF-derived composite for this pur-

pose. A Cu-based MOF, named HKUST-1, was subjected

to single-step calcination at 550 and 650 �C under inert

conditions. Under optimum conditions, it was able to

reduce 200 mg/l of Cr(VI) within 15 min in the presence of

HCOOH. A loss in its catalytic activity was observed after

reusing it for four consecutive cycles.

Zeolites, also termed as molecular sieves, are hydrated

aluminosilicate materials having three-dimensional frame-

works of SiO4 and AlO4 tetrahedra, giving it a connected

cage-like or channel structure. The lattice has a net negative

charge due to the isomorphous replacement of Si?4 by Al?3,

and this is balanced by the exchangeable cation (sodium,

potassium or calcium) [87]. Zeolites do not have a strong

affinity for Cr(VI) or Cr(III) since they exist as anions in

aqueous phase. However, this can be changed by

suitable modification of the zeolite lattice. Natural zeolite

can be modified by cationic surfactants, as reviewed by

Jiménez-Castañeda and Medina [88]. Attachment of reduc-

tants, such as Fe(II), to natural zeolites allows for adsorption

and subsequent reduction of Cr(VI). Such a system showed a

Cr(VI) removal rate of 90 mg per kg of zeolite, but suffered

from extensive leaching of iron [89]. Natural zeolite can also

be coated with biofilms for Cr(VI) removal [90]. For

example, NaY zeolite coated with a biofilm of Arthrobacter

viscosus (a good exopolysaccharide producer) showed a

Cr(VI) uptake rate of 3 mg/g of zeolite [87]. The biofilm is

able to reduce Cr(VI) to Cr(III), which is retained in the

zeolite by ion exchange. Habiba et al. [91] prepared a chi-

tosan/polyvinyl alcohol/zeolite composite for Cr(VI)

removal. To reduce swelling of chitosan-based adsorbents

by strengthening them, polyvinyl alcohol (PVA) was used,

while reusability of the adsorbent was improved by the

addition of zeolite. This composite adsorbent reported a

Cr(VI) adsorption capacity of 450 mg/g.

Several bacteria of the Pseudomonas, Bacillus, Enter-

obacter, Deinococcus, Shewanella, Agrobacter, Escher-

ichia, Thermus genera are resistant to Cr(VI) and can be

used for Cr(VI) remediation [17, 92–95]. Many mecha-

nisms for this have been proposed, such as generation of

Cr(V) by bacterial enzymes mediating transfer of an elec-

tron to Cr(VI) and reduction of Cr(VI) to Cr(III) by bac-

terial chromate reductase [93]. However, bacteria in the

form of planktonic cells are ineffective in Cr(VI) remedi-

ation as high concentrations of Cr(VI) can kill the cells. On

the other hand, bacteria in the form of biofilms exhibit an

increased tolerance to Cr(VI) and better settlement

[18, 68]. Moreover, biofilms allow easy separation of the

treated liquid from the biomass [18]. As has been appro-

priately noted by Pan et al. [17], more research needs to be

focused on the immobilisation of Cr(III) obtained after

reducing Cr(VI) by biofilms, as the insoluble Cr(III) can

form organo-Cr(III) complexes, which become toxic for

cells in high concentrations. Biosorption is an advanta-

geous technique as it costs less, is highly effective, does not

have any toxic side effects, the biosorbent can be rebuilt,

and the adsorbed metal can be recovered for possible later

usage [96].

The initial cost of most adsorbents is high, especially if

they need to be pre-treated. However, in the long run, these

techniques are cost-effective. Also, using greener tech-

niques such as biomass reduces the initial cost of chemicals

to a great extent [38].

The major disadvantage of bulk adsorbents is the gen-

eration of enormous mass transfer resistance due to large

surface areas and large diffusion lengths [97]. Thus, use of

adsorbents with nanofeatures allows higher accessibility of

the industrial effluent to the adsorbent, leading to higher

efficiency.
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Remediation using nanotechnology

Out of the many adsorption processes discussed above for

the remediation of Cr(VI), nanomaterials possess certain

properties which make them an ideal adsorbent. These

include a suitable particle size, large surface area, acces-

sible pores and high stability [19]. Moreover, due to their

extremely small size, they can be easily transported

through a water body simply by Brownian motion, without

the aid of any external force. As a result, the nanoparticles

remain suspended longer to establish an in situ remediation

zone [98]. These nanoparticles can be synthesised by var-

ious physical, chemical and biological processes, and the

adsorptive capacity of the particle varies according to the

method of production.

Nanoadsorbents for chromium remediation

Zero-valent iron nanoparticles (nZVI) have become one of

the most used metal nanoparticles for environmental

remediation of Cr(VI). Since the redox potential of chro-

mium is much more positive than that of Fe0, it reduces the

hexavalent form of chromium to its trivalent form (itself

getting oxidised to Fe?3), which then precipitates along

with Fe?3 on the surface of the nanoparticles [99–101].

This can be illustrated using the following chemical

equations [102]:

Cr2O�2
7 aqð Þ þ 2Fe0 sð Þ þ 14Hþ aqð Þ � 2Crþ3 aqð Þ

þ 2Feþ3 aqð Þ þ 7H2O

xCrþ3 aqð Þ þ 1 � xð ÞFeþ3 aqð Þ þ 3H2O

� CrxFe 1�xð Þ OHð Þ3þ3Hþ

Ion-exchange resins can be used as supporting material

for the nZVI particles. While conventional ion-exchange

resins can remove either a cation or an anion, resin-sup-

ported nZVI can eliminate both forms. Such resin-sup-

ported nZVI have been reported to remove Cr(VI) with an

efficiency of 84.4% at optimal conditions [103]. Using

carboxymethyl cellulose (CMC) as a stabiliser for nZVI,

100% of Cr(VI) was reduced to Cr(III) from a solution

containing 10 mg of Cr(VI)/l [104]. A major problem of

using nZVI particles is the formation of a Fe(III)–Cr(III)

(oxy)hydroxide film on the surface of the nanoparticles,

rendering the surface passive, as it does not allow the Fe0

particles at the core to react with the Cr(VI) particles on the

surface. This problem is usually overcome by cementing a

second metal (preferably inert, such as Ag, Cu, Ni, Pd, Co)

on to the surface of the transition metal, thus preventing the

formation of the self-inhibiting film [105, 106]. Such

bimetallic combinations, for example nZVI/Cu, demon-

strate pseudo-first-order kinetics or Langmuir–Hinshel-

wood first-order kinetics [105, 107]. The second metal acts

as an electron shuttle between the two metal systems, thus

forming a catalyst. It also protects the surface of nZVIs

from corrosion [106]. Another drawback of using nZVI

particles is that their removal from treated water is tedious.

This can be overcome by using magnetised nZVI

nanoparticles, i.e. nZVI nanoparticles coated with magnetic

Fe3O4 nanoparticle which could be removed easily with the

help of an external magnetic field [108]. Such ZVI-Fe3O4

nanocomposites form a heterogeneous Fenton-like system

[109, 110], which showed an increase in Cr(VI) removal

efficiency from 48.8% (using bare nFe3O4) to 96.4% (using

nZVI-Fe3O4 nanocomposites) in 2 h [19]. nZVI has also

been assembled on magnetic Fe3O4/graphene nanocom-

posites to tackle both the drawbacks mentioned above, and

it shows a Cr(VI) removal efficiency of 83.8%, following

pseudo-second-order kinetics [111]. Use of ultrasound

technology contributes to an increase in the available sur-

face area and induces new reactive sites for the reduction

reaction of Cr(VI) [112].

Formic acid is an organic and non-toxic reducing agent

that reduces Cr(VI) to Cr(III), while itself getting converted

to CO2 and H2, which can be recycled for industrial pur-

poses. This reaction occurs in the presence of metallic

heterogeneous catalysts, namely graphene oxide-supported

Ni nanoparticles [113], TiO2-supported Pd nanoparticles

[114], Pd nanoparticles supported on amine-functionalised

SiO2 [115], among others. More recently, 3D urchin-

shaped monometallic palladium was used as a nanocatalyst

for the detoxification process of Cr(VI)-contaminated

industrial effluents using formic acid. It was found that the

rate of detoxification process could be enhanced by expo-

sure to light of appropriate intensity. Further, this

nanocatalyst exhibited stable catalytic activity even after

six cycles of reaction [116].

Several metal oxide nanoparticles have also been used

for the remediation of heavy metals, especially Cr(VI).

Besides being used as nanocomposites as discussed above,

magnetite (Fe3O4) nanoparticles can also be used individ-

ually for removal of Cr(VI) from wastewater [117].

Maghemite (c-Fe2O3) coated with polydopamine (a cate-

cholamine) showed a Cr(VI) removal efficiency of 97% at

pH of 3 [118]. ZnO nanoparticles were used as photocat-

alysts for the reduction of Cr(VI) to Cr(III) in the presence

of solar radiation [119, 120]. Such photocatalytic reduction

experiments have also been carried out on TiO2 [121, 122]

and WO3 [123]. The mechanism of photocatalysis is based

on the principle of semiconductor solid catalysis, wherein

electrons move from valence band to conduction band on

being stimulated by light of appropriate wavelength. The

charge carriers on the surface of the catalysts (such as O2)

take up the electron promoted to the conduction band, and

the O2
- thus formed engages in redox reactions with the

adsorbed pollutants. The resulting electron deficiency in

 11 Page 6 of 14 Nanotechnol. Environ. Eng.  (2017) 2:11 

123



the valence band is fulfilled by H2O [124]. Cerium oxide

nanoparticles stabilised with hexamethylenetetramine were

able to remove Cr(VI) with 96.5% efficiency, and after the

treatment process, the nanoparticles could be centrifuged

out of the water, while chromium could be desorbed using

NaOH [125]. Taking it a step further, the ability of hydrous

cerium oxide nanoparticles to adsorb Cr(VI) was also

investigated, which yielded positive results [126]. The

potential of CoFe2O4 nanoparticles (synthesised in a cost-

effective manner) for remediation of Cr(VI) from

wastewater released from a printing press was quantified to

be 67%, with no major loss of adsorption capacity up to

three reaction cycles [127]. In a novel approach, man-

ganese dioxide/iron oxide/acid oxidised multi-walled car-

bon nanotube magnetic nanocomposites (MnO2/Fe3O4/o-

MWCNTs) were used for Cr(VI) removal from wastewater.

Apart from being highly efficient in this purpose, Cr(VI)

can be desorbed and the adsorbent may be regenerated by

using an alkali. However, the efficiency of Cr(VI)

adsorption efficiency reduces to 85% after five cycles of

reuse of these nanotubes [128].

Ionically modified nanoparticles have also been studied

for applications in the field of nanoremediation. Magnetic

Fe3O4 nanoparticles were modified by phosphonium silane,

which enhanced their adsorption capacity of Cr(VI) at

optimum pH. However, desorption of chromium from these

modified nanoparticles using NaOH was poor [129].

Aminosilicate-functionalised titanium dioxide nanotubes

modified with gold nanoparticles supported on EDAS

(EDAS/(TiO2 NTs-Au)NCM) photocatalytically reduce

Cr(VI) to Cr(III) (using oxalic acid as electron donor) with

77% efficiency. Light induces interfacial charge transfer

from the (TiO2 NTs)NCM to Cr(VI) through the gold

nanoparticles, which act as sinks for the photogenerated

electrons [130].

To overcome the problem of mass transfer resistance in

the case of bulk adsorbents, nanoparticles can be embedded

in the bulk materials, thus facilitating the contact of con-

taminants to large surface area and encouraging internal

mass transfer. This was achieved by the synthesis of a

magnetic zeolite/polypyrrole composite, which consisted

of magnetic zeolite (embedded with magnetic Fe3O4

nanoparticles) mixed with the organic polymer polypyr-

role. This adsorbent showed a removal efficiency of

99.99% when the pH was 2 and the initial Cr(VI) con-

centration was 300 mg/l [97]. A similar study was con-

ducted by using chitosan as the polymer instead of

polypyrrole, and a removal efficiency of 98% was reported

at pH 2 and initial Cr(VI) concentration of 200 mg/l [96].

A cross-linked silica gel/chitosan-g-poly(butyl acrylate)

nanocomposite showed a maximum Cr(VI) adsorption

capacity of 55.71 mg/g [131]. While bulk iron sulphide

(FeS) has been used as a chemical reductant in the

remediation of Cr(VI), FeS nanoparticles show higher

reactivity due to larger surface area. These nanoparticles

can be stabilised using CMC, and biochar can be used as a

mechanical support to disperse the nanoparticles. Such a

composite adsorbent showed a Cr(VI) adsorption capacity

of 130.5 mg/g at a pH of 5.5 [132].

As previously mentioned, TiO2 is a good candidate for

photocatalytic reduction of Cr(VI). Addition of carbon

nanotubes (CNTs) to the photocatalytic material increases

its adsorption capacity and electron-conducting ability

[133]. Polymer-based composite materials (incorporation

of semiconductor nanoparticles in polymeric nanofibers)

are being explored to improve the recovery of the photo-

catalytic powder from treated solutions after the comple-

tion of reaction [134]. Polyacrylonitrile (PAN) is widely

used for producing the polymeric nanofibers [135]. In a

recent study, composite nanofibers of PAN and multi-

walled CNTs were synthesised and were further cross-

linked by amino-modified TiO2 nanoparticles. When irra-

diated with visible light, this system showed complete

photoreduction of Cr(VI) after 30 min. It underwent five

cycles of adsorption–desorption before its photoreduction

efficiency decreased by 3% [136].

Nanoparticles can also be applied on membranes used to

enhance removal of chromium ions from an aqueous

solution. For example, the polysulphone (Psf) membrane is

widely used for this purpose. To increase the hydrophilicity

of the membrane, it was doped with SiO2 nanoparticles

(PSf/SiO2), thus enhancing the chromium flux through the

membrane [137].

Limitations of nanoadsorbents

The major challenge in any remediation process is the

disposal of the material containing concentrated Cr(VI)

away from the treated water. In many of the remediation

processes discussed here, Cr(VI) is reduced to its non-toxic

trivalent form. Many methods have been proposed to dis-

pose the nanomaterial containing concentrated adsorbed

chromium. Several nanomaterials, such as titania, have

been observed to improve the physicochemical properties

of cement, mortar and concrete [138]. This fact can be used

to immobilise the adsorbed chromium by using the tita-

nium oxide nanoparticles in the preparation of mortar. The

photocatalytically reduced Cr(III) was successfully immo-

bilised in mortar with a specimen containing 15% titania

powder by weight. Even after a period of 90 days, the

leachate of chromium from such a mortar specimen was

insignificant [139]. TiO2 nanoparticles can also be immo-

bilised on glass, stainless steel, silica films, ceramic parti-

cles and fibres [140–144].

This, however, does not solve all problems. Employing

nanoremediation as a suitable alternative to conventional
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methods of remediation is limited by the toxic effects

exerted by the nanoparticles on the environment and to the

people exposed to them. Moreover, an analysis of the cost

of employing nanoremediation with respect to its efficiency

is important before persuading industries to adopt this

method. These two aspects have been discussed in detail

below.

Toxicity of nanoparticles

It is believed that the toxicity of nanoparticles stems from

their physicochemical characteristics, which includes their

size, shape, surface area/volume ratio, chemical composi-

tion and surface chemistry [145, 146].

Rod-shaped cerium oxide nanoparticles have been

shown to enhance pro-inflammatory and cytotoxicity

responses in the RAW264.7 cell line [147]. Nanoparticles

tend to get accumulated in the liver, kidney and lungs,

where they exert their toxic effects. In the liver, these

nanoparticles induce oxidative stress and may also trigger

the inflammatory cytokines cascade, resulting in inflam-

matory cell chemotaxis and apoptosis [148, 149]. Xia et al.

[150] proposed a hierarchical oxidative stress model which

integrates the interlinked protective responses to nanopar-

ticle toxicity. At the lowest tier of the hierarchy, the tran-

scription factor Nrf2 induces various antioxidant and

detoxification enzymes. The second tier involves pro-in-

flammatory responses, such as the activation of MAP

kinases and NF-jB cascade. At the highest tier, the elec-

tron transfer chain of the inner mitochondrial membrane is

disturbed, and apoptosis is triggered by the increased per-

meability of the outer mitochondrial membrane. Xia et al.

[150] also performed a comparative study on the cytotoxic

effects of nanoparticles of TiO2, ZnO and CeO2. It was

reported that, while TiO2 nanoparticles did not elicit any

cytotoxic effects under dark conditions, ZnO nanoparticles

could induce spontaneous ROS production as an injurious

response. Surprisingly, however, CeO2 nanoparticles

induced a protective response even though they generated

ROS.

Nanoparticles have the ability to organise a protein

corona around them, depending on particle size, curvature,

shape, functionalised groups on the surface and free

energy. This often leads to protein unfolding, thiol cross-

linking, fibrillation and loss of enzymatic activity

[151, 152]. Certain nanoparticles can also dissolute in the

medium (or biological environment), leading to release of

toxic ions. For example, ZnO nanoparticles dissolve under

aqueous conditions, forming hydrated Zn?2 cations, and

this dissolution is accelerated under acidic conditions or in

the presence of amino acids and peptides [153]. ZnO

nanoparticles that reach the alveoli cause pulmonary

inflammation through increased TNF-a, IL-6 and IL-8

production [154]. Linking Fe3O4 nanoparticles to neu-

rodegenerative diseases, it was reported that Fe3O4

nanoparticles resulted in an increase in lipid peroxidation

and ROS formation, along with elevated levels of mito-

chondrial enzymes and swelling (and corresponding

decrease in respiration levels), TNF-a and caspase-3 (pro-

apoptotic protein) activity [155]. Two-dimensional gra-

phene oxide nanomaterials showed greatest rate of efflux of

haemoglobin from suspended RBCs, while aggregated

graphene sheets showed lowest haemolytic activity. Coat-

ing graphene oxide with chitosan, however, nearly elimi-

nated haemolytic activity [156].

Water-solubilised aminoclay nanoparticles showed tox-

icity against eukaryotic microalga Pseudokirchneriella

subcapitata at a concentration of 1.29 mg/l (possibly due to

entrapment of the algal cells in the nanoparticle aggrega-

tions), but showed no inhibitory effect towards the marine

bioluminescent bacteria Vibrio fisheri up to 25,000 mg/l

[157]. Pereira et al. [158] studied the ecotoxic effects of

various nanoparticles, including those of TiO2, TiSO4,

CdSe/ZnS and many more, and reported the occurrence of

toxic effects on V. fisheri and Salmonella typhimurium. A

detailed toxicology investigation of CeO2 nanoparticles

revealed that the nanoparticles aggregated at a pH of 7.4,

and showed no toxicity towards Daphnia magna, Tham-

nocephalus platyurus and embryos of Danio rerio up to

concentrations of 1000, 5000 and 200 mg/l, respectively,

but showed a significant toxicity towards P. subcapitata at

concentrations of 2.6–5.4 mg/l [159]. Moreover, the sta-

bility and toxicity of CeO2 nanoparticles is significantly

affected by pH, natural organic matter and ionic strength.

For example, the natural organic matter gets adsorbed to

the surface of the nanoparticles, decreasing their bioavail-

ability and, hence, reducing their toxicity [160]. Chen et al.

[161] reported that CMC-stabilised nZVI showed more

acute toxicity to larvae of Oryzias latipes (medaka fish)

than bare nZVI and bare nFe3O4, arguing that CMC-nZVI

led to increased hypoxia and increased production of ROS

and aqueous Fe(II) than unsupported nZVI. The toxicity of

ZnO nanoparticles against Gram-positive bacteria has long

been exploited in their use as antibacterial agents. How-

ever, as reviewed by Ma et al. [162], they are also able to

inhibit photosynthesis in Anabaena flos-aquae, cause cell

death in Euglena gracilis euglenoid, affect root elongation

of garden cress and even reduce biomass of wheat under

field conditions. There are very few articles on the ability

of nanoparticles to inhibit various enzymes secreted by

soil-dwelling microbes. Silver nanoparticles can inhibit the

activities of phosphomonoesterase, arylsulphatase, b-D-

glucosidase and leucine aminopeptidase [163], while ZnO

nanoparticles can inhibit the activities of acid phosphatase,

b-glucosidase and dehydrogenase [164]. CeO2 nanoparti-

cles have been reported to inhibit urease and b-glucosidase,
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while stimulating phosphatase activity. The former is

attributed to the accumulation of ROS that damages the

microbial cells, while the latter effect is due to either a shift

in microbial community or due to the antioxidant property

of CeO2 nanoparticles [165]. These soil enzymes are

markers of soil fertility and nutrient recycling via the

various biogeochemical cycles of nature.

In a review by Niyas Ahamed [166], the ecotoxic effects

of nZVI were summarised. It was noted that the toxic effect

of iron is due to its catalytic activity towards production of

ROS. While nZVIs can be used for environmental reme-

diation, their dosage should not exceed the maximum

permissible concentration before being detrimental to

bacteria. Aquatic invertebrates, such as Daphia magna, are

very sensitive to certain nanoparticles. Germination of

plants, such as Zea mays, is affected in the presence of

silver nanoparticles.

However, the review [166] notes that supplementing

the nanoparticles with bovine serum albumin reduces their

toxic effects. Coating nZVIs with a biodegradable mate-

rial also reduces their toxicity [166]. Similarly,

biodegradable materials such as porous orange peel pith

can be used as a supporting material for iron nanoparti-

cles. This system has a Cr(VI) removal efficiency of 71%

[167]. Another eco-friendly alternative available to

industries is the green synthesis of nanoparticles using

plant extracts and micro-organisms. CuO nanoparticles

were synthesised using the extracts of Citrus limon (le-

mon juice) as a bioreductant and were used for Cr(VI)

remediation [168]. The first biogenic nZVI were produced

from tea (Camellia sinensis) polyphenols [169]. Since

then, nZVI have been produced biogenically and inves-

tigated for Cr(VI) remediation. For example, nZVI par-

ticles were synthesised using the leaf extracts of

Eucalyptus globules, and they showed a Cr(VI) removal

efficiency of 98.1% in 30 min at a limited dosage of 0.8 g

of nZVIs per litre of solution [170]. Iron-based nanopar-

ticles were produced by reacting FeCl3 with Syzygium-

jambos (L.) Alston leaf extract, the latter being used as

both reducing and capping agents. The Cr(VI) removal

efficiency of the same, which was strongly dependent on

temperature and pH, was 983.2 Cr(VI)/g Fe [171].

Sharma et al. [172] have reviewed the various methods of

biogenic production of nanoparticles. Biogenic selenium

nanoparticles, produced by employing Bacillus sp. as a

reductant, are less toxic than synthetic selenium

nanoparticles [173]. Even in the review by de Lima et al.

[174], it was concluded that biogenic silver nanoparticles

are much less genotoxic than chemically synthesised

ones, while also noting that chemically capped nanopar-

ticles induced severe cell damage in contrast to protein-

capped silver nanoparticles, which showed no genotoxic

effects.

Cost versus efficiency analysis of nanoremediation

From the above section, it is evident that besides the disposal

problem, another major limitation of nanoremediation is the

cost constraints. This problem can be addressed by

improving the reusability of nanoadsorbents. Reusability of

nanoparticles can be increased by immobilising them. For

example, TiO2 and ZnO nanoparticles were immobilised in

poly(vinylidene difluoride)-co-trifluoroethylene to reduce

their dispersibility, and it was observed that these nanopar-

ticles could be used up to three cycles [175]. The dye-

degradation efficiency of ZnO1000 (ZnO nanoparticles with

particle size of 120 nm) was reported to decrease from 99.2

to 99.12% after four trials [176]. Further research is needed

for the development of nanoparticles which retain their high

adsorption capacity after multiple usages. Nanoparticles

have a strong tendency to aggregate and are chemically

unstable, thus limiting their application. To prevent this, a

supporting material is used, many of which have been

elaborated above. Supporting materials enhance the disper-

sity of the nanoparticles [177–180]. Use of a supporting

material, however, raises the budget of the industry and may

not always be an economic solution.

Future aspects

In today’s society of unstable economy, industries are

reluctant to spend adequate money on remediation pro-

cesses. Industrialists should be made aware of such reme-

diation processes and their benefits in the long run. The

capital cost of cleaning industrial effluents may be high,

but with the use of cost-effective techniques, such an

investment may be profitable for the industry. Using

greener and eco-friendly techniques, such as use of bio-

genic nanoparticles, reduces the cost even more with a

simultaneous increase in efficiency. Future research should

focus on developing less toxic, more efficient, cost-effec-

tive and increasingly reusable nanoadsorbents.
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145. Fruijtier-Pölloth C (2012) The toxicological mode of action and

the safety of synthetic amorphous silica—A nanostructured

material. Toxicology 294:61–79

146. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P,

Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles

to the green alga pseudokirchneriella subcapitata: importance of

surface area. Environ Toxicol Chem 27:1948

147. Forest V, Leclerc L, Hochepied J-F, Trouvé A, Sarry G,
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