Header menu link for other important links
X
Retinal vessel feature extraction from fundus image using image processing techniques
Published in Science Publishing Corporation
2018
Volume: 7
   
Issue: 2
Abstract
Retinal Vessel detection for retinal images play crucial role in medical field for proper diagnosis and treatment of various diseases like diabetic retinopathy, hypertensive retinopathy etc. This paper deals with image processing techniques for automatic analysis of blood vessel detection of fundus retinal image using MATLAB tool. This approach uses intensity information and local phase based enhancement filter techniques and morphological operators to provide better accuracy.Objective: The effect of diabetes on the eye is called Diabetic Retinopathy. At the early stages of the disease, blood vessels in the retina become weakened and leak, forming small hemorrhages. As the disease progress, blood vessels may block, and sometimes leads to permanent vision loss. To help Clinicians in diagnosis of diabetic retinopathy in retinal images with an early detection of abnormalities with automated tools.Methods: Fundus photography is an imaging technology used to capture retinal images in diabetic patient through fundus camera. Adaptive Thresholding is used as pre-processing techniques to increase the contrast, and filters are applied to enhance the image quality. Morphological processing is used to detect the shape of blood vessels as they are nonlinear in nature.Results: Image features like, Mean and Standard deviation and entropy, for textural analysis of image with Gray Level Co-occurrence Matrix features like contrast and Energy are calculated for detected vessels.Conclusion: In diabetic patients eyes are affected severely compared to other organs. Early detection of vessel structure in retinal images with computer assisted tools may assist Clinicians for proper diagnosis and pathology.
About the journal
JournalInternational Journal of Engineering & Technology
PublisherScience Publishing Corporation
Open AccessYes