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Abstract 

This paper describes the method for stabilizing and trajectory tracking of Self Erecting Single Inverted Pendulum (SESIP) using 
Linear Quadratic Regulator (LQR). A robust LQR is proposed in this paper not only to stabilize the pendulum in upright 
position but also to make the cart system to track the given reference signal even in the presence of disturbance. The control 
scheme of pendulum system consists of two controllers such as swing up controller and stabilizing controller. The main focus 
of this work is on the design of stabilizing controller which can accommodate the disturbance present in the system in the form 
of wind force. An optimal LQR controller with well tuned weighting matrices is implemented to stabilize the pendulum in the 
vertical position. The steady state and dynamic characteristics of the proposed controller are investigated by conducting 
experiments on benchmark linear inverted pendulum system. Experimental results prove that the proposed LQR controller can 
guarantee the inverted pendulum a faster and smoother stabilizing process with less oscillation and better robustness than a Full 
State Feedback (FSF) controller by pole placement approach. 
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1. Introduction 

    Inverted pendulum is an unstable, nonlinear, multivariable, fourth order, and under actuated system which can 
be treated as a typical control problem to study various modern control theories. The control of inverted pendulum 
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resembles the control systems that exist in some of the real time applications such as rockets and missiles, heavy 
crane lifting containers and self balancing robots. According to control purposes of inverted pendulum, the control 
of inverted pendulum can be divided into three aspects. The first aspect that is widely researched is the swing-up 
control of inverted pendulum [1, 2]. The second aspect is the stabilization of the inverted pendulum [3-4]. The 
third aspect is tracking control of the inverted pendulum [5]. In practice, stabilization and tracking control is more 
useful for plenty of real time applications. There are several problems to be solved in the control of inverted 
pendulum, such as swinging up and catching the pendulum from its stable pending position to the upright unstable 
position, and then balancing the pendulum at the upright position during disturbances, and further move the cart to 
a specified position on the rail [6]. Several methods for achieving swing-up and stabilization of pendulum system 
have been proposed in literature. In [7], a conservative law is derived from Lyapunov functions having a certain 
zone of non-convergence. A basic method of swing up control using energy methods for a cart-less pendulum has 
been proposed in [8]. This method has an advantage of a hierarchical nature, first controlling the pendulum angle, 
then the hinge position. However, in practical setups, there is an inherent limitation on the cart length and the 
magnitude of control force that can be applied. This gives the motivation to find out energy based methods for 
controlling and stabilizing the cart position with restricted cart length and restricted control force. The goal of this 
contribution is to implement the target tracking and stabilizing controller in real time for the linear inverted 
pendulum based on the control concepts of LQR theory and to report the disturbance rejection property of the LQR 
controller. 

Nomenclature 

 pendulum angle     vK  velocity gain   
xc   cart position    K state feedback gain 

 pendulum velocity   J cost function 
xc  cart velocity    A system matrix 
 damping ratio    B  input matrix 

n  natural frequency of oscillation  l length of the pendulum 
Mp pendulum mass    Fc cart input force 
M cart mass     V motor input voltage  
K p  proportional gain    Q, R LQR weighting matrices 
I pendulum moment of inertia  Km motor EMF constant 

2. System Model 

The linear Self Erecting Single Inverted Pendulum (SESIP) consists of a pendulum system which is attached to 
a cart equipped with a motor that drives it along a horizontal track. The schematic diagram of inverted pendulum 
system is shown in Fig. 1. The motor attached to the cart is used to adjust the position and velocity of the cart and 
the track restricts the cart movement in the horizontal direction. Encoders are attached to the cart and the pivot in 
order to measure the cart position and pendulum joint angle, respectively. 

 
Fig. 1. Schematic of Cart-Inverted Pendulum 
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2.1 Single Inverted Pendulum Equation of Motion 

The schematic diagram and angle definitions of SESIP are shown in Fig. 2. The single inverted pendulum (SIP) 
system is made of a motor cart on top of which pendulum is pivoted. The movement of the cart is constrained only 
in the horizontal x direction, whereas the pendulum can rotate in the x-y plane [9]. The SIP system has two DOF 
and can be fully represented using two generalized coordinates such as horizontal displacement of the cart, x

c
 and 

rotational displacement of pendulum, 

negligible. 

      

Fig. 2. SESIP Schematic 
Applying Euler-Lagrangian energy equation to SESIP schematic shown in Fig. 2 results in 

d L L
Qxcdt x xc c

                             (1) 

and          
d L L

Q
dt

                          (2) 

With 
T TL T V  where 

TT  is total kinetic energy, 
TV  is total potential energy, Qxc

 and Q  are the generalized 

force applied on the coordinate cx  and , respectively. Both the generalized forces can be defined as follows: 

      ( ) (t) BQ t F xx c eq cc
                                                     (3) 

and       B (t)Q p                                                                   (4) 

This energy is usually caused by its vertical movement from normality (gravitational potential energy) or by a 
spring related sort of displacement. The cart linear motion is horizontal and as such, never has vertical 
displacement. So the total potential energy is full
characterized below: 

      cos( (t))V M gl
T p p

                             (5) 

The amount of energy in a system due to its motion is measured by the kinetic energy. Hence, the total kinetic 
energy can be depicted as follows: 
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      T T
T c p

T                                                                          (6) 

Where T
c

 and T
p

 are the sum of the translational and rotational kinetic energies arising from both the cart and its 

mounted inverted pendulum, respectively. First, the translational kinetic energy of the motorized cart T
ct

 , is 

expressed as follows: 

      
21

2
T Mx
ct c

                                                                       (7) 

or, T
cr  , can be represented by: 

      
2 2

1
22

J K xm g c
T
cr rmp

                                                           (8) 

ten as shown below: 

      
21

2
x

c c
T M
c                                                                       (9) 

Where 
2 2

(J K / r )M Mc m g mp  

The total kinetic energy of the pendulum, 
p

T  ,is the sum of translational kinetic energy, 
pt

T  and rotational kinetic 

energy, 
pr

T  . 

      
1 12 2

(t)
2 2

T T M r I
p pt pr p p p

T                 (10) 

Where 
2 2 2

r x y
p p p

. From Fig. 2 px  and py  can be expressed as: 

      cos( (t)) (t)p c px x l                                                (11) 

and      sin( (t)) (t)p py l                                                     (12) 

Substituting (9), (10),(11),(12) into (6), gives the total kinetic energy, TT  of the system as: 

    2 2 21 1
(M M ) ( ) M cos( (t)) (t) (t) (I M I ) (t)

2 2
T c p c p p c p p pT x t l x     (13) 

The Lagrangian can be expressed using (5) and (13) 

2 2 2
cos( (t))

1 1
(M M ) ( ) M cos( (t)) (t) (t) (I M I ) (t)

2 2
T c p c p p c p p p M gl

p p
T x t l x      (14) 

From equation (1) and (2), the non linear equation of motion can be obtained as: 

2(M M ) ( ) B (t) (M cos( (t)) (t) sin( (t)) (t) (t)c p c eq c p p p p cx t x l M l F                     (15) 

and   2M cos( (t)) ( ) (I M ) (t) B (t) M g sin( (t)) 0p p c p p p p p pl x t l l   (16) 

The nonlinear model can be linearized around the equilibrium point (upright pendulum) so 
that sin( ) , cos( ) 1. The design of state feedback controller requires the mathematical model of the system 

in state space form. Thus the linearized model of inverted pendulum in state space form can be written as  

      X AX BU                                       (17) 

      Y CX   

Where 
T

x xc cX , U V and 
T

xcY  
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Table 1. List of Parameters

Symbol Description Value/Unit

R Motor armature resistance
L Motor armature inductance 0.18mH
KtKK Motor torque constant 0.00767 Nm/A

m Motor efficiency 100%
Km Motor EMF constant 0.00767 Ns/rad
J Rotor moment of inertia 3.9x10-7 kgm2

Kg Gearbox ratio 3.71

g Gearbox efficiency 100%
rm Motor pinion radius 6.35x10-3 m
rpr Position pinion radius 1.48x10-2 m
Beq Equivalent viscous damping

coefficient at motor
5.4 Nms/rad

Bp Viscous damping coefficient at 
pendulum pivot

5.4 Nms/rad

Pendulum length from pivot to
centre of mass

0.3302 m

I Pendulum moment of inertia 7.88x10-3 kgm2

Mp Pendulum mass 0.23kg
M Cart mass 0.94kg
Vm Motor nominal input voltage 5V

Substituting the parameters given in Table 1 into (17), results in the following state model.

0 0 1 0 0

0 0 0 1 0

0 2.2643 15.8866 0.0073 2.2772

0 27.8203 36.6044 0.0896 5.2470

x 0 0 1 0c c0 0 1 0

u
x 0 2 2643 15 8866 0 0073c c0 2.2643 15.8866 0.00730 2.2643 15.8866 0.0073

(18)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

xc

y
xc

(19)

The eigen values of the system matrix are -16.2577, -4.5611, 0, 4.8426. It can be clearly seen that the open loop
system has one pole in the Right Half Plane (RHP) i.e., positive pole. Therefore the system is unstable in open
loop. As a consequence, in order to maintain the pendulum balanced in the inverted position, a controller is to be
designed such that all the resulting closed loop poles lie in the Left Half Plane (LHP).

3. Formulation of Controller Design Problem

The controller design for the inverted pendulum system is broken up into two components. The first part involves
the design of a swing up controller that swings the pendulum up to the unstable equilibrium. The second part 
involves the design of an optimal state feedback controller that will stabilize the pendulum around the upright
position. When the pendulum approaches the linearized point, the control will switch to the stabilizing controller 
which will balance the pendulum around the vertical position. The control scheme of SESIP consists of two main 
control loops and a decision making logic to switch between the two control schemes. The control scheme of the
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inverted pendulum is shown in Fig. 3. One of the two control loops is a PV controller on the cart position that 
follows a set point designed to swing up the pendulum from the suspended to the inverted posture [10]. The other 
control loop is active when the pendulum is around the upright position and consists of a Linear Quadratic 
Regulator, maintaining the inverted pendulum in vertical position. The primary objective of the LQR scheme is to 

- osture. The linear cart 
should track a desired (square wave) position set point and at the same time the controller should also minimize the 
control effort. 

 
Fig. 3. Control scheme of inverted pendulum 

The gain of the LQR scheme is tuned to control the inverted pendulum and linear cart system to satisfy the 
following design requirements. 

1. The pendulum angle should be regulated around its upright position and never exceed a 1  degree 
deflection. 

2. Rise time 2  

3. Control effort Vm should be minimum and is not allowed to reach the saturation level.  
4. Controller design 

4.1 PV Controller 

This controller aims at swinging 0=-1800) while keeping the cart travels within 
the limited horizontal distance. Many different control algorithms can be used to perform the swing up control such 
as, trajectory tracking, rectangular reference input swing up type and Pulse Width Modulation (PWM) [11]. In this 
work, a PV controller is used because of its simple structure, effectiveness and easy tuning. The block diagram 
representation of swing up controller is shown in Fig. 4. The proportional velocity position controller for servo 
plant introduces two corrective terms. One is proportional (Kp) to the cart position error while the other is 
proportional (Kv) to the cart velocity. The resulting PV control law is given as: 

     (t) ( (t) (t)) (t)
d

V K x x K xm p c v cd dt
                     (20) 

The closed loop transfer function of the cart servo can be expressed as: 

     
( )( )

( ) 1 ( ) ( )

K G sx s pc

x s K G s sK G sp vd

                          (21) 

This leads to a second order system as follows: 

     
2

(12.23 1.6 )

1.6( )

( ) 1.6s

Kx s pc

x s s K Kv pd

                           (22) 

The desired performance 
second order form: 

     
2 2

2 0s sn n
                             (23) 

the PV controller gains are obtained as 274vK  and 5
v

K . 
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Fig. 4. Block diagram of PV controller 

4.2 LQR Controller 

The LQR method is a powerful technique for designing controllers for complex systems that have stringent 
performance requirements and it seeks to find the optimal controller that minimizes a given cost function [12]. The 
cost function is parameterized by two matrices, Q and R, that weight the state vector and the system input 
respectively. LQR method is based on the state-space model and it tries to obtain the optimal control input by 
solving the algebraic Riccatti equation. In this paper, the state feedback controller is designed using the linear 
quadratic regulator and the linear model of the system. Briefly, the LQR/LTR theory says that, given an nth order 
stabilizable system 

     ( ) ( ) ( )x t Ax t Bu t      0,t      0(0)x x                                    (24) 

Where ( )x t  is the state vector and ( )u t  is the input vector, determine the matrix 
n m

K R such that the static, 

full state feedback control law, 
      ( ) ( )u t Kx t                                          (25) 

satisfies the following criteria, 
a. the closed-loop system is asymptotically stable   b. the quadratic performance functional 

and the cost function    
1

[ ( ) ( ) ( ) ( )]
2 0

( ) T Tx t Qx t u t Ru t dtJ K                                (26)  

 is minimized. Q is a nonnegative definite matrix that penalizes the departure of system states from the 
equilibrium, and R is a positive definite matrix that penalizes the control input [13]. The following LQR 
design algorithm is used to determine the optimal state feedback. 

Step 1: Solve the matrix Algebraic Riccati Equation(ARE) 

   1
0

T T
PA A P Q PBR B P                       (29) 

Step 2: Determine the optimal state x*(t) from 

       

1*(t) *( )Tx A BR B P x t
         (30)  

Step 3: Obtain the optimal control u*(t) from 

        1*( ) *( )Tu t R B Px t                                   (31) 

Step 4: Obtain the optimal performance index from 

        
1 T

* * ( ) ( )
2

J x t Px t                         (32) 

The weighting matrices Q and R are important components of an LQR optimization process. The compositions of 
Q and R elements have great influences on system performance. The designer is free to select the matrices Q and 
R, but the selection of matrices Q and R is normally based on an iterative procedure using experience and physical 
understanding of the problems involved. 

5. Experimental Results 

In order to show the practical effectiveness of the proposed scheme, experiments are conducted using Quanser IP-
02 inverted pendulum system. The snapshot of the experimental set up is shown in Fig. 5. Firstly, the experimental 
results of two phases of swing up and stabilizing modes are presented. Secondly, the performance of robust LQR 
controller design is compared with FSF controller.  



176   E. Vinodh Kumar and Jovitha Jerome  /  Procedia Engineering   64  ( 2013 )  169 – 178 

 

Fig. 5. Snapshot of experimental setup 

Real time experiment configuration consists of computer with MATLAB, Simulink, Q8 data acquisition board and 
Quanser IP02 Linear inverted pendulum module. The controller gains of a state feedback controller are determined 
using the weighting matrices of linear quadratic regulator. The following weighting matrices are selected based on 
iterative method for the calculation of state feedback gain K. 

0.5 0 0 0

0 5.5 0 0

0 0 0 0

0 0 0 0

Q        0.0003R  

Using the system model from (18) and the above weighting matrices, the state feedback controller gains obtained 
for robust LQR controller is 

        44.72 200.8 49.77 27.38K  
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  Fig. 6. Pendulum angle                     Fig. 7. Control Signal 

The closed loop poles of the system are found to be  

                               6.04 10.84, 6.04 10.841 2s j s j , 2.97, 2.103 4s s  

It can be inferred from the above pole locations that the closed loop system is stable because all the poles are 
located on the LHP. Fig. 6 shows the output of the swing up controller which is able to bring the pendulum to 
upright position in around 7 sec. The swing up controller takes approximately 12 swings before the pendulum 
reaches close to vertical position. During the swing up phase, the magnitude of control signal is larger than that of 
the stabilizing phase. This is relevant because large amount of energy is required to swing the pendulum from 
downward position to its upright position and the small amount of energy is only required to stabilize the 
pendulum. The control signal applied to the cart is shown in Fig. 7. Even though the initial control signal during 
swing up phase reaches the maximum saturation level, the magnitude of control voltage applied to the motor is 
reduced well below 3.3V after the pendulum reaches the upright position. 
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5.1 Disturbance rejection 
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                            Fig. 8 Pendulum velocity                                         Fig. 9. Zoomed view of pendulum velocity 
The disturbance rejection ability of the controller strategy is explained in this section. After the pendulum swing up 
and stabilization phase, disturbance is introduced into the pendulum at 15th second as shown in Fig. 8. The zoomed 
view of pendulum velocity response is shown in Fig. 9 to highlight the magnitude of deviation in angle. The 
magnitude of pendulum velocity deviates to a maximum of 60 deg when the disturbance signal is introduced, but 
the controller is able to reduce the oscillation in less than 2 seconds which makes the pendulum to maintain its 
upright position to track the given signal. 
 

5.2 Dynamic performance assessment of FSF and LQR controllers 
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Fig.10. Cart position response of FSF and LQR controllers                 Fig. 11. Pendulum angle response of FSF and LQR controllers 
 

Dynamic performance indices such as rise time, settling time and overshoot are chosen to evaluate the performance 

of both LQR and FSF controllers for the response of cart position and pendulum angle. The state feedback gain 

f FSF controller is 

compared with that of the LQR controller. Fig. 10 and 11 show the response of cart position and pendulum angle, 

respectively. Based on the performance indices given in Table 2, it is worth to note that the LQR controller has less 

rise time and reaches the set point quickly compare to FSF controller. LQR controller is also characterized by a 

reduced overshoot and short delay time. In summary, for dynamic response, the inverted pendulum controlled by 

LQR controller 1) balances faster because of the shorter settling time; 2) has better robustness due to less 

maximum overshoot. The above points substantiates for the fact that the LQR controller can guarantee the inverted 

pendulum system a better dynamic performance than a FSF controller. 
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Table 2. Performance Indices of Cart Position 
 

 

 

 

6. Conclusion 

In this paper, a control strategy based on PV controller and robust LQR controller has been proposed for swing up 
and stabilization of an inverted pendulum. The mathematical model of an inverted pendulum has been obtained 
using Euler-Lagarangian principles. A PV controller based on energy based method has been implemented to 
swing up the pendulum to upright position. Once the pendulum reaches the vertical position, a stabilizing 
controller based on robust LQR is activated to catch the pendulum and to make it track the given reference signal. 
In order to show the effectiveness of the proposed control scheme, disturbance signal has been introduced into 
system and the ability of the controller to arrest the oscillation in shorter time period has been experimentally 
demonstrated. Furthermore, experimental results show that the steady state performance of the proposed LQR 
controller has smaller oscillation amplitude than that of the FSF controller. The control scheme had not only good 
dynamic performance, but also robustness to external disturbance. As a future work, in order to further reduce the 
oscillation amplitude and frequency, friction compensation schemes can be incorporated in the controller strategy. 
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Time domain parameter FSF LQR 

Rise time (sec) 3.1 1.8 
Settling time (sec) 3.8 3.2 
Overshoot (percentage) 12 8 


