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Summary

As the need in cyber infrastructure for electrical systems to realize the industry

4.0 revolution, this paper presents a configuration of two‐switch dual‐output

voltage source inverter with integral sliding mode control (ISMC) and cyber

twin approach to realize the performance of the system. The inverter has the

capability of supplying two independent loads of equal voltage at the load

end. The virtual model (cyber twin) is developed to realize the operation of

the inverter (physical device) with a host system. The cyber‐physical test

bench is developed to evaluate the performance of the physical model (inverter

prototype) with cyber‐physical capabilities. The coupled computation of the

virtual model and prototype model is executed to analyze the performance of

the inverter.
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1 | INTRODUCTION

The growth of information and communication technology (ICT)1-3 results in the cyber‐physical systems (CPS)4,5 and
internet of things (IoT),6 which leads to development of smart grids. IoT only has the perception of sense, but CPS
has the ability to robust control to the target. The CPS is stated as 3C's (computations, communications, and control).
CPS empowers the programmed information gathering, data exchanging, monitoring, and controlling of physical
devices, which prompt rising patterns in the field of smart grid7,8 and virtual labs.9,10 CPS provides a correspondence
between the physical devices and users. The incorporation of CPS with the physical layer provides a solution for remote
observing and control with programmed information trade over the web with remote sensor systems.11,12 CPS frame-
works empower the man to machine control through the web.

Nowadays, CPS assumes an essential part in the improvement of smart grids, remote lab and virtual labs in R&D area
in the field of electrical designing. The number of researchers has been attempted to actualize CPS in a proficient way.
An IoT‐based surveillance system with low‐complexity data repetition system to make efficient resilience and storage is
proposed by Gonizzi et al.13 Environmental monitoring based on two image sensor by using low power sensors was
explained by Koedrith et al.14 To monitor the environmental conditions by IoT, Zhou et al15 developed a test bench
S: x(t), State vector; VDC, DC Voltage; VC1,VC2,VC3, Capacitor voltages; Vs, AC side voltage; R, Resistance
citor; i, DC component; Ps, Output power; VoU, Upper side voltage; IoU, Upper side current; S, Sliding
ference voltage; f , line frequency; Ridc, Internal resistance of inductor; u(t), Control vector; C1,C2,C3,
; RL, Load Resistance; io, Output Current; PDC, DC Power; ĩ, Periodic Component; Ploss, Power loss;
rrent; α1,α2,α3, Sliding Coefficient; iDCref, Reference DC current; ueq, equivalent continuous control
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for monitoring large‐scale indoor climatic conditions using wireless sensor network. By using wireless sensor network,
Aslan et al16 developed a framework for detecting and monitoring the forest fire. Feng et al9 proposed a system for the
continuous online monitoring system for steel casting. The monitoring system is achieved through a wireless sensor
network and team center platform. Mohammed et al10 developed a cyber‐physical system for wind energy monitoring
systems, which tends to the internet of energy (IoE). Guobin et al17 proposed a model for integrating the distributed
energy resources and storage devices in the smart grid. 18

The cyber twin (digital twin)19 approach has the greatest advantage in implementing CPS. Cyber twin (digital twin) is
termed as the realization of the physical system (real system) with a virtual model to enhance the performance of the
physical system. In the digital twin (cyber twin) methodology, the virtual model understands the conduct of the physical
system to foresee the dynamic changes and react to the framework for better activity. Digital twin (cyber twin) method-
ology has been proposed by different specialists: vehicle driving assistance for CPS based on fuzzy logic proposed by
Kazi et al.20 Hao Zhang et al21 proposed cyber twin–based furniture production line. Qinglin et al22 analyze the big data
and cyber twin approach for the possibilities of implementation of Industry 4.0. The comparison of CPS implementation
is given in Table 1.

The dual‐output inverters make the system more reliable to supply two independent loads. The widely used dual‐
output inverters for renewable applications are dual‐phase single DC bus inverter with a split capacitor, three‐wire
single‐phase inverter, dual‐phase dual DC bus inverter, and dual phase with transformer.24-26 The development of
inverter with reduced switches and dual‐output inverters with six switches and three switches for single‐phase applica-
tions are given in previous studies.27-30 The reduction in the number of semiconductor switches resulted in low semi-
conductor losses and simple controlling. Generally, the control of inverter is achieved by PI, PID, and direct power
control. The sliding mode control (SMC)22,31-38 provides the dynamic response to the nonlinear systems with the prop-
erty of hysteresis. The steady‐state error of the system is low compared with other controllers. To reduce the steady‐state
error of the system, integral sliding mode control (ISMC) is utilized. 39-45 The advancements in the field of renewable
energy and electrical systems result in smart grids.

As the need in cyber infrastructure for electrical systems to realize the industry 4.0 revolution, this paper presents
a configuration of two‐switch dual‐output voltage source inverter with integral sliding mode control (ISMC) and
cyber twin approach to realize the performance of the system. The inverter has capability of supplying two indepen-
dent loads of equal voltage at load end. The virtual model (cyber twin) is developed to realize the operation of
inverter (physical device) with host system. The cyber‐physical test bench is developed to evaluate the performance
of the physical model (inverter prototype) with cyber‐physical capabilities. The coupled computation of virtual model
and prototype model is executed to analyze performance of the inverter. In this paper, the design of dual‐output
inverter for single‐phase applications with the reduced number of switches for single‐phase applications is designed
and integrated with CPS. In two switch half bridge inverter, the split capacitors act as one leg, which results in a
TABLE 1 CPS comparison

Reference Sensors Type Mode Network/Monitoring Programming Platform

Zigbee,

Zhang et al9 RFID tag CAN, XML Multidomain

RFID

Moness and Moustafa Ahmed10 RTU WSN CC studio, Multidomain

SCADA/HMI

Gonizzi et al13 SenseLab WSN Cooja network Multidomain

Sensor simulator

Zhou et al15 Sensor nodes WSN, Green orbs Multi domain

Green orbs Zigbee host computer

Gonzalez et al23 Sensors WIFI LabVIEW Multidomain

PLC JIL server

Proposed NI sensors WIFI LabVIEW Single domain

MyRIO VI Server
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reduction of semiconductor switches. The proposed inverter topology is more reliable in induction motor drive sys-
tems, renewable energy systems, and low and medium power applications. The control strategy is based on integral
sliding mode control (ISMC) that has the advantages of robustness to the varying parameter and dynamic response
to the system. The rapid control prototype (RCP) is implemented for rapid testing of the prototype. The RCP is inte-
grated with CPS for control and performance monitor of the proposed inverter prototype. The highlights of the
research work are as follows:

• In two switch half bridge inverter, the split capacitors act as one leg, which results in a reduction of semiconductor
switches.

• To control the inverter sliding mode control (SMC), strategies is introduced. The sliding mode control and integral
sliding mode control (ISMC) is designed and comparative performance analysis is executed. ISMC has better control-
ling performance than the SMC with reduced errors.

• The integration of cyber‐physical systems (CPS) with power electronics devices is performed to analyze the possibil-
ities of cyber infrastructure to enhance the facilities in electrical system/smart grids.

• The cyber twin–based test bench is developed. The digital model of the inverter with control is modeled in LabVIEW
and Multisim packages.

• The single domain programming is utilized to avoid the error in data exchange for each stages.
2 | A CYBER TWIN PERSPECTIVE MODEL

The cyber twin–based RCP test system is developed for performance evaluation of two‐switch dual‐output inverter. The
cyber twin–based cyber physical system includes three sections: physical layer, cyber‐physical integration layer, and
cyber layer. The target (physical) device with sensors and actuators comprises in physical layer. In Cyber twin model,
the software modules with host computer are integrated for the data collection from the physical device through sensors
for the generation of control signals.

The development of cyber twin–based cyber infrastructure is introduced for electrical systems. This leads to the
improvements in smart grids design and developments. To analyze the real behaviour of the system, a virtual model
for the physical device is created and integrated with the system. The block diagram of the cyber infrastructure with
cyber twin model is shown in Figure 1. The cyber twin (digital twin) model is developed with LabVIEW‐Multisim pack-
ages. The data collected from the physical device is processed in cyber integration layer with cyber twin capabilities that
is monitored through the web interface present in cyber layer. The system configuration of the inverter with cyber infra-
structure is shown in Figure 2.
FIGURE 1 Block diagram of cyber twin



FIGURE 2 System configuration
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2.1 | Generalized CPS model

The cyber‐physical infrastructure developed for system is shown in Figure 2. The system has the physical components of
inverter, sensors, actuators, and controllers representing the physical parameters like current, voltage, frequency, and
communications equipments present in physical device. The generalized physical model is represented by multi‐
input‐multi‐output (MIMO) based on the assumptions and models along with control, and switching is represented
in the generalized models.

_xðtÞ ¼ AxðtÞ þ BuðtÞ; (1)

Y ðtÞ ¼ CxðtÞ; (2)

where A is the system matrix, B is the input matrix, C is the output matrix, x(t) is the state vector, u(t) is the control
vector, and Y(t) is the observation vector. For control of physical device, the integration of the physical layer with the
cyber layer is executed. The data collected through sensors (ns) from physical device are exchanged to controller (nc)
in the host system for computations that are connected to the communication network. The control structure is
given by

uðtÞ ¼ KxðtÞ; (3)

where sensor and controller connection are given byK ∈ Rncxns andKncns is non‐zero term and implies the connection of
controller (nc) and sensor (ns). The closed‐loop control system is represented as

_xðtÞ ¼ ÃxðtÞ; (4)

Closed ‐loop matrix ðÃÞ ¼ A − BK: (5)

The dynamics of the system with delay between sensor and controller is represented by

_xðtÞ≃ÃxðtÞ (6)

Matrix with delay ðÃÞ ¼ ðI − BDncnsKÞðAþ BKÞ (7)

Delay matrix Dncns ¼
1if ns & nc are connected

0 if ns & nc are not connected

�
(8)
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The operation of the system is based on switching function of the given by

_x ¼ Anx þ Bnu; tn−1 ≤ t < tn: (9)

The control reference is computed based on the sensor data, and the communication between the sensor and control-
ler is continuous to provide proper switching function to operate the physical device.
3 | DUAL ‐OUtPUT SINGLE ‐PHASE INVERTER

The design of systems with ICT facilitates the development of smart grid systems. This enhances the facility of control
and monitoring of the inverter from the remote location with adaptive control. The CPS system design consists of three
layers: physical layer, cyber‐physical integration layer, and cyber layer. Figure 2 shows the architecture layer proposed
for CPS‐based RCP evaluation of inverter.

The general dual‐output inverters used for renewable energy applications are dual‐phase single DC bus inverter with
a split capacitor, three‐wire single‐phase inverter, dual‐phase dual DC bus inverter, and dual phase with a transformer.
The comparison of existing inverter models and proposed is given in Table 2. The existing models have a higher number
of switches that leads to increase in size, control circuitry, and losses. The proposed inverter has two legs with one leg
connected with split capacitors (C1,C2,andC3). The split capacitors in this configuration act as one leg for the inverter.
Similarly, the second leg consists of two switches (S1andS2). The anti‐parallel diodes (D1andD2) will act as a common
for both upper and lower loads. The inverter will act as a parallel inverter connected to two independent loads. The con-
figuration of the inverter is to supply dual single‐phase output for two independent loads with single DC input. Due to
the reduced number of switches, the implementation cost, gate driver circuit, will be reduced and reduction in semicon-
ductor losses.
3.1 | Switching states

• In switching state A, the switch S1 in ON state and S2 in OFF state. The output is in positive cycle. The voltage of the
upper load is VC1 and lower load is VC1+VC2.

• In switching state B, the switch S2 in ON state and S1 in OFF state. The output is in negative cycle. The voltage of the
upper load is −VC2−VC3 and lower load is −VC3.
3.2 | Half bridge average model analysis

The average model of the half bridge inverter is shown in Figure 3. The AC side current (i) is expressed as (10)

L
diDC
dt

þ Ridc ¼ Vt − VS (10)

C
dvo
dt

¼ io −
vo
RL

: (11)
TABLE 2 Comparison of inverters

Inverter Type Switches Capacitor Transformer

Dual phase with single DC 4 2 ‐

bus with split capacitor

Dual phase with three wires 6 ‐ ‐

Dual‐phase dual DC bus 4 4 ‐

Dual phase with transformer 4 2 1

Proposed 2 3 ‐



FIGURE 3 Converter average model
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The periodic function with conduction period (Ts) with fourier series is expressed by

VtðtÞ ¼ 1
Ts
∫
Ts

0 VtðτÞdt þ ∑
h¼þ∞

h¼1
ahcosðhωstÞ þ bhsinðhωstÞ½ �: (12)

Substituting Vt(t) from (12) in (10),

L
diðtÞ
dt

þ RiðtÞ ¼ DC comp: þ Periodic comp: (13)

DC comp: ¼ 1
Ts
∫
Ts

0 VtðτÞdt − Vs (13a)

Periodic comp: ¼ ∑
h¼þ∞

h¼1
ahcosðhωstÞ þ bhsinðhωstÞ½ �: (13b)

Equation (13) describes the output current (i) with low‐pass filter with DC component (13a) and periodic component
(13b). The response of the filter by superposition principle is considered as the summation of the response of filter to DC
component (ī) and periodic component (ĩ) is given by (14),

iðtÞ ¼ īðtÞ þ ĩðtÞ: (14)

The average operator for nonlinear system is expressed in

~x ¼ 1
Ts
∫
t

t−Ts
xðτÞdτ: (15)

By applying the average operator (15) to switches S1 and S2, the switching timing obtained is

S1ðtÞ ¼ d; (16)

S2ðtÞ ¼ 1 − d: (17)
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The system operation is expressed in state space matrix as (18)

_vo
_io

� �
¼ −Ridc=L −1=L

−1=C −1=RLC

� �
vo

io

� �
þ 1=L

0

� �
uþ 0 1½ � vo

io

� �
: (18)

The transfer function of the system is given by (19)

GðsÞ ¼
1
LC

S2 − S
−Lþ RLCð−RidcÞ

RLCL

� �
þ ð−RidcRLC − LÞLC þ RLCL

RLC2L2

� � : (19)

3.3 | Converter average model

The average model of the half bridge inverter is obtained and displayed in Figure 3.
For steady‐state condition, current (i) and DC voltage (VDC) is assumed to be constant. The terminal voltage (Vt) is

given by

Vt ¼ VDC

2
ð2d − 1Þ ¼ m

VDC

2
; (20)

where m=2d−1 is the relation between modulating signal and duty ratio (d). The DC power (PDC) and terminal power
Pt of the converter is expressed as (21):

PDC ¼ Pt ¼ VDC

2
ð2d − 1Þi ¼ m

VDC

2
i: (21)

The output power (Ps) of the converter with respect to output voltage (Vs) is given by (22):

Ps ¼ Vsi: (22)

The power loss (Ploss) of the converter model is given by

Ploss ¼ PDC − Pt: (23)

3.4 | Capacitor voltage and current balancing

The capacitors (C1,C2,andC3) connected is parallel to the source, and the voltage balancing of the capacitors are
expressed as

VC1 ¼ VDC

2
1 − TONð Þ

VC2 ¼ VDC

2
TON − TOFFð Þ

VC3 ¼ VDC

2
1 − TOFFð Þ

9>>>>>>=
>>>>>>;

(24)

where, VC1,VC2, and VC3 are voltage across the capacitors. VS1, VS2, and VS3 are the voltages in the switches S1 and S2.
VD1 is the voltage across the diode D2. The DC ripple (ΔVC) is given by

ΔVDC ¼ Imax

2Cω
: (25)
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The ripple voltage for the capacitors are expressed

ΔVC1 ¼ IoU
2C1ωU

þ IoL
2C1ωL

1 − TONð Þ

ΔVC2 ¼ IoU
2C2ωU

þ IoL
2C2ωL

TON − TOFFð Þ

ΔVC3 ¼ IoU
2C3ωU

þ IoL
2C3ωL

1 − TOFFð Þ

9>>>>>>=
>>>>>>;
: (26)

The capacitor voltage balanced, and the voltage that appears on the lower and upper load is expressed as

voU ¼ VDC

2
sinωt

voL ¼ VDC

2
sinωt

9>=
>;: (27)

The currents flowing through the capacitors are

IC1 ¼ IDC þ Ileg ¼ 1 − TONð ÞIoU þ 1 − TONð ÞIoL
IC2 ¼ IC1 þ IoU ¼ 1 − TONð ÞIoU þ 1þ TONð ÞIoL
IC3 ¼ IC2 − IoL ¼ − 1þ TONð ÞIoU − 1þ TONð ÞIoL

9>=
>;; (28)

where IC1,IC2 and IC3 are currents through the capacitors. Ileg is the current flowing through the inverter leg.
3.5 | Sizing of capacitors

The split capacitors are common for both DC link and one leg for inverter. In the inverter first leg, there are three capac-
itors (C1,C2,andC3), which are connected in the ratio of 1:0.5:1. The apparent power (S) of the inverter is given by

S ¼ Vrms∗IrmsðVAÞ: (29)

Capacitor equations for (C1,C2,andC3) are expressed as

C1 ¼ C3 ¼ S
2ω∗VDC∗ΔVDC

; (30)

C2 ¼ 1
2

S
2ω∗VDC∗ΔVDC

� �
: (31)

4 | INVERTER CONTROL BASED ON INTEGRAL SLIDING MODE CONTROL
(ISMC)

The sliding mode control (SMC) is the viable controller with switching nature of inverter inferred from the system
model. The benefits of SMC is that it has a superior unique reaction, steadiness against the variations of the load,
and easy implementation. The control is based on two loops inner current control and outer voltage control loops.
The state variables considered from the system are input inductor current (x1), and output capacitor voltage (x2) is con-
sidered as the state variables for controlling. The error variables are represented as

Error variables ¼ x1 ¼ iDC − iDCref

x2 ¼ vo − Vref

(
(32)

where iDC is the DC link current, iDCref is the DC link reference, vo is the output voltage, and Vref is the output reference
voltage. The existence of steady‐state error in the SMC is identified, and in order to minimize the steady‐state error, an
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additional integral controlled state variable (x3) is incorporated in sliding surface and termed as integral sliding mode
control (ISMC). The additional error variable is defined by (33):

Error variable ¼ x3 ¼ ∫ðx1 þ x2Þdt: (33)

The sliding surface (S) is represented as (34):

S ¼ α1x1 þ α2x2 þ α3x3; (34)

where α1, α2, and α3 are the sliding coefficients. The extra factor x3 gathers straightforwardly to steady‐state errors of x1
and x2. The time derivative of (34) is

_S ¼ α1 _x1þ α2 _x2þ α3 _x3; (35)

_x3¼ x1 þ x2: (36)

The state variables are computed by Equations (10) and (11). The _x1, _x2, and _x3 are the derivatives of error variables
and given by (37), (38), and (39):

_x1¼ 1
L
Vt − RiDC − uvoð Þ − diDCref

dt
; (37)

_x2¼ 1
C

uiDC −
vo
RL

� �
−
dVref

dt
; (38)

_x3¼ iDC − iDCref
� �þ vo − Vref

� �
: (39)

where Vs is the source voltage, C is the output filter capacitor, R is the load, and u is the switching function. The deriv-

atives of sliding function ( _S) obtained by incorporating (37), (38), and (39) is expressed as (40):

_S ¼ −uα1
L

−
α2
RLC

þ α3

� �
vo þ −α1RL þ α2u

C
þ α3

	 

iDC þ B; (40)

where B is expressed as (41),

B ¼ α1
Vt

L
−
diDCrefα1

dt
− α2

dVref

dt
− α3IDC − α3Vref

� �
: (41)

To satisfy the stability condition S _S˙ < 0, u=1 and u=−1 are incorporated to the equation (41).

If S < 0 ¼ _S > 0 ⇒ u ¼ 1,

_S ¼ −α1
L

−
α2
RLC

þ α3

� �
vo þ −α1RL

L
þ α2

C
þ α3

� �
iDC þ B

� �
> 0: (42)

If S > 0 ¼ _S < 0 ⇒ u ¼ −1,

_S ¼ α1
L
−

α2
RLC

þ α3

� �
vo þ −α1RL

L
−
α2
C

þ α3

� �
iDC þ B

� �
< 0: (43)

The simplified condition for stability from Equations (42) and (43) is given by (44):

0 < −α1C þ α2
L
RL

− α3LC
� �

vo þ −α3LC þ α2Lþ α1RLCð ÞiDC − LCB < 2 α2LiDC − α1Cvoð Þ: (44)
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The equivalent continuous control (ueq) is represented as (45):

ueq ¼ LC
voCα1 − α2L

−
α2vo
RLC

þ voα3 −
iDCα1RL

L
þ iDCα3 þ B

� �
: (45)

The condition for stability is tested with numerical computations of sliding coefficients (α1,α1, and α3) along with iDC
and vo. From (44), the equation (46) is obtained based on the numerical computations with minimum and maximum
values.

2 α2LiDC − α1Cvoð Þ > 0: (46)

To maintain the stability, the sliding coefficients (α1,α2, and α3) must be in positive. iDC=IDC at steady‐state condition,
the condition for vo is given by

α2
α1

>
Cvo
iDC

: (47)

The sliding coefficient (α3) will be resolved regardless of (α1and α2) by adjusting to acquire the coveted reaction. The
block diagram for ISMC is shown in Figure 2. The hysteresis band (h) is fixed between 5% and 10% of the reference volt-
age. Based on the frequency ( f ), the hysteresis band is calculated and expressed as (48):

Hysteresis band ¼ 1
8f L

VDC −
4v2o
VDC

� �
: (48)

In three‐level hysteresis, for +ve, cycle voltage is +VDC when error achieves the lower hysteresis band (hlower,−h) and
“0” when the error bring down than “−h.” For −ve cycle, the voltage is −VDC when upper hysteresis band (hupper,+h)
and “0” when higher than “+h.” The hysteresis band (h) brings about a dead band (td) for semiconductor switches.
In three‐level hysteresis, the “0” level presence will bring about the dead time for semiconductor switches and has less
distortion. The switching frequency ( f sw) for three‐level hysteresis is ascertained in on the basis of (49):

f sw ¼ ω2
oVDC

hþ tdω2
oVDC

2
π
m −

1
2
m2

� �
(49)

where ωo=2πf, f is the frequency, and m is the disturbance amplitude. The momentary switching frequency ( f in)
depends on the progression between hupper and hlower. The dead band of 3 microseconds with switching frequency of
2.9 kHz and the line frequency is 50 Hz is considered for the generation of control signals

The switching function is defined by the hysteresis (h) block in the controller design. The hysteresis switching func-
tion has three levels (−1,0,+1). The switching function for the inverter is given by (50):

u1 ¼
þ1 if S < −h

0 if S > 0

�
u2 ¼

−1 if S < þ h

0 if S > 0

�
: (50)

The sliding surface (S) is the contribution to the Schmitt triggers (hysteresis switching). The Schmitt triggers are
intended to work according to the switching conditions (50) for creating control signals. The ISMC reacts superior to
SMC and limited the steady‐state errors. The correlation of SMC and ISMC is examined by considering the system
parameters, L=10 mH, C=20μF, R=50Ω, α1=0.0002, α2=0.2, and α1=50. The performance of SMC is observed from
Figure 4A; the inductor current has the steady‐state error of 5%, and steady‐state error of the voltage is 10% inferred
from Figure 4B.

The host PC with LabVIEW, C‐DAQ, and MyRIO includes a cyber‐physical reconciliation layer as appeared in
Figure 2. The LabVIEW is a graphical programming instrument with consistent combination of equipment for informa-
tion procurement and controlling of physical devices. The source voltage (VDC), source current (iDC), output voltage (Vo),
and output current (io) are detected from the physical equipment by utilizing the NI C‐DAQ 9174 with voltage (NI‐9225)
and current (NI‐9227) sensor. The reconfigurable input/output controller (NI‐1900 MyRIO)with onboard WIFI is uti-
lized to implement the control algorithm for the generation of control pulse and to trigger the semiconductor device
using gate driver TI SM72295. The experimental setup is shown in Figure 6.



FIGURE 4 Performance comparison of SMC and ISMC: A, input current; B, output voltage
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5 | CYBER LAYER

The data from the physical device and cyber‐physical integration layer are monitored and controlled through the net-
work by cyber layer. The host computer has the data of sensors, control parameters, data storage, and supervisory con-
trol of the physical device. The cyber layer is linked to the Internet to the host computer. Widely used protocol for
connection is local area network (LAN), and wireless local area network (WLAN) is utilized for CPS implementation.
The cyber layer architecture is designed such a way to monitor real‐time data and controlling of the physical device.
The system enables the CPS for providing the features like

1. internet‐based cross‐field communications.
2. interaction of cross‐domain and intelligent knowledge sharing, and
3. task and mode based sensing and controlling of physical device.
FIGURE 5 Network monitoring



FIGURE 6 Experimental setup
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The implementation of LabVIEW‐based CPS is done by using VI server method with the web service management tool.
This method has good live data support and good interaction between the client and user. The cybersecurity is good com-
pared with all othermethods. The security layer SSL x.509 with TCP protocol to ensure the security of the system. TheURL
mapping is represented as https://localhost:portaddress/webservice.html. The network connected to the system is moni-
tored through the total network monitoring software to track the active devices. The network map is shown on Figure 5.

6 | RESULTS AND DISCUSSIONS

The performance of dual‐output single‐phase inverter with ISMC and cyber infrastructure is evaluated. The experimen-
tal setup is shown in Figure 6. The specifications of cyber infrastructure with inverter are given in Table 3. The three‐
phase supply is fed to the rectifier, and the rectified dc voltage VDC is fed to inverter. Figure 7 shows the source voltage,
DC voltage, and current. The source voltage of 50 V is fed, and Figure 7A shows the source voltage and current. Figure 7
B shows the source voltage with VDC and IDC. Figure 7C,D shows the THD for source voltage and current. The dual‐
output inverter is tested under PWM condition with frequency of 50Hz.

6.1 | Steady‐state performance

The dual‐output single‐phase inverter is analyzed with cyber‐physical infrastructure with ISMC‐based control strategy.
The controller performance is discussed in Section 4. Figure 4A,B shows the performance of SMC and ISMC. The 3∅
AC source at front‐end RMS voltage vrms= 50V is feed to uncontrolled rectifier. Figure 8 depicts the output of dual‐
output inverter with ISMC.
TABLE 3 System parameters

Parameters Values (Units)

Maximum rated power 960 W

DC link voltage (VDC) 115 V

C1 and C3 440 μF

C2 220 μF

IGBT IRG4BC30S

Diodes MUR860

Controller NI myRIO 1900

Data acquisition systems NI C‐DAQ 9174

Driver circuit TI SM72295

Four channel DSO Textronix TPS 2024B

Network monitoring Total network monitor

https://localhost:portaddress/webservice.html


FIGURE 7 Hardware prototype results for source voltage and current: A, source voltage and current, B, source voltage, DC voltage, and

current, C, THD for source voltage, and D, THD for source current

FIGURE 8 Prototype results: A, Output voltage and current of dual‐output inverter, B, THD of output voltage, C, THD of output current,

D, output voltage and load current with step change in both upper and lower load, E, output voltage and load current with step change in

upper load, and F, output voltage and load current with step change in lower load
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Figure 8A depicts the performance of dual‐output inverter in steady‐state analysis. The upper output voltage (VoU)
and lower output voltage (VoL) are 50 V. The upper load current (IoU) inferred from Figure 8A is 3.80 A, and lower load
current (IoL) inferred from Figure 8A is 1.73 A. The THD observed from Figure 9A is 5% for upper output voltage (VoU),



FIGURE 9 Hardware prototype results with fluke analyzer: A, THD of upper voltage (VoU), B, THD of upper current (IoU), C, THD of

lower voltage (VoL), and D, THD of lower current (IoL)
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and THD for upper output current (IoU) is 5.4% as inferred from Figure 9B. Figure 9C depicts that the THD for lower
output voltage (VoL) is 5.8%, and the corresponding current (IoU) is 5.1%, which is observed from Figure 9D. The
THD for both voltage and current is in under acceptable limits as per IEEE:519‐2014 standards.
6.2 | Response to load variations

At initial condition, the load is kept at constant, and to evaluate the controller performance, the load is varied. It is
observed from Figure 8B that the output voltage is not affected when there is a step change in the load. It is inferred
from Figure 8B that the load current (IoU) and (IoL) has step change. Figure 8C depicts the step change in upper load
current (IoU), and lower load remains same. It is inferred from Figure 8D that the performance of inverter with step
change in lower load is analyzed. Figure 8C,D depicts the performance of inverter with step change in lower load,
and the output voltage is not affected in both VoU and VoL.
6.3 | Cyber‐physical systems results and discussions

The LabVIEW‐CPS–based rapid control prototype evaluation of two switch dual‐output inverter is modeled and tested,
and the cyber infrastructure results are shown in Figure 10. The implementation of the experimental setup consists of
two sections of LabVIEW‐based CPS test bench and inverter prototype. The experimental setup is shown in Figure 6.
The pictorial representation of CPS integration is shown in Figure 2. The control of the physical device can be achieved
by CPS using LabVIEW server with request‐ and response‐based model.



FIGURE 10 Cyber infrastructure observations
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The CPS should behave as (a) intelligent (to anticipate and comprehend the behavior of the system, LabVIEW‐based
environment is used), (b) real time (to gather the continuous information from physical device, C‐DAQ with LabVIEW
is utilized), and (c) adaptive and predictive control (to respond and anticipate the changes in the physical systems, the
ISMC‐based control strategy is implemented in MyRIO‐1900).

The combination of physical layer and the cyber‐physical layer is integrated into the cyber layer. The cyber layer has
host computer with monitoring station and server. The collected data from the cyber‐physical layer is monitored and
controlled through LabVIEW. The VI server‐based web service management system is implemented to perform the test-
ing of the proposed model. The control pulse is generated using NI MyRIO. The control strategy is based on ISMC. The
monitoring screen (Figure 10) of the system has the frequency, set voltage, the voltage of upper and lower side, current
of lower and upper side, source voltage, rectified voltage, PWM for two switches, set voltage, and output voltage syn-
chronization waveforms. The inverter is tested under 50 V, 50 Hz, as set voltage and frequency, respectively. The per-
formance is monitored in the Internet Explorer, and results shown in Figure 10. The network monitoring of the
cyber infrastructure is analyzed using Total Network Monitor package.
6.4 | Voltage stress

The inverter model has two switches: S1 and S2. The voltage stress of the switches is calculated by the peak voltage
across the collector and emitter VCE1 and VCE2 terminals. The voltage stress is given by

VCE1 ¼ VCE2 ¼ VDC

2
: (51)

6.5 | Loss analysis

The total power loss (Ploss) of the configuration includes rectifier loss, IGBT loss, and inverter diode loss.

Ploss ¼ PRec þ PC þ PSW þ PDiode: (52)
6.5.1 | Bridge rectifier

The three‐phase bridge rectifier has six diodes, and the loss is expressed as

PRec ¼ 6 VDIRecð Þ: (53)
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6.5.2 | Diode in inverter

The loss in diode D1 and D2 in the inverter is given by

PDiode ¼ 2 VDIoð Þ: (54)

6.5.3 | IGBT conduction loss

The conduction loss occurs when the IGBT or free wheeling diode is in ON state. The conduction loss on high side
PON−H of the inverter is given by

PON−H ¼ I2o∗RON−H∗
Vo

VDC
: (55)

The conduction loss on low side PON−H is given by

PON−L ¼ I2o∗RON−L∗ 1 −
Vo

VDC

� �
; (56)

where the RON−H and RON−L are the resistances of IGBT for high and low side, respectively.
6.5.4 | IGBT switching loss

The power loss occurred during the transition and based on switching frequency. The switching loss PSW is calculated
by

PSW ¼ 1
2
∗VDC∗Io∗ tr þ tf

� �
∗f sw; (57)

where tr and t f are the high time and fall time of IGBT, respectively. f sw is the switching frequency.
The loss analysis of the switches S1, S2, and S2 based on the internal parameters are calculated. The conduction loss

and switching loss are analyzed for a different range of input voltages and power. The loss for various operating condi-
tions such as PWM, modified sine wave, and SWPM is calculated. The comparison is graphed, is plotted for one switch,
and is shown in Figure 11. While comparing the utilization of semiconductor devices compared with existing models as
given in Table 4, the proposed model has low losses.
FIGURE 11 IGBT loss comparison for single switch



TABLE 4 IGBT loss comparison

Inverter Type Switches Capacitor Total Loss, W

Dual phase with single DC 4 2 11.032

bus with split capacitor

Dual phase with three wires 6 ‐ 16.548

Dual‐phase dual DC bus 4 4 11.032

Dual phase with transformer 4 2 11.032

Proposed 2 3 5.516

SENTHILNATHAN AND ANNAPOORANI 17 of 19
7 | CONCLUSION

The dual‐output back‐end converter is designed with two semiconductor switches with significant advantage of supply-
ing two independent loads. The sliding mode control is designed, and it results in 10% steady‐state error for voltage and
5% for current, and to alleviate the error, integral sliding mode (ISMC) is introduced. The integration of cyber infrastruc-
ture with cyber twin approach is implemented. The proposed system is evaluated with the cyber infrastructure, and per-
formance is analyzed. The inverter is analyzed under steady‐state and variable‐operating conditions. The ISMC‐based
control strategy results in robust performance even under the load variations. The output voltage is not distorted under
step change in the loads.

The cyber twin approach realizes the physical system with the virtual model to enhance the performance of the con-
trol and monitoring of the system. Cyber twin approach has the wide range of applications in electrical systems. In
smart grids, Industry 4.0 evaluations implementing of cyber infrastructure with cyber twin makes the system reliable
and man to machine interactions.
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