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The smart grid solves the growing load demand of electrical customers through two-way real-time communication of electricity
supply and demand sides and home energy management system (HEMS). However, these technical features also bring network
security risks to the real-time price signal of the smart grid. The real-time price attack (RTPA) can maliciously raise the real-time
price in smart meter, resulting in an increase in electrical customers load demand, causing the extensive damage to the power
transmission lines due to overload. In this paper, we based on the behavioral relationship between load demand of electrical
customers and real-time price of electricity suppliers (ES), defined the game relationship between RTPA, ES, and electrical
customers, established a price elasticity of electricity demand (PEED) model, and proposed a defensive strategy of real-time price
attack based on multiperson zero-determinant strategy (MPZDS).The experimental results show that the combination of MPZDS
to some extent cut the expected load demand of electrical customers and protect the safety of power transmission lines.

1. Introduction

Smart grid (SG) is a cyberphysical system (CPS) that can
be described as the next generation power grid, in which
not only generation, transmission, and distribution of power
but also utilization and management aspects of the grid
are upgraded to improve the grid's reliability, efficiency,
flexibility, scalability, safety, security, and environmental
friendliness. Different from the traditional power grid, the
SG relies on a two-way communication infrastructure and its
overall performance is optimized using a number of existing
and emerging technologies, including wireless sensor net-
works (WSNs) and other communication technologies, smart
sensor devices, automation systems, monitoring, computers,
and renewable energy solutions [1, 2]. However, these features
have also brought many security risks to the smart grid; for
example, on December 23, 2015, the Ukrainian power grid
was attacked by malicious software called “BlackEnergy”,
resulting in a massive blackout, this blackout was caused by
the switching of seven substations, nearly two million people
were influenced, and the time of power cut is 3-6h.

With the rapid development of new technologies such
as intelligent manufacturing [3, 4], in order to improve the
reliability and effectiveness of smart grid, some scholars have
proposed some concepts such as smart meters [5] and smart
home management system [6], but these infrastructures also
bring new security vulnerabilities to the smart grid. Power
generation, distribution, and electricity consumption units
are vulnerable to security attacks due to their strong open-
ness, but attacker attacks on power generation and distribu-
tion units require a higher cost than electricity consumption
units, therefore, to ensure that electricity consumption units
from various types of cyberattacks are crucial.

Information injection attacks on electricity consumption
units are aimed at tampering with electricity price signals or
information [7], and attackers can launch attacks more easily
through automated and distributed software injection agents.
Furthermore, because smart grids possess some features like
load control and automatic energy consumption dispatch,
this makes attacks more efficient. The automatic energy
consumption dispatching unit schedules the energy con-
sumption of indoor energy consumption equipment through
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the electricity price given by the electricity supplier and the
power consumption information of the electrical customers,
so as to minimize the energy consumption. The electricity
price information is transmitted through the information
network, which makes the false price injection attack can
potentially lead to changes in the load demand of the
electricity consumption unit, resulting in unbalanced load
demand control. In recent years, the academia conducted
a deep study on the cyberphysical security of smart grid
[8–10]; however, there are few existing researches on the
analysis and prevention of real-time price attack (RTPA).
Real-time price information release requires low delay, and
delay attack will bring too high real-time price information
delay, which will affect the electrical customers to obtain
real-time price information, thereby affecting the demand
response of electrical customers and real-time scheduling of
electricity supplier [11].

Aiming at the scaling attack and delay attack of real-
time price signal integrity, Tan et al. established a closed-
loop based on the interdependence between real-time price
signal and incentive demand of electricity price and deduced
the basic conditions of real-time price system stability in
the case of attack by using control theory; the experimental
results help the system operators to effectively analyze the
impact of attack on the stability parameters of the real-time
price system [12, 13]. Based on scaling attack and time-delay
attack, Giraldo et al. proposed an analysis method based on
sensitivity function on the basis of considering powermarket
model and real-time price integrity attack model, by adding
low-pass filters to the price signal, selecting the price update
cycle and controller parameters, designing robust control
algorithm, and measures to detect abnormal behavior of the
system to reduce the impact of the attack [14, 15]. However,
it does not consider the potential impact of the attack on
power demand side. Jia et al. have studied the false data attack
against the node marginal price and proposed a geometrical
analysis framework based on the upstream and downstream
boundary conditions of the optimal data attack and validated
the validity of the framework by PJM 5-node power system,
IEEE 14-node power system, and IEEE 118-node power
system [16]; however, the framework only guarantees the
security of the node’s marginal price data and does not
analyze the impact of the attack from the supply or demand
side.The price tampering attack will cause the change of load
configuration information of individual electrical customers,
resulting in the load transfer or load redistribution, which
leads to the change of load configuration information of
the power network, which eventually leads to transmission
lines damage in large areas due to overload, thus forming a
cascading failure [17]. However, the above researches on the
real-time price market focus on the protection of single-stage
security and do not analyze in depth the impact of RTPA
on the electrical customers load demand and how to prevent
real-time price attack from the viewpoint of ensuring the
normal load demand of electrical customers.

In information security analysis, the classical prisoner
dilemma model clarifies a rational game between the imple-
mentation and effectiveness of an attack between an attacker
(such as FDIA) and a defender (such as IDS). In order to

maximize the impact of an attack, the attacker will choose
to strengthen the attack. At the same time, the defender will
also choose to strengthen the defense to optimize the defense
effect, which means that there is a noncooperative behavior
between the attacker and the defender is the dominant
strategy between the two sides of the game. However, in the
Repeated Prisoner’s Dilemma Game, the choice of behavior
strategies of both players is not the same as before. In order to
avoid being punished for previous noncooperative behavior,
each player may choose cooperation in the subsequent
game process, which provides a theoretical basis for the
generation of zero-determinant strategy. Zero-determinant
strategy (ZDS) shows that the profits of both players satisfy
a certain linear relationship, or one player controls the profits
of the other player between the incompatible profits and the
cooperative profits.

In order to solve the above research shortcomings of the
RTPA, this paper proposes a RTPA defense strategy based
on multiplayer zero-determinants under repeated game to
minimize the impact of attack and ensure the user’s expected
load demand and transmission line safety.

Our contributions are summarized as follows:

(i) We define the load supply and consumption behavior
of ES, attackers, and electrical customers according
to the relationship between load demand of electrical
customers and real-time price of ES.

(ii) We set up a 3 × 2 repeated game according to the
behavioral relationship among the ES, the attackers,
and the electrical customers, and each of the three
players in the game has two kinds of behavioral states,
namely, the active state and the idle state. In each stage
of the game, all three players in the gamemay be active
or idle and have the same structure of the game payoff
matrix.

(iii) We propose Multiplayer Zero-Determinant Strategy
(MPZDS) to ensure the safety of electrical customers'
side and transmission lines in smart grid to prevent
RTPA.

The structure of this paper is as follows. Section 2 defines
the behavioral characteristics of ES, attackers, and electrical
customers and establishes the power transmission linemodel.
We analyze the game situation of ES, attackers, and electrical
customers according to the price elasticity of electricity
demand (PEED) model in Section 3. We next combine the
MPZDS for safety analysis in Section 4. The effectiveness of
the proposed method is validated through experiments in
Section 5. The conclusion is shown in Section 6.

2. Related Definitions

This section models the power transmission lines and defines
the behavior of the ES, attackers, and electrical customers to
describe the dynamic characteristics of all the three.

2.1. Power Transmission Lines. From the point of view of
power supply and demand system of the smart grid, each
node in 𝑍 can represent a power generation unit, a power
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transmission unit, and a power consumption unit (such as
a common customers, an industrial consumers, or a data
center, and so on), 𝐿 represents the transmission line between
nodes, and the smart grid can be abstracted as 𝐺(𝑍, 𝐿). In
the node set 𝑍, it includes the set of generating nodes 𝑃𝑈 ⊂𝑍, the set of transmitting nodes 𝑂𝑈 ⊂ 𝑍, and the set of
electricity utilization nodes 𝐷𝑈 ⊂ 𝑍. In the transmission
line, 𝐿𝐷𝑖 represents the power load distribution of the 𝑖th
transmission line under stable state, 𝐿𝐷total represents the
total load demand of the electrical customers in the stable
state, 𝐿max represents the maximum loadability of each
transmission line, and 𝑅LP represents the protection rate of
power transmission line. When the power load transmission
exceeds themaximum loadability of the transmission line, the
line 𝑖 will be damaged due to overload, so the transmission
line should meet the following conditions:

max𝑅LP

∑
𝑖∈𝐿

𝐿𝐷𝑖 ≤ 𝐿𝐷total

0 < 𝐿𝐷𝑖 ≤ 𝐿max

(1)

2.2. Real-Time Price Attack. In smart grid, there are many
ways to attack real-time electricity price signals. For exam-
ple, attackers can destroy the intermediate nodes of smart
grid communication network (such as routers) and obtain
the encryption/decryption key in ISO issued/smart meter
to intercept and forge data packets containing price data.
In addition, attackers launch small-scale tampering attacks
against real-time price signals, which may also iteratively
amplify the attack effect through feedback, resulting in ineffi-
ciency of power system operation and large-scale fluctuation
of load demand, and may cause larger and even whole
network power failures, such as power outages.

RTP is a dynamic price mechanism, the update cycle is
usually 1h or 0.5h, or even shorter. At present, the minimum
RTP update cycle is 5 minutes on the international. In order
to better reflect the game characteristics among ES, attackers
and electrical customers, the update cycle of RTP in this paper
is 5 minutes. Suppose 𝑡0 and 𝑡 are the starting and ending
moments of a single-stage game, Δ𝑇 is the period length of
a single-stage game, and 𝑡0 = 𝑡 − Δ𝑇, where 𝐷RTPA(𝑖) is
the relative increase of the customers load demand under
the RTPA in the 𝑖th period, Δ𝑃 is the relative increase of the
electricity price under the RTPA in the 𝑖th period, and then
the behavior of RTPA can be defined as

𝐷RTPA (𝑖) = +Γ𝑖,
Δ𝑃 ≥ 0 (2)

Thereto, + indicates the increases of load demand, and Γ𝑖 ≥ 0;
if the RTPA is in an idle state, the relative increase of load
demand is zero at this period; that is, 𝐷RTPA(𝑖) = 0.
2.3. Stability Control of Home Energy Management System.
Some studies have shown that the robustness and conver-
gence of the system model can be improved by optimizing

the activation function of machine learning methods such
as neural networks, but it cannot meet the requirements of
both suppliers and demanders at the same time [18]. But
the home energy management system (HEMS) is able to
schedule the power consumption scheme of the intelligent
electrical appliances optimally according to the information
such as the real-time price and reduce the use of the intelligent
electrical appliances during the high electricity price; in this
way, the supply and demand balance between the electricity
supply of ES and the electricity consumption of electrical
customers can be balanced. In this paper, to reduce the
impact of increased load demand caused by RTPA, HEMS
moderately reduces the electrical customers load demand
over an optional period of time. Suppose 𝑡0 and 𝑡 are the
starting and ending moments of a single-stage game, Δ𝑇 is
the period length of a single-stage game, and 𝑡0 = 𝑡 − Δ𝑇,
where𝐷HEMS(𝑖) is the relative reduction of the customers load
demand under the stability control of HEMS in the 𝑖th period,Δ𝑃 is the relative increase of the electricity price under the
RTPA in the 𝑖th period, and then the stability control behavior
of HEMS can be defined as

𝐷HEMS (𝑖) = −Λ 𝑖,
Δ𝑃 ≥ 0 (3)

Thereto, − indicates the decreases of load demand, and Λ 𝑖 ≥0; if the HEMS is in an idle state, the relative decrease of load
demand is zero at this period; that is, 𝐷HEMS(𝑖) = 0.
2.4. Electricity Suppliers Scheduling. By intercepting and
forging the electricity price signal from the ES, the attacker
maliciously increases the real-time price in the smart meter,
causing a large amount of power load in the current period
to be transferred to other periods to increase the total load
demand on the demand side. From the point of view of ES,
in order to meet the increased load demand of electrical
customers, the ES can increase the planned power generation.
Suppose 𝑡0 and 𝑡 are the starting and ending moments of a
single-stage game, Δ𝑇 is the period length of a single-stage
game, and 𝑡0 = 𝑡 − Δ𝑇, where 𝐷ES(𝑖) is the relative increase
of the planned power generation of ES in the 𝑖th period, Δ𝑃
is the relative increase of the electricity price under the RTPA
in the 𝑖th period, and then the behavior of ES can be defined
as

𝐷ES (𝑖) = +Φ𝑖,
Δ𝑃 ≥ 0 (4)

Thereto, + indicates the increases of planned power gener-
ation, and Φ𝑖 ≥ 0; if the ES does not increase the planned
power generation, that is, the ES is idle, and then relative
increase of planned power generation is zero at this period,
that is, 𝐷ES(𝑖) = 0.
3. Price Elasticity of Electricity Demand

In the process of sending price information from the elec-
tricity price database to the Energy Consumption Controller
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(ECC), RTPA can intercept and forge real-time price signals
from ES to improve the electricity price in the ECC of smart
meters. After receiving the wrong price information, the
power users transfer the load demand of the current period to
other periods (such as low price period), which will increase
the total load demand of the power users and also increase
the power supply pressure of the low price period, which will
bring economic losses to the power users and destroy the
balance of power supply and demand [19].

From (2), (3), and (4), we know that RTPA, HEMS,
and ES may be active or idle in each stage of the game.
In this paper, we consider eight possible game scenarios
in a single-stage period and divide the load demand of
electrical customers into single-period (self-elasticity) load
demand and multiperiod (cross-elasticity) load demand by
the behavior analysis of price elasticity of electricity demand
[20], and the impact of RTPA on the total load demand of
electrical customers is analyzed byPEEDmodel in eight game
scenarios. Aalami et al. proposed single-period and multi-
period models of price elasticity of electricity demand [21];
we obtain a PEEDmodel that contains both self-elasticity and
cross-elasticity by reducing the time granularity; the PEED
model is as follows:

𝐷 (𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗 × 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) (5)

𝐸𝑖,𝑗 = (𝐷gd (𝑖) − 𝐷bd (𝑖)) /𝐷bd (𝑖)
(𝑃gd (𝑗) − 𝑃bd (𝑗)) /𝑃bd (𝑗) (6)

Thereto, 𝑖 = 1, 2, . . . , 288 is the number of periods; when 𝑖 = 𝑗,𝐸𝑖,𝑗 is the self-elasticity coefficient of the price of electricity
demand; when 𝑖 ̸= 𝑗, 𝐸𝑖,𝑗 is the cross-elasticity coefficient of
price of electricity demand. 𝐷bd(𝑖) is the load demand in the𝑖th period of the base day, 𝑃bd(𝑗) is the real-time price in the𝑗th period of the base day,𝐷gd(𝑖) is the load demand in the 𝑖th
period of the goal day, 𝑃gd(𝑗) is the real-time price in the 𝑗th
period of the goal day, and 𝐷(𝑖) is the total load demand of
electrical customers in the 𝑖th period.
Case 1 (idle ES, RTPA and HEMS). The total load demand
of electrical customers is in stable state. In (2), (3), and (4),Δ𝑃 = 0, 𝐷ES(𝑖) = 𝐷RTPA(𝑖) = 𝐷HEMS(𝑖) = 0, and the total
load demand of electricity users in the 𝑖th period is
𝐷(𝑖) = 𝐷bd (𝑖) +

288∑
𝑗=1

𝐸𝑖,𝑗 × 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗)
fl 𝐷𝑖,𝑁

(7)

Case 2 (idle ES, active RTPA, and idle HEMS). RTPA is
maliciously raising electricity price, resulting in an increase
in total load demand. In (3) and (4), 𝐷ES(𝑖) = 𝐷HEMS(𝑖) = 0,
and the total load demand of electricity users in the 𝑖th period
is

𝐷(𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗 × 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗)

+ 𝐷RTPA (𝑖) = 𝐷𝑖,𝑁 + 𝐷RTPA (𝑖)
(8)

Case 3 (idle ES, idle RTPA, and active HEMS). HEMS
aims to reduce the load demand of electrical customers by
closing part of the interruptible or noninterruptible load and
transferring part of the load demand to other periods in the
optional period (such as peak period). In (2) and (4), Δ𝑃 =0, 𝐷ES(𝑖) = 𝐷RTPA(𝑖) = 0, and the total load demand of
electricity users in the 𝑖th period is

𝐷 (𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗 × 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗)
+ 𝐷HEMS (𝑖) = 𝐷𝑖,𝑁 + 𝐷HEMS (𝑖)

(9)

Case 4 (idle ES, active RTPA, and active HEMS). RTPA
maliciously raise the electricity price and increase the load
demand of electrical customers. Under the stability control
of HEMS, electrical customers can manually or automatically
transfer part of the load to other periods. At this time, the
coefficient of price elasticity of electricity demand mainly
shows cross-elasticity. The total load demand of electricity
users in the 𝑖th period is

𝐷(𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗

× 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) + 𝐷RTPA (𝑖)
+ 𝐷HEMS (𝑖) = 𝐷𝑖,𝑁 + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)

(10)

under the combined action of RTPA and HEMS, RTPA can
increase the load demand of electrical customers by increas-
ing the real-time price, and meanwhile, HEMS combined
with MPZDS minimizes the impact of attacks, so that the
total load demand of electrical customers is close to stable
value. If |𝐷HEMS(𝑖)| < |𝐷RTPA(𝑖)|, then the total load demand
of electrical customers will be greater than the stable value,
that is 𝐷(𝑖) > 𝐷𝑖,𝑁(𝑖); if |𝐷HEMS(𝑖)| ≥ |𝐷RTPA(𝑖)|, then 𝐷(𝑖) ≤𝐷𝑖,𝑁(𝑖), but the stable control gain of HEMS in this case is
slightly lower than that of Case 3. In this paper, we assume
that both the game formed by HEMS and RTPA are rational,
and then the MPZDS analysis in the following based on the
condition |𝐷HEMS(𝑖)| ≥ |𝐷RTPA(𝑖)|.
Case 5 (active ES, idle RTPA, and idle HEMS). ES increase
the planned power generation; then the supply of electricity is
greater than the demand of electrical customers for electricity.
In (2) and (3),Δ𝑃 = 0,𝐷RTPA(𝑖) = 𝐷HEMS(𝑖) = 0, and the total
load demand of electricity users in the 𝑖th period is

𝐷 (𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗

× 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) + 𝐷ES (𝑖)
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= 𝐷𝑖,𝑁 + 𝐷ES (𝑖)
(11)

Case 6 (active ES, active RTPA, and idle HEMS). RTPA is
maliciously raising electricity price, resulting in increased
load demand of electrical customers. In (3), 𝐷HEMS(𝑖) = 0,
and the total load demand of electricity users in the 𝑖th period
is

𝐷 (𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗

× 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) + 𝐷ES (𝑖)
+ 𝐷RTPA (𝑖) = 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷RTPA (𝑖)

(12)

Case 7 (active ES, idle RTPA, and active HEMS). On the one
hand, HEMS aims to reduce the load demand of electrical
customers by closing part of the interruptible or noninter-
ruptible load and transferring part of the load demand to
other periods in the optional period (such as peak period).
On the other hand, ES increase the planned power generation
to meet the demand of electrical customers for electricity.
In (2), Δ𝑃 = 𝐷RTPA(𝑖) = 0, and the total load demand of
electricity users in the 𝑖th period is

𝐷 (𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗

× 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) + 𝐷ES (𝑖)
+ 𝐷HEMS (𝑖) = 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖)

(13)

if |𝐷HEMS(𝑖)| < |𝐷ES(𝑖)|, then the total load demand of
electrical customers will be greater than the stable value, that
is𝐷(𝑖) > 𝐷𝑖,𝑁(𝑖); if |𝐷HEMS(𝑖)| ≥ |𝐷ES(𝑖)|, then𝐷(𝑖) ≤ 𝐷𝑖,𝑁(𝑖).
In this paper, we assume that both the game formed by ES and
HEMS are rational; then theMPZDS analysis in the following
is based on the condition |𝐷HEMS(𝑖)| ≥ |𝐷ES(𝑖)|.
Case 8 (active ES, RTPA, and HEMS). RTPA is maliciously
raising electricity price, resulting in increased load demand of
electrical customers. The electrical customers can manually
or automatically transfer part of the load to other periods
under stability control of HEMS. At the same time, ES

increase the planned power generation to meet the demand
of electrical customers for electricity; the total load demand
of electricity users in the 𝑖th period is

𝐷(𝑖) = 𝐷bd (𝑖) +
288∑
𝑗=1

𝐸𝑖,𝑗

× 𝐷bd (𝑖) × [𝑃gd (𝑗) − 𝑃bd (𝑗)]𝑃bd (𝑗) + 𝐷ES (𝑖)
+ 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)

= 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)

(14)

under the combined action of RTPA, ES, and HEMS, RTPA
can increase the load demand of electrical customers by
increasing the real-time price, and meanwhile, HEMS com-
bined with MPZDS minimizes the impact of attacks, so that
the total load demand of electrical customers is close to stable
value. In addition, ES increase the planned power generation
to meet the demand of electrical customers for electricity in
order to achieve the balance between supply and demand of
electricity. If |𝐷HEMS(𝑖)| < |𝐷RTPA(𝑖) + 𝐷ES(𝑖)|, then the total
load demand of electrical customers will be greater than the
stable value, that is𝐷(𝑖) > 𝐷𝑖,𝑁(𝑖); if |𝐷HEMS(𝑖)| ≥ |𝐷RTPA(𝑖)+𝐷ES(𝑖)|, then 𝐷(𝑖) ≤ 𝐷𝑖,𝑁(𝑖). In this paper, we assume that
all the three players formed by HEMS, RTPA, and ES are
rational, and then the MPZDS analysis in the following is
based on |𝐷HEMS(𝑖)| ≥ |𝐷RTPA(𝑖) + 𝐷ES(𝑖)|.
4. Price Elasticity of Electricity Demand

4.1. Multiperson Zero-Determinant Strategy. Consider a 3 × 2
repeated game, note that 𝑛𝑖(𝑡) is the behavioral states taken by
game player 𝑖 in the 𝑡th stage of the game, and “1” means the
game player is active in the current game stage and “2”means
the game player is idle in the current game stage, that is,𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡) are the behavioral states taken by theHEMS,
RTPA, and ES, respectively, in the 𝑡th stage of the game. Let
n(𝑡) be the behavioral states of all game players in the 𝑡th stage
of the game, and n(𝑡) ∈ {1, 2}3 fl S. Based on the PEED
model, if HEMS takes action state 𝑛1(𝑡) = 𝑢, RTPA takes
action state 𝑛2(𝑡) = V, and ES takes action state 𝑛3(𝑡) = 𝑤
in the current game stage, where 𝑢, V, 𝑤 ∈ {1, 2}, then 𝐷𝑢,V,𝑤
represents the total load demand of electrical customers in the
current game stage, and the single-stage game payoff matrix
is a 2 × 4matrix, as shown in Table 1.

𝑀

=

[[[[[[[[[[[[[[[[[
[

𝑃1,1,1H 𝑃1,1,1A 𝑃1,1,1E . . 𝑃1,1,1H (1 − 𝑃1,1,1A ) (1 − 𝑃1,1,1E ) . (1 − 𝑃1,1,1H ) 𝑃1,1,1A (1 − 𝑃1,1,1E ) (1 − 𝑃1,1,1H ) (1 − 𝑃1,1,1A ) 𝑃1,1,1E (1 − 𝑃1,1,1H ) (1 − 𝑃1,1,1A ) (1 − 𝑃1,1,1E )
𝑃1,1,2H 𝑃1,1,2A 𝑃1,1,2E . . 𝑃1,1,2H (1 − 𝑃1,1,2A ) (1 − 𝑃1,1,2E ) . (1 − 𝑃1,1,2H ) 𝑃1,1,2A (1 − 𝑃1,1,2E ) (1 − 𝑃1,1,2H ) (1 − 𝑃1,1,2A ) 𝑃1,1,2E (1 − 𝑃1,1,2H ) (1 − 𝑃1,1,2A ) (1 − 𝑃1,1,2E )

. . . . .

. . . . .

. . . . .
𝑃2,2,1H 𝑃2,2,1A 𝑃2,2,1E . . 𝑃2,2,1H (1 − 𝑃2,2,1A ) (1 − 𝑃2,2,1E ) . (1 − 𝑃2,2,1H ) 𝑃2,2,1A (1 − 𝑃2,2,1E ) (1 − 𝑃2,2,1H ) (1 − 𝑃2,2,1A ) 𝑃2,2,1E (1 − 𝑃2,2,1H ) (1 − 𝑃2,2,1A ) (1 − 𝑃2,2,1E )
𝑃2,2,2H 𝑃2,2,2A 𝑃2,2,2E . . 𝑃2,2,2H (1 − 𝑃2,2,2A ) (1 − 𝑃2,2,2E ) . (1 − 𝑃2,2,2H ) 𝑃2,2,2A (1 − 𝑃2,2,2E ) (1 − 𝑃2,2,2H ) (1 − 𝑃2,2,2A ) 𝑃2,2,2E (1 − 𝑃2,2,2H ) (1 − 𝑃2,2,2A ) (1 − 𝑃2,2,2E )

]]]]]]]]]]]]]]]]]
]

(15)
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Theorem 1 (see [22]). In 𝐾 × 𝑁 repeated games, both players
have the same structure of payoffmatrix in each game stage. If a
game player has adopted a short-memory strategy, then for this
game player, the short-memory strategy can achieve the long-
term expected benefits under the long-memory strategy.

Based on Theorem 1, this paper presents a single-stage
game process as a Markov chain with a single-memory cycle.
In this paper, n(𝑡) = (𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡)) are the behavioral
states of the 𝑡th stage of the game, Prob(∙) is the probability
that each player in the single-stage game takes each behavior
state, and k = (𝑘1, 𝑘2, 𝑘3), then

𝑝k
H = Prob (𝑛1 (𝑡 + 1) = 1 | n (𝑡) = k) , ∀k ∈ S (16)

this formula represents the probability of HEMS taking
action 1 in stage 𝑡+1 game in the case that HEMS, RTPA, and
ES, respectively, adopt behavior states 𝑘1, 𝑘2, 𝑘3 in the 𝑡th stage
of the game. Similarly, the following equations represent the
probability that RTPA and ES will take action 1 in stage 𝑡 + 1.

𝑝k
A = Prob (𝑛2 (𝑡 + 1) = 1 | n (𝑡) = k) , ∀k ∈ S (17)

𝑝k
E = Prob (𝑛3 (𝑡 + 1) = 1 | n (𝑡) = k) , ∀k ∈ S (18)

According to (16), (17), and (18), the state transition
matrix of the Markov chain can be obtained as an 8×8matrix
as shown formula (15).

Let 𝜋𝑢,V,𝑤 be the probability that the HEMS, RTPA, and
ES take the behavioral states 𝑢, V, 𝑤, and DT = (𝐷1,1,1,𝐷1,1,2, 𝐷1,2,1, 𝐷1,2,2, 𝐷2,1,1, 𝐷2,1,2, 𝐷2,2,1, 𝐷2,2,2), and then the
Markov chain has a uniquely stationary distribution of 𝜋T =(𝜋1,1,1, 𝜋1,1,2, 𝜋1,2,1𝜋1,2,2, 𝜋2,1,1, 𝜋2,1,2, 𝜋2,2,1, 𝜋2,2,2) and 𝜋T𝑀 =
𝜋
T. After the multistage repeated game, we can get the long-

term expected benefits of electrical customers

𝜇D = 𝜋TD (19)

Note
∧

M= 𝑀 − E, then

𝜋
T ∧M= 0 (20)

According to Cramer’s Rule, we can draw the following:

adj ( ∧M) ∧M= det( ∧M)E = 0 (21)

From (20) and (21), We can conclude that det( ∧M) = 0,
then for any vector fT = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8) there
exists the following formula:

𝜋
Tf =

[[[[[[[[[[[[[[[[
[

−1 + 𝑃1,1,1H 𝑃1,1,1A 𝑃1,1,1E . . −1 + 𝑃1,1,1H . −1 + 𝑃1,1,1A −1 + 𝑃1,1,1E 𝑓1
𝑃1,1,2H 𝑃1,1,2A 𝑃1,1,2E . . −1 + 𝑃1,1,2H . −1 + 𝑃1,1,2A −1 + 𝑃1,1,2E 𝑓2

. . . . .

. . . . .

. . . . .
𝑃2,2,1H 𝑃2,2,1A 𝑃2,2,1E . . 𝑃2,2,1H . 𝑃2,2,1A 𝑃2,2,1E 𝑓7
𝑃2,2,2H 𝑃2,2,2A 𝑃2,2,2E . . 𝑃2,2,2H . 𝑃2,2,2A 𝑃2,2,2E 𝑓8

]]]]]]]]]]]]]]]]
]

(22)

Note mH
T = (−1 + 𝑃1,1,1H , −1 + 𝑃1,1,2H , −1 + 𝑃1,2,1H , −1 +𝑃1,2,2H , 𝑃1,1,1H , 𝑃1,1,2H , 𝑃1,2,1H , 𝑃1,2,2H ); obviously, mH

T is indepen-
dent of the behavioral state taken by RTPA and ES. Assuming
mH = f, then (22) equals zero. Assuming that f = 𝑎D + 𝑏I,
where I is a column vector with all elements of 1, then (22)
can be simplified to

𝑎𝜇D + 𝑏 = 0 (23)

thereto, 𝑎, 𝑏 is a nonzero real number.
Combining the equations mH = f and (23), we can get

the probability that the HEMS will take the active state in
different situations as follows:

𝑝1,1,1H = 1 + (1 − 𝐷1,1,1𝜇D ) 𝑏,

𝑝1,1,2H = 1 + (1 − 𝐷1,1,2𝜇D ) 𝑏
𝑝1,2,1H = 1 + (1 − 𝐷1,2,1𝜇D ) 𝑏,
𝑝1,2,2H = 1 + (1 − 𝐷1,2,2𝜇D ) 𝑏
𝑝2,1,1H = (1 − 𝐷2,1,1𝜇D ) 𝑏,
𝑝2,1,2H = (1 − 𝐷2,1,2𝜇D ) 𝑏
𝑝2,2,1H = (1 − 𝐷2,2,1𝜇D ) 𝑏,
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Table 1: Single-stage game payoff matrix.

HEMS

ES
𝑛3 = 1 𝑛3 = 2

RTPA
𝑛2 = 1 𝑛2 = 2 𝑛2 = 1 𝑛2 = 2

𝑛1 = 1 𝐷1,1,1 𝐷1,2,1 𝐷1,1,2 𝐷1,2,2𝑛1 = 2 𝐷2,1,1 𝐷2,2,1 𝐷2,1,2 𝐷2,2,2
Table 2: Single-stage game load demand matrix.

HEMS

ES
𝑛3 = 1 𝑛3 = 2

RTPA
𝑛2 = 1 𝑛2 = 2 𝑛2 = 1 𝑛2 = 2

𝑛1 = 1 𝐷𝑖,𝑁 (𝑖) + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖) 𝐷𝑖,𝑁 (𝑖) + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) 𝐷𝑖,𝑁 (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖) 𝐷𝑖,𝑁 (𝑖) + 𝐷HEMS (𝑖)𝑛1 = 2 𝐷𝑖,𝑁 (𝑖) + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) 𝐷𝑖,𝑁 (𝑖) + 𝐷ES (𝑖) 𝐷𝑖,𝑁 (𝑖) + 𝐷RTPA (𝑖) 𝐷𝑖,𝑁 (𝑖)

𝑝2,2,2H = (1 − 𝐷2,2,2𝜇D ) 𝑏
(24)

4.2. Analysis of Multiperson Zero-Determinant Strategy. In a
single-stage game, RTPA injects false information of elec-
tricity price into the smart meter during the period Δ𝑇, so
that the indoor smart appliances generate additional load
demands. RTPA aims to make the total load demand 𝐷(𝑖) of
electrical customers larger than the total load demand𝐷𝑖,𝑁(𝑖)
under steady state. HEMS optimizes the electrical customer’s
electricity plan by optimized scheduling module and turns
off some dispatchable loads; if necessary, HEMS can sacrifice
partial comfort of electrical customers and turn off some
nondispatchable loads. HEMS fully incorporates aMPZDS to
minimize the impact of attacks so that the total load demand𝐷(𝑖) of electrical customers is close to the total load demand𝐷𝑖,𝑁(𝑖) under steady state. The value ofD is shown in Table 2.

Theorem2 (see [23, 24]). In the repeated game, assuming that
the game players𝑁 ≥ 2,𝑈𝑟,min and𝑈𝑟,max are, respectively, the
maximum and minimum values of row 𝑟 in the𝑁×2 repeated
game payoff matrix, where 𝑟 = 1, 2, then

𝑈𝑟,𝑚𝑖𝑛 = min (𝑈𝑟,1, . . . , 𝑈𝑟,2𝑁−1)
𝑈𝑟,𝑚𝑎𝑥 = max (𝑈𝑟,1, . . . , 𝑈𝑟,2𝑁−1)

(25)

If there exists 𝑘min, 𝑘max ∈ {1, 2} which makes𝑈𝑘max,max ≤ 𝑈𝑘min,min satisfied, the game player 𝑖 can ignore
the behavior strategy of other game players and control the
long-term expected benefit of game player 𝑖 in the interval[𝑈𝑘max,max, 𝑈𝑘min,min].

Let 𝐷𝑟,max and 𝐷𝑟,min be the maximum and minimum
values of row 𝑢 in the single-stage game load demand matrix.

Combined with the conclusions of (7)–(14), the maximum
and minimum values of row 𝑢 of D are

𝐷1,max = 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)
𝐷1,min = 𝐷𝑖,𝑁 + 𝐷HEMS (𝑖)
𝐷2,max = 𝐷𝑖,𝑁 + 𝐷𝐸𝑆 (𝑖) + 𝐷RTPA (𝑖)
𝐷2,min = 𝐷𝑖,𝑁

(26)

In formula (26), 𝐷1,max ≤ 𝐷2,min and 𝐷2,max ≥ 𝐷1,min;
since 𝐷1,max ≤ 𝐷2,min, we can get the long-term expected
benefit 𝜇D of the game based onTheorem 2, so its value range
is

[𝐷1,max, 𝐷2,min]
= 𝐷𝑖,𝑁 + [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖) , 0] (27)

Considering the upstream and downstream boundary
values of long-term expected benefit 𝜇D, 𝜇D can be expressed
as

𝜇D = 𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)] (28)

where 𝛼 is the excitation factor and 0 ≤ 𝛼 ≤ 1. The value of𝜇D increases as 𝛼 increases and approaches the value of𝐷𝑖,𝑁+𝐷ES(𝑖) + 𝐷HEMS(𝑖) + 𝐷RTPA(𝑖), which indicates that HEMS is
more active in the process of stable control, which can make
the total load demand of electrical customers approach the
stable state.

The value of 𝑏 in formula (24) is

max( −𝜇D𝜇D − 𝐷1,min
, 𝜇D𝜇D − 𝐷2,max

) ≤ 𝑏 < 0 (29)

Combining (26), (28), and (29), we can get 𝜇D − 𝐷1,min ≥𝐷2,max − 𝜇D when 𝛼 ≥ 1/2, then 𝑏min ≤ 𝑏 < 0, where 𝑏min =(𝜇D/𝜇D − 𝐷2,max), then
𝑏min

= 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷ES (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖)
(30)
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Taking into account the upstream and downstream
boundary values of 𝑏, note 𝑏 = 𝛽𝑏min, then

𝑏
= 𝛽

× 𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷RTPA (𝑖) + 𝐷HEMS (𝑖)𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷ES (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖)
(31)

where 𝛽 is the control factor and 0 ≤ 𝛽 ≤ 1. The probability
that HEMS will take a stable control action increases as 𝛽
increases.

Assuming that the behavioral states of HEMS, RTPA, and
ES are 𝑢, V, 𝑤, then 𝑝𝑢,V,𝑤H is the probability that HEMS will
take action 1 in stage 𝑡 + 1 game when HEMS takes action
state 𝑢, RTPA takes actions state V, and ES takes actions state𝑤 under the current game occuring in the period 𝑖 − 1, the𝑡th stage of the game. Combining (24), (28), and (31), the
probability of HEMS adopting stable control behavior in the𝑖th period is shown in formula (32) and (33).

𝑝1,1,2H = 𝛽
× [(𝛼 − 1)𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + 𝛼𝐷ES (𝑖)][𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]} + 1

𝑝1,1,1H = 𝑝1,1,2H − 𝛽
× 𝐷ES (𝑖)[𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}

𝑝1,2,2H = 𝛽
× [(𝛼 − 1)𝐷HEMS (𝑖) + 𝛼𝐷RTPA (𝑖) + 𝛼𝐷ES (𝑖)][𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]} + 1

𝑝1,2,1H = 𝑝1,2,2H − 𝛽
× 𝐷ES (𝑖)[𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}

(32)

𝑝2,1,2H = 𝛽
× [𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + 𝛼𝐷ES (𝑖)][𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]

× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}
𝑝2,1,1H = 𝑝2,1,2H − 𝛽

× 𝐷ES (𝑖)[𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}

𝑝2,2,2H = 𝛽
× 𝛼 [𝐷HEMS (𝑖) + 𝐷RTPA (𝑖) + 𝐷ES (𝑖)][𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}

𝑝2,2,1H = 𝑝2,2,2H − 𝛽
× 𝐷ES (𝑖)[𝛼𝐷HEMS (𝑖) + (𝛼 − 1)𝐷RTPA (𝑖) + (𝛼 − 1)𝐷ES (𝑖)]
× [𝐷𝑖,𝑁 + 𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]{𝐷𝑖,𝑁 + 𝛼 [𝐷ES (𝑖) + 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)]}

(33)

If 𝛼 = 1, indicating that HEMS is the most active in
the process of stable control, then the probability of HEMS
behavior state is

𝑝1,1,1H = 1,
𝑝1,1,2H = 𝑝1,1,1H + 𝛽 × 𝐷ES (𝑖)𝐷HEMS (𝑖)
𝑝1,2,1H = 1 + 𝛽 × 𝐷RTPA (𝑖)𝐷HEMS (𝑖) ,
𝑝1,2,2H = 𝑝1,2,1H + 𝛽 × 𝐷ES (𝑖)𝐷HEMS (𝑖)
𝑝2,1,1H = 𝛽,
𝑝2,1,2H = 𝑝2,1,1H + 𝛽 × 𝐷ES (𝑖)𝐷HEMS (𝑖)
𝑝2,2,1H = 𝛽 × 𝐷HEMS (𝑖) + 𝐷RTPA (𝑖)𝐷HEMS (𝑖) ,
𝑝2,2,2H = 𝑝2,2,1H + 𝛽 × 𝐷ES (𝑖)𝐷HEMS (𝑖)

(34)

Equation (34) shows that if RTPA is active in the current
game stage, the probability of HEMS taking stable control
action will increase in the next round of game stage; if ES
is active, the probability that HEMS taking stable control
action will also increase in the next round of game stage.This
behavioral characteristic shows that if RTPA is active, HEMS
can take corresponding stable control behavior, and ES can
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Figure 1: HEMS take the probability of action 1 in the next game stage.

optimize the behavior selection of HEMS to a certain extent
in order to reduce the impact of the increase of total load
demand caused by RTPA.

5. Experiment Analysis

5.1. The Probability of HEMS Being Active. In this paper, the
experimental hardware platform is AMD A8-5550M quad-
core processor, 2.1GHz frequency, 6GB memory, software
platform: Windows 10 operating system, Eclipse with PyDev
integrated simulation tools, and MATLAB R2014a experi-
mental environment; among them, Eclipse is 4.6.2; Python
is 3.5.2. The experimental data uses the real-time price and
electricity load demand data of the New South Wales of
Australian Energy Market on April 6, 2017, and April 7, 2017,
thereto, the data of April 6 for the base day data; data of April
7 for the goal day data. The significance of the data selection
is that the weather and other environmental conditions and
the electricity consumption habits of electrical customers are
almost at the same in two adjacent days; the load demand
of electrical customers is protected from weather conditions
and electricity consumption habits of electrical customers.
The coefficient of price elasticity of electricity demand is
calculated from (6).

In this paper, we assume that the update cycle of real-time
price is 5min, and one day is divided into 288 periods. As a
result, the daily load demand curve can be divided into three
periods: low period, flat period, and peak period, as shown in
Table 3.

It is assumed that the real-time pricemarket is in a normal
state during the flat period, that is, when 198 ≤ 𝑖 ≤ 209;
assume that an attacker intercepts the real-time price signal

Table 3: Segment of real-time price time.

Periods The start and end time of period Duration/h
Low 00:00-06:00, 22:00-24:00 8
Flat 06:00-07:00, 11:00-18:00, 20:00-22:00 10
Peak 07:00-11:00, 18:00-20:00 6

from the electricity suppliers and tamper with the real-time
price information when 𝑖 = 210; assume that HEMS, RTPA,
and ES are rational. Then under the ES scheduling, and
eight kinds of game situations, HEMS take the probability
(formula (32) and (33)) of action 1 (active) in the next game
stage and the relationship of 𝛼, 𝛽 shown in Figures 1 and
2, where (P111, P112, P121, P122, P211, P212, P221, P222) fl(𝑝1,1,1H , 𝑝1,1,2H , 𝑝1,2,1H , 𝑝1,2,2H , 𝑝2,1,1H , 𝑝2,1,2H , 𝑝2,2,1H , 𝑝2,2,2H ).

As can be seen from Figure 1(a), the probability that
HEMSwill take action 1 in the next game stagewill increase as𝛼 increases, no matter what kind of behavior of the attackers
and electricity suppliers are in the previous game stage. If
the HEMS is active during the previous game stage, the
probability that the HEMS will take action 1 in the next
game stage is significantly greater than the probability that
the HEMS was idle during the previous game stage. If the
RTPA is active during the previous game stage, the probability
that HEMS will take action 1 in the next game stage is also
greater than the probability that RTPA was idle during the
previous game stage, the reason is that in the game process,
HEMS has a memory depth of 1 under combining with a
MPZDS, which can memorize the behavioral state of the
three game players in the previous game stage to optimize
the behavior selection of HEMS in the next game stage. In
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Figure 2:The expected load demands of the four strategies varywith
the number of different game stages.

the previous game stage, if the behavior states of HEMS
and RTPA remain unchanged, when the ES is active, the
probability that HEMS takes action 1 in the next game stage
is greater than the probability that ES was idle state in the
previous game stage, the reason is that the dispatching effect
of ES on load demand of electrical customers aims to make
the power supply and demand balance, and this shows that
ES can optimize the behavior selection of HEMS in the next
game stage by participating in game. Similarly, as can also be
seen from Figure 1(b), if the RTPA is active in the previous
game stage, the probability that the HEMS will take action
1 in the next game stage is significantly greater than the
probability that RTPA was idle in the previous game stage.
Although the probability that HEMS takes action 1 in the next
game stage decreases slightly when the HEMS was active in
the previous game stage, but themean value of the probability
which is still greater or equal to the average of the HEMS was
idle state in the previous game stage, and 𝑝1,1,1H + 𝑝2,2,2H = 1,𝑝1,1,2H + 𝑝2,2,1H = 1, 𝑝1,2,1H + 𝑝2,1,2H = 1, and 𝑝1,2,2H + 𝑝2,1,1H = 1,
and the relations of 𝑝1,1,1H and 𝑝2,2,2H , 𝑝1,1,2H and 𝑝2,2,1H , 𝑝1,2,1H and𝑝2,1,2H , and 𝑝1,2,2H and 𝑝2,1,1H are shown to be complementary.

5.2. Expected Load Demand Reduction Rate of Electrical
Customers. Assuming that the number of repeated game
phases is 300 round and the game period is Δ𝑇 =5min, we, respectively, simulate the four kinds of single-
memory strategies under different game stage numbers to
get the game sequence of the corresponding strategies and
calculate the expected load demand. The four kinds of
single-memory strategies areMultiperson Zero-Determinant
Strategies (MPZDS), Random Strategies (RS), Win-Stay-
Lose-Shift Strategies [25] (WSLS), and Stochastic Cooperator
Strategies [26] (SCS). Figure 2 shows the comparison between
the four strategies and the expected load demand in stable
state under different game stage numbers.
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Figure 3: Comparing expected load demands of different periods.

As can be seen from Figure 2, expected load demand
reduction rate of MPZDS was 5.4%, expected load demand
reduction rate of RS was 38.5%, expected load demand
reduction rate of WSLS was 36.9%, and expected load
demand reduction rate of SCS was 32.2% compared with
the expected load demand of stable state. The expected load
demand of MPZDS is closer to the expected load demand
under stable state, because HEMS takes the behavioral state
“1” with a high probability in combination with MPZDS
under the condition of RTPA, to achieve stable control effect
of the total load demand of electrical customers, and ES
also allocates a certain amount of power to the electrical
customers in order to balance the power supply and demand.
Electrical customers do not need to turn off schedulable or
nonschedulable loads too much while ensuring electricity
consumption satisfaction under the MPZDS, but RS, WSLS,
and SCS greatly reduces the total load demand of electrical
customers by shutting off schedulable or nonschedulable
loads, although it achieves the goal of preventing RTPA to
a certain extent; it also greatly reduces the satisfaction with
electricity consumption of electrical customers.

Figure 3 compares the expected load demand of four
kinds of single-memory strategy and stable state under RTPA
which occurs at different periods of time. Among them,
the trough hours take 𝑖 = 272 (22: 00-24: 00), flat hours
take 𝑖 = 210 (11: 00-18: 00), and peak hours take 𝑖 =123 (07: 00-11: 00). As can be seen from Figure 3, if the
RTPA occurs in the trough period, the expected load demand
reduction rates of MPZDS, RS, WSLS, and SCS are 14.8%,
44.6%, 43.1%, and 39%, respectively; if RTPA occurs in the
flat period, the expected load demand reduction rates of
MPZDS, RS, WSLS, and SCS are 5.4%, 38.5%, 36.9%, and
32.2%, respectively; if RTPA occurs in the peak period, the
expected load demand reduction rates of MPZDS, RS,WSLS,
and SCS are 6.2%, 39%, 37.4%, and 32.8%, respectively. From
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Figure 4: Power transmission line protection rates.

the above analysis, we can see that MPZDS has better attack
prevention effect than RS, WSLS, and SCS in view of RTPA
maliciously increasing the total load demand of electrical
customers; the reason is that, due to the influence of incentive
factor 𝛼 and control factor 𝛽 and the electricity supplier’s
scheduling, the probability that HEMS is active in the next
game stage is greater than that of RS,WSLS, and SCSby taking
MPZDS. In addition, Figure 3 shows that the expected load
demand reduction rate during flat period is lower than the
expected load demand reduction rates during peak period
and trough period under the premise of HEMS combined
with MPZDS; the reason is that the total load demand of
electrical customers during flat period is stable and the actual
load demand is lower than that during trough period and
peak period; HEMS does not need to turn off a large number

of schedulable or nonschedulable loads, so as to achieve a
better load demand scheduling solution.

5.3. Power Transmission Line Protection Rate. It is assumed
that the RTPA occurs during the peak period and the
number of power transmission lines is 84. The expected
load demand under a stable state is averaged out, and the
maximum loadability of each transmission line is 89.34MW,
Figures 4(a), 4(b), and 4(c), respectively, when 𝐿max <89.34MW, 𝐿max = 89.34MW, and 𝐿max > 89.34MW,
the protection rate of the power transmission line in four
strategies.

From Figures 4(a), 4(b), and 4(c), if the maximum
loadability of each transmission line is less than 89.34MW, the
average protection ratios of power transmission lines under



12 Security and Communication Networks

MPZDS, RS, WSLS, and SCS are, respectively, 44.8%, 29.6%,
31.3 %, and 31%, and the maximum power transmission
line protection rates of MPZDS, RS, WSLS, and SCS are,
respectively, 49.6%, 32%, 46.6%, and 39.7%, and the mini-
mum power transmission line protection rates of MPZDS,
RS, WSLS, and SCS are, respectively, 32.4%, 24.7%, 22.3%,
and 22.1%; if the maximum loadability of each transmission
line is equal to 89.34MW, the average protection ratios of
power transmission lines under MPZDS, RS, WSLS, and
SCS are, respectively, 94.8%, 79.1%, 80.7%, and 80.3%, and
the maximum power transmission line protection rates of
MPZDS, RS, WSLS, and SCS are, respectively, 99.6%, 82%,
96.6%, and 89.7%, and the minimum power transmission
line protection rates of MPZDS, RS, WSLS, and SCS are,
respectively, 82.4%, 72.4%, 68.1%, and 67.8%; if the maximum
loadability of each transmission line is greater than 89.34MW,
the average protection ratios of power transmission lines
under MPZDS, RS, WSLS, and SCS are, respectively, 99.9%,
99.4%, 99.4%, and 99.4%, and themaximum power transmis-
sion line protection rates of MPZDS, RS, WSLS, and SCS are,
respectively, 100%, 99.9%, 100%, and 100%, and theminimum
power transmission line protection rates of MPZDS, RS,
WSLS, and SCS are, respectively, 99.9%, 97.8%, 95.9%, and
95.7%. Therefore, the protection effect of MPZDS on power
transmission lines is obviously better than that of RS, WSLS,
and SCS, and the protection rate of power transmission lines
increases with the increase of the maximum loadability of
single transmission line. The reason is that when HEMS
is combined with MPZDS, the active state is taken with
a high probability, so that the expected load demand of
electrical customers is closer to the expected load demand
in stable state; however, RS, WSLS, and SCS significantly
reduce the electricity load demand of electrical customers
at the expense of sacrificing the electricity satisfaction of
electrical customers, so that the expected load demand of
electrical customers deviates excessively from the expected
load demands under stable state.

6. Conclusions

Aiming at the problem that RTPA increases the total load
demand of electrical customers, we propose a defensive
strategy of real-time price attack based on MPZDS. In order
to achieve the goal of stabilizing the total load demand of elec-
trical customers, firstly, according to the game relationship
between RTPA, HEMS, and ES, the behavior characteristics
of the three players are, respectively, defined. Secondly, we
analyze eight kinds of game situations among the three
players and get the total load demand of electrical customers.
Finally, we combine the MPZDS for safety analysis. Experi-
mental results show that the proposed method of the paper
has a lower expected load demand reduction rate and can
better protect the safety of power transmission lines. In the
future research work, in addition to considering the natural
factors such as new energy, it will also consider the impact
of collaborative real-time price attack on load demand of
electrical customers and electricity market. At the same time,
new defense methods such as machine learning or intelligent

judgment will also be considered in defensive strategies of
real-time price attack [27, 28].
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