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We discuss stability analysis for uncertain stochastic neural networks
(SNNs) with time delay in this letter. By constructing a suitable
Lyapunov-Krasovskii functional (LKF) and utilizing Wirtinger inequal-
ities for estimating the integral inequalities, the delay-dependent
stochastic stability conditions are derived in terms of linear matrix in-
equalities (LMIs). We discuss the parameter uncertainties in terms of
norm-bounded conditions in the given interval with constant delay. The
derived conditions ensure that the global, asymptotic stability of the
states for the proposed SNNs. We verify the effectiveness and applica-
bility of the proposed criteria with numerical examples.

1 Introduction

The significance of neural networks (NNs) cannot be limited to being a
class of mathematical models and information processing systems. Their
application is far-reaching in many areas, among them automatic control,
signal processing, pattern recognition, and quadric recognition (Haykin,
2007). The stability of NNs has been discussed by many researchers (Anbu-
vithya, Mathiyalagan, Sakthivel, & Prakash, 2016; Cichocki & Unbehauen,
1993; Lakshmanan, Prakash, Rakkiyappan, & Joo, 2020; Liu, Zeng, &Wang,
2017; Liu, Wang, & Liu, 2006; Li, Zheng, & Lin, 2011; Lv et al., 2017; Zhang,
Liu, & Zhou, 2012; Wong & Selvi, 1998; Zheng, Zhang, & Wang, 2009).
However, in many practical NNs, time delays are unavoidable, and they
lead to NN instability, oscillation, and poor performance. Due to this,
stability investigation of NNs with time delays has become an important
area for research, and many levant reports have been published (Chen &
Rong, 2003; Chen & Wu, 2009; Chen, Sun, Liu, & Rees, 2010; Fu & Li, 2011;
Lakshmanan et al., 2018; Li, Wang, Yang, Zhang, & Wang, 2008; Li & Chen,
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228 R. Suresh and A. Manivannan

2009; Qiu, Cui, & Wu, 2009; Shao, Huang, & Zhou, 2009; Yu, Zhang, &
Quan, 2015; Zhang, Cao, Wu, Chen, & Alsaadi, 2018; Zhang & Quan, 2015).
A global exponential stability condition and inequality based on a linear
matrix inequality (LMI) that forms an global exponential stability condition
for inertial Cohen-Grossberg NNs with time delays is discussed in Yu et al.
(2015). Projective synchronization of fractional-order NNs with multiple
time delays was studied in Zhang et al. (2018), Zhang and Yu (2016), and
Zhang and Quan (2015). Zhang and Quan (2015) sought to obtain sufficient
LMI-based conditions for the existence and global exponential stability of
inertial bidirectional associative memory NNs with time delays. Therefore,
it becomes imperative to include the factor of time delays in the dynamical
analysis of NNs.

Stochastic disturbance generally is affected by network models. Thus,
when the stability of NNs is analyzed, stochastic disturbance becomes un-
avoidable. This happens due to the common factor that synaptic trans-
mission is a noisy process, and the neurons’ connection weights rely on
certain values of resistance and capacitance where there are uncertainties.
In this regard, a great deal of work has been conducted on stability anal-
ysis for delayed SNNs and robust stability for uncertain stochastic neural
networks (SNNs). As a result, scientific results have been published in rela-
tion to the stability of NNs with stochastic disturbance (Balasubramaniam
& Lakshmanan, 2011; Blythe, Mao, & Liao, 2001; Chen & Wu, 2009; Liao
& Mao, 1996; Mao, 1997; Muralisankar, Manivannan, & Balasubramaniam,
2015; Xia, Yu, Li, & Zheng, 2012; Zhao, Gao, &Mou, 2008; Zhu&Cao, 2010a,
2010b, 2014). Stability analysis for NNs by using specific stochastic inputs
was discussed in Blythe et al. (2001) and Liao and Mao (1996). For Marko-
vian jump impulsive stochastic Cohen-Grossberg NNswithmixed time de-
lays, Zhu and Cao (2010b) used the Lyapunov-Krasovskii functional (LKF)
method for structuring a novel robust exponential stability criterion and
known or unknown parameters to be achieved. Zhu and Cao (2014) inves-
tigated the stability of stochastic delayed recurrent NNs with the use of an
augmented LKF method. This leads to the need for increased attention to
the issue of stability investigation for SNNs with time delays.

However, there are also inevitable uncertainties in modeling NNs due
to errors in modeling and fluctuating parameters at the time of execution,
resulting in instability and poor performance. There have also been many
interesting results recently (Chen & Qin, 2010; Deng, Hua, Liu, Peng, & Fei,
2011; Hua, Liu, Deng, & Fei, 2010; Huang & Cao, 2007; Li, Chen, Zhou,
& Fang, 2008; Wang, Shu, Fang, & Liu, 2006; Wu, Su, Chu, & Zhou, 2009;
Zhang, Shi, & Qiu, 2007; Zhang, Shi, Qiu, & Yang, 2008) on the stability of
uncertain SNNs with delay. Chen and Qin (2010), Hua et al. (2010), Huang
and Cao (2007), Li et al. (2008), and Zhang et al. (2008) investigated un-
certain SNNswith robust stability and time-varying delays in terms of LKF
and stochastic analysis approaches. The robust stability in terms of stochas-
tic Hopfield NNs with time delays was examined by using the LKF func-
tional and conducting stochastic analysis by, Wang, Shu, Fang, and Liu
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Robust Stability Analysis of SNNs 229

(2006) and Zhang et al. (2007). Deng et al. (2011) studied delay-dependent
exponential stability of uncertain where SNNs with mixed delays, based
on the LKF method. Wu, Su, Chu, and Zhou (2009) discussed some novel
delay-dependent conditions, sufficient to ensure the global exponential
stability of discrete, recurrent NNs with time-varying delays. Thus, it is
evident that many researchers have contributed to the analysis of the sta-
bility of time-delayed NNs. A number of methods have been developed
to minimize the conservatism of stability criteria: the multiple integral ap-
proach (Fang & Park, 2013), model transformation (Kwon & Park, 2004),
free-weightingmatrix techniques (He, Liu, Rees, &Wu, 2007; Liu,Wu,Mar-
tin, & Tang, 2007), park inequality (Park, 1999), the convex combination
technique (Park & Ko, 2007), and reciprocally convex optimization (Park,
Ko, & Jeong, 2011). Most important, since estimating a lower bound of

the quadratic integral term such as
∫ t
t−ϑ

xT (s)Dx(s)ds, (D > 0) is one of the
major research topics on time-delay systems, Jensen’s inequality has been
used widely as a key lemma in obtaining delay-dependent stability crite-
ria. The Wirtinger-based integral inequality, introduced recently in Seuret
and Gouaisbaut (2013), also reduced the conservatism of Jensen’s inequal-
ity, and its advantage was reflected in the comparisons of delay bounds
for numerous systems, such as systems with constant, known, and time-
varying delay. However, some new LKFs were not considered, and use of
theWirtinger-based integral inequalitywas concentrated only in Seuret and
Gouaisbaut (2013). Therefore, further improvement on the reduction of con-
servatism in stability analysis for a systemwith timedelays can be achieved,
the motivation behind the research we present in this letter.

This letter discusses robust stability analysis for SNNs with time delay.
We also consider parameter uncertainties in the systemmatrices of delayed
SNNs. Based on suitable LKF, we derive the delay stability conditions in
line with LMIs.

This letter focuses on the following points:

• Parameter uncertainties and stochastic disturbance are taken into
account.

• Integral terms are estimated based on Wirtinger’s integral inequali-
ties. With appropriate LKF and stochastic stability theory, the delay-
dependent stability conditions are attained to ensure the global
asymptotic stability of the proposed system.We have employedwell-
known software to identify the effectiveness of the intended LMIs.
Finally, we provide a number of figures to check the effectiveness of
our intended method.

We use the following notations:

R
n n-dimensional Euclidean space

R
n×n n× n real matrices
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230 R. Suresh and A. Manivannan

|·| Euclidean norm in R
n

(Ω,F,P ) Complete probability space with a filtration {Ft}t≥0

AT Transpose of a matrix A

* Symmetric block in a symmetric matrix

2 Problem Formulation and Preliminaries

We consider the following Hopfield NNs with time delays,

dηi(t)

dt
= −di(ηi(t)) +

n
∑

j=1

b0i jσ j(η j(t)) +

n
∑

j=1

c1i jσ j(η j(t − ϑ ) + Ji,

i = 1, 2, . . . ,n, (2.1)

or, equivalently, the vector form,

η̇i(t) = −G0η(t) + G1σ (η(t)) + G2σ (η(t − ϑ ) + J, (2.2)

where η(t) = [η1(t), η2(t), . . . , ηn(t)]
T ∈ R

n is the neuron state vector; J =

[J1, J2, . . . , Jn] denotes the external input; σ (η) = [σ1(η1(t)), σ2(η2(t)), . . . ,
σn(ηn(t))]

T denotes the neuron activation function;G0 = diag(d1, d2, . . . , dn),
G1 = (b0i j )n×n, G2 = (c1i j )n×n are the connection weight matrix; and ϑ > 0

denotes the discrete time delay.
We make following assumptions throughout this letter.

Assumption 1. For any j = 1, 2, . . . ,n, σ j(·) satisfies the following inequality:

0 ≤
σ j(β1) − σ j(β2)

β1 − β2
≤ p j, ∀β1, β2 ∈ R, β1 �= β2,

where P = diag(p1, p2, . . . , pn) > 0.

Assuming that η∗ = (η∗
1, η

∗
2, . . . , η

∗
n)

T is an equilibrium point of system
2.2, one can derive from that system ξ (t) = η(t) − η∗, which transforms sys-
tem 2.2 as follows:

ξ̇ (t) = −G0ξ (t) + G1 f (ξ (t)) + G2 f (ξ (t − ϑ )), (2.3)

where ξ (t) is the state vector of the transformed system, f j(ξ j(t)) =

σ j(ξ j(t) + η∗
j ) − σ j(η

∗
j ). Consider that the function f j(·), j = 1, 2, . . . ,n, sat-

isfies the following condition:

0 ≤
f j(ξ j )

ξ j
≤ p j, f j(0) = 0, ∀ξ j �= 0, j = 1, 2, . . . ,n. (2.4)
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Robust Stability Analysis of SNNs 231

We consider parameter uncertainties and stochastic perturbations as
follows:

dξ (t) =
[

− G0(t)ξ (t) + G1(t) f (ξ (t)) + G2(t) f (ξ (t − ϑ ))
]

dt

+
[

G3(t)ξ (t) + G4(t)ξ (t − ϑ )
]

dw(t), (2.5)

ξ (t) = �(t), ∀t ∈ [−ϑ, 0],

where w(t) indicates a one-dimensional Brownian motion satisfying
E{dw(t)} = 0 and E{dw(t)2} = dt. G0(t) = G0 + 	G0(t), G1(t) = G1 +

	G1(t), G2(t) = G2 + 	G2(t), G3(t) = G3 + 	G3(t), and G4(t) = G4 +

	G4(t), where G3 and G4 are connection weight matrices with appropriate
dimensions. In equation 2.5, the parametric uncertainties are assumed to
have the form

[

	G0(t) 	G1(t) 	G2(t) 	G3(t) 	G4(t)] = EF(t)[H1 H2 H3 H4 H5],

(2.6)

where E and Hi(i = 1, . . . , 5) are known, real, constant matrices:

FT (t)F(t) ≤ I. (2.7)

It is assumed that all elements of F(t) are Lebesque measurable. The ma-
trices 	G0(t), 	G1(t), 	G2(t), 	G3(t), and 	G4(t) are said to be admissible
if equations 2.5 to 2.7 hold. The initial condition of equation 2.5 is given as
ξ (t) = �(t), t ∈ [−ϑ, 0].

Remark 1. The structure of the parameter uncertainty as in equations 2.6
and 2.7 was extensively exploited in the analysis of robust control and fil-
tering of uncertain systems (Wang, Xie, & De Souza, 1992; Wang & Qiao,
2002). Many practical systems have unknown parameters that can either be
modeled exactly or overbound by equation 2.7.

The following lemmas are useful in deriving the stability results for
SNNs, equation 2.5:

Lemma 1 (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994). Given constant ma-
trices μ2, μ3, and μ4 with appropriate dimensions, where μT

2 = μ2 and μT
3 = μ3,

μ2 + μT
4 μ−1

3 μ4 < 0, if and only if

[

μ2 μT
4

μ4 −μ3

]

< 0.

Lemma 2 (Yue, Tian, Zhang, & Peng, 2009). Let B,F,N0,N1 and M be real ma-
trices of appropriate dimensions with M > 0, FT (t)F(t) ≤ I. Then for any scalar
ǫ > 0 satisfying M−1 − ǫ−1N1N

T
1 > 0, we have
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232 R. Suresh and A. Manivannan

1. N1F(t)N0 +NT
0 F

T (t)NT
1 ≤ ǫ−1N1N

T
1 + ǫNT

0 N0

2. (B+N1F(t)N0)
TP(B+N1F(t)N0) ≤ BT (M−1 − ǫ−1N1N

T
1 )

−1B+ǫNT
0 N0.

Lemma 3 (Seuret & Gouaisbaut, 2013). For any constant matrix M1 > 0, the
following inequality holds for all continuously differentiable function ϕ in [b, c] →

R
n:

(c− b)

∫ c

b

ϕT (s)M1ϕ(s)ds ≥

( ∫ c

b

ϕ(s)ds

)T

M1

( ∫ c

b

ϕ(s)ds

)

+ 3�TM1�,

where � =

∫ c

b

ϕ(s)ds−
2

c− b

∫ c

b

∫ s

b

ϕ(u)duds.

3 Main Results

In this section, we derive a delay-dependent stochastic stability condition
based on suitable LKF and LMI approaches.

We introduce two new state variables for the SNNs, equation 2.5,

γ (t) = −G0(t)ξ (t) + G1(t) f (ξ (t)) + G2(t) f (ξ (t − ϑ )) (3.1)

and

ζ (t) = G3(t)ξ (t) + G4(t)ξ (t − ϑ ), (3.2)

and have

dξ (t) = γ (t)dt + ζ (t)dw(t). (3.3)

Moreover, the following equality holds . . .

ξ (t) − ξ (t − ϑ ) =

∫ t

t−ϑ

dξ (s) =

∫ t

t−ϑ

γ (s)ds+

∫ t

t−ϑ

ζ (s)dw(s). (3.4)

The following theorem provides the mean-square asymptotic stability re-
sults for SNNs, equation 2.5.

Theorem 1. SNNs, equation 2.5, are globally asymptotically stable in the mean
square if there exist positive-definite matrices Q = QT > 0, Z1 = ZT

1 > 0, Z2 =

ZT
2 > 0, and Rl = RT

l > 0, l = 1, 2, and diagonal matrices U0 > 0 and U1 > 0,
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Robust Stability Analysis of SNNs 233

such that the following LMIs hold:

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1,1 0 �1,3 �1,4 0 0 0 0 �1,9 �1,10 �1,11

∗ −R1 0 �2,4 0 0 0 0 �2,9 0 �2,11

∗ ∗ �3,3 0 0 0 0 0 0 �3,10 0

∗ ∗ ∗ �4,4 0 0 0 0 0 �4,10 0

∗ ∗ ∗ ∗ �5,5 �5,6 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ �6,6 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ �7,7 �7,8 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ �8,8 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϑZ1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϑZ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

(3.5)

where

�1,1 = −2QG0 + R1, �1,3 = QG1 +U0P, �1,4 = QG2, �1,9 = GT
3Q,

�1,10 = −GT
0 ϑZ1, �1,11 = GT

3 ϑZ2, �2,4 = U1P, �2,9 = GT
4Q,

�2,11 = GT
4 ϑZ2, �3,3 = R2 − 2U0, �3,10 = GT

1 ϑZ1, �4,4 = −R2 − 2U1,

�4,10 = GT
2 ϑZ1, �5,5 = −

4

ϑ
Z1, �5,6 =

6Z1

ϑ2
, �6,6 =

−12Z1

ϑ3
,

�7,7 = −
4

ϑ
Z2, �7,8 =

6Z2

ϑ2
, �8,8 =

−12Z2

ϑ3
.

Proof. In order to prove the asymptotically stable criteria, we consider the
following LKF,

V (t) =

3
∑

i=1

Vi(t), (3.6)

where

V1(t) = ξT (t)Qξ (t),

V2(t) =

∫ t

t−ϑ

ξT (s)R1ξ (s)ds+

∫ t

t−ϑ

f T (ξ (s))R2 f (ξ (s))ds,

V3(t) =

∫ 0

−ϑ

∫ t

t+θ

γ T (s)Z1γ (s)dsdθ +

∫ 0

−ϑ

∫ t

t+θ

ζ T (s)Z2ζ (s)dsdθ.
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234 R. Suresh and A. Manivannan

Then it can be obtained by Ito’s differential formula (Mao, 1997) that

dV (t) = LV (t)dt + 2ξT (t)Qζ (t)dw(t), (3.7)

where

LV1(t) = 2ξT (t)Qγ (t) + ζ T (t)Qζ (t), (3.8)

LV2(t) = ξT (t)R1ξ (t) − ξT (t − ϑ )R1ξ (t − ϑ ) + f T (ξ (t))R2 f (ξ (t))

− f T (ξ (t − ϑ ))R2 f (ξ (t − ϑ )), (3.9)

LV3(t) ≤ ϑγ T (t)Z1γ (t) −

∫ t

t−ϑ

γ T (s)Z1γ (s)ds+ ϑζ T (t)Z2ζ (t)

−

∫ t

t−ϑ

ζ T (s)Z2ζ (s)ds. (3.10)

By lemma 3,

−

∫ t

t−ϑ

γ T (s)Z1γ (s)ds ≤ −
1

ϑ

{ ∫ t

t−ϑ

γ (s)ds

}T

Z1

{ ∫ t

t−ϑ

γ (s)ds

}

−
3

ϑ

{ ∫ t

t−ϑ

γ (s)ds−
2

ϑ

∫ t

t−ϑ

∫ t

s

γ (u)duds

}T

Z1

×

{ ∫ t

t−ϑ

γ (s)ds−
2

ϑ

∫ t

t−ϑ

∫ t

s

γ (u)duds

}

(3.11)

−

∫ t

t−ϑ

ζ T (s)Z2ζ (s)ds ≤ −
1

ϑ

{ ∫ t

t−ϑ

ζ (s)ds

}T

Z2

{ ∫ t

t−ϑ

ζ (s)ds

}

−
3

ϑ

{ ∫ t

t−ϑ

ζ (s)ds−
2

ϑ

∫ t

t−ϑ

∫ t

s

ζ (u)duds

}T

Z2

×

{ ∫ t

t−ϑ

ζ (s)ds−
2

ϑ

∫ t

t−ϑ

∫ t

s

ζ (u)duds

}

. (3.12)

From condition 2.4, for any

U0 = diag{e11, e21, . . . , en1} > 0 andU1 = diag{e12, e22, . . . , en2} > 0,

it may be noted that

0 ≤ −2
n

∑

j=1

e j1 f j
(

ξ j(t)
)[

f j(ξ j(t)) − p jξ j(t)
]
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Robust Stability Analysis of SNNs 235

− 2
n

∑

j=1

e j2 f j
(

ξ j(t − ϑ )
)

×
[

f j(ξ j(t − ϑ )) − p jξ j(t − ϑ )
]

= 2ξT (t)U0P f (ξ (t)) − 2 f T (ξ (t))U0 f (ξ (t)) + 2ξT (t − ϑ )U1P f (ξ (t − ϑ ))

− 2 f T (ξ (t − ϑ ))U1 f (ξ (t − ϑ )). (3.13)

Substituting equations 3.8 to 3.13 into 3.7, we have

dV (t) ≤ χT (t)� χ (t)dt + 2ξT (t)Qζ (t)dw(t). (3.14)

Taking the mathematical expectation of both sides of equation 3.14, there
exists a positive scalar α1 > 0 satisfying

E
[

dV (t)
]

≤ E
(

χT (t)� χ (t)
)

≤ −α1E
∥

∥ξ (t)
∥

∥

2
. (3.15)

� is defined in theorem 1 with

χT (t) =

[

ξT (t), ξT (t − ϑ ), f T (ξ (t)), f T (ξ (t − ϑ )),

( ∫ t

t−ϑ

γ (s)ds

)T

,

( ∫ t

t−ϑ

∫ t

s

γ (u)duds

)T

,

( ∫ t

t−ϑ

ζ (s)ds

)T

,

( ∫ t

t−ϑ

∫ t

s

ζ (u)duds

)T]

.

Thus, if� < 0, the SNNs, equation 2.5, are globally asymptotically stable in
the mean square. �

Now we can study the robust stability analysis for SNNs, equation 2.5,
with parameter uncertainties. Based on theorem 1, we provide a delay-
dependent criterion:

Theorem 2. SNNs, equation 2.5, are globally robustly asymptotically stable in
the mean square if there exist positive-definite matrices Q = QT > 0,Z1 = ZT

1 >

0,Z2 = ZT
2 > 0,Rl = RT

l > 0, l = 1, 2; diagonal matrices U0 > 0 and U1 > 0;
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and scalars ǫi > 0, (i = 1, 2, 3) such that the following LMIs hold:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

� Q̂E Ŵ1ϑZ1 0 ǫ1Ŵ2 Ŵ3Q 0 ǫ2Ŵ4 Ŵ5ϑZ2 0 ǫ3Ŵ6

∗ −ǫ1I 0 0 0 0 0 0 0 0 0

∗ ∗ −ϑZ1 ϑZ1E 0 0 0 0 0 0 0

∗ ∗ ∗ −ǫ1I 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −ǫ1I 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q QE 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫ2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ2I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϑZ2 ϑZ2E 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ3I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ3I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

(3.16)

where

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂1,1 0 �1,3 �1,4 0 0 0 0

∗ −R1 0 �2,4 0 0 0 0

∗ ∗ �̂3,3 0 0 0 0 0

∗ ∗ ∗ �̂4,4 0 0 0 0

∗ ∗ ∗ ∗ �5,5 �5,6 0 0

∗ ∗ ∗ ∗ ∗ �6,6 0 0

∗ ∗ ∗ ∗ ∗ ∗ �7,7 �7,8

∗ ∗ ∗ ∗ ∗ ∗ ∗ �8,8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Q̂ = [Q 0 0 0 0 0 0 0]T , Ŵ1 = [−GT
0 0 GT

1 G
T
2 0 0 0 0]T ,

Ŵ2 = [−H1 0 H2 H3 0 0 0 0]
T , Ŵ3 = [G3

T G4
T 0 0 0 0 0 0]T ,

Ŵ4 = [H4 H5 0 0 0 0 0 0]T , Ŵ5 = [G3
T G4

T 0 0 0 0 0 0]T ,

Ŵ6 = [H4 H5 0 0 0 0 0 0]T , �̂1,1 = �1,1 + ǫ1H1
TH1,

�̂3,3 = �3,3 + ǫ1H2
TH2, �̂4,4 = �4,4 + ǫ1H3

TH3.

Proof. Replacing G0,G1,G2,G3,G4 in LMI, equation 3.5, with G0 +

EF(t)H1,G1 + EF(t)H2,G2 + EF(t)H3,G3 + EF(t)H4,G4 + EF(t)H5 and us-
ing lemmas 1 and 2, we obtain the LMI, equation 3.16. �

Remark 2. Theorem 2 presents a sufficient condition to test the global
robust stability for uncertain SNNs with time delay. Therefore, it is
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straightforward to test the feasibility of equation 3.16 without tuning any
parameters using the Matlab LMI toolbox.

To show that our major results are sufficiently general to cover certain
cases that have been discussed in the literature, we give a few corollaries.

Case 1. In the case that there are no stochastic disturbances in (2.5), we
can get the following deterministic system,

ξ̇ (t) = −(G0 + 	G0(t))ξ (t) + (G1 + 	G1(t)) f (ξ (t))

+ (G2 + 	G2(t)) f (ξ (t − ϑ )), (3.17)

then we have the given corollary.

Corollary 1. If there exist positive-definite matrices Q = QT > 0,Z1 = ZT
1 >

0,Rl = RT
l > 0, l = 1, 2, diagonal matrices U0 > 0 and U1 > 0, scalar ǫ1 > 0,

such that the below LMIs

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

� Q̂E Ŵ1ϑZ1 0 ǫ1Ŵ2

∗ −ǫ1I 0 0 0

∗ ∗ −ϑZ1 ϑZ1E 0

∗ ∗ ∗ −ǫ1I 0

∗ ∗ ∗ ∗ −ǫ1I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (3.18)

where

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂1,1 0 QG1 +U0P QG2 0 0

∗ −R1 0 U1P 0 0

∗ ∗ R2 − 2U0 + ǫ1H2
TH2 0 0 0

∗ ∗ ∗ −R2 − 2U1 + ǫ1H3
TH3 0 0

∗ ∗ ∗ ∗ − 4
ϑ
Z1

6Z1

ϑ2

∗ ∗ ∗ ∗ ∗ −12Z1

ϑ3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�̂1,1 = �1,1 + ǫ1H1
TH1, Q̂ = [Q 0 0 0 0 0]T , Ŵ1 = [−GT

0 0 GT
1 G

T
2 0 0]T ,

Ŵ2 = [−H1 0 H2 H3 0 0]T

hold, then the system (3.17) is globally robustly asymptotically stable. Corollary
1 provide the stability condition of delayed NNs without stochastic disturbance in
terms of LMI.

Case 2. In the absence of uncertainties in equation 3.10, we can get the
following systems:

ξ̇ (t) = −G0ξ (t) + G1 f (ξ (t)) + G2 f (ξ (t − ϑ )). (3.19)
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The corresponding stability condition is derived in the following corollary:

Corollary 2. If there exist positive-definite matrices Q = QT > 0,Z1 = ZT
1 >

0,Rl = RT
l > 0, l = 1, 2, and diagonal matricesU0 > 0 andU1 > 0, such that the

following LMIs hold,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2QG0 + R1 0 QG1 +U0P QG2 0 0 −GT
0 ϑZ1

∗ −R1 0 U1P 0 0 0

∗ ∗ R2 − 2U0 0 0 0 GT
1 ϑZ1

∗ ∗ ∗ −R2 − 2U1 0 0 GT
2 ϑZ1

∗ ∗ ∗ ∗ − 4
ϑ
Z1

6Z1

ϑ2 0

∗ ∗ ∗ ∗ ∗ −12Z1

ϑ3 0

∗ ∗ ∗ ∗ ∗ ∗ −ϑZ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0.

(3.20)

hold, then the system, equation 3.19, is globally asymptotically stable.

4 Numerical Examples

4.1 Example 1. System 2.5 without uncertainties, may be considered
with the given matrices:

G0 =

⎡

⎢

⎣

4.5 0 0

0 5.2 0

0 0 3.6

⎤

⎥

⎦
, G1 =

⎡

⎢

⎣

−1 0.4 −0.5

0 −0.7 0.7

0.2 0.6 0.8

⎤

⎥

⎦
,

G2 =

⎡

⎢

⎣

0.5 0.7 1.1

−0.1 0.4 0

0 −0.2 −0.8

⎤

⎥

⎦
, G3 =

⎡

⎢

⎣

1.2 0.4 −0.8

−1.5 −1.8 0.9

0.5 1.1 2.1

⎤

⎥

⎦
,

G4 =

⎡

⎢

⎣

0.2 0.1 −0.4

0 0.2 0.5

0.6 0 0

⎤

⎥

⎦
, P = 0.4I, f (ξ (t)) = 0.4 tanh(ξ (t)).

By using the Matlab LMI toolbox, setting ϑ = 1.07, and solving the LMI
condition in theorem 1, the following feasible solutions may be obtained:

Q =

⎡

⎢

⎣

63.5169 28.5110 12.2574

28.5110 32.0008 10.1113

12.2574 10.1113 41.8480

⎤

⎥

⎦
, R1 =

⎡

⎢

⎣

247.3935 39.1445 52.7761

39.1445 42.9861 4.6154

52.7761 4.6154 30.6158

⎤

⎥

⎦
,
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R2 =

⎡

⎢

⎣

67.8405 9.3455 −6.3186

9.3455 52.0187 −16.1782

−6.3186 −16.1782 12.7751

⎤

⎥

⎦
, Z1 =

⎡

⎢

⎣

3.4487 1.6577 0.7620

1.6577 1.6485 0.0579

0.7620 0.0579 0.4856

⎤

⎥

⎦
,

Z2 =

⎡

⎢

⎣

9.4027 5.5021 1.9470

5.5021 5.5867 0.4425

1.9470 0.4425 0.9293

⎤

⎥

⎦
, U0 =

⎡

⎢

⎣

90.1657 0 0

0 90.1657 0

0 0 90.1657

⎤

⎥

⎦
,

U1 =

⎡

⎢

⎣

70.2397 0 0

0 70.2397 0

0 0 70.2397

⎤

⎥

⎦
.

Therefore, it follows from theorem 1 that the delayed stochastic neural net-
work, equation 2.5, is globally asymptotically stable in the mean square.

4.2 Example 2. Consider the following uncertain stochastic NNs,

dξ (t) =
[

− (G0 + 	G0(t))ξ (t) + (G1 + 	G1(t)) f (ξ (t))

+ (G2 + 	G2(t)) f (ξ (t − ϑ ))
]

dt (4.1)

+
[

(G3 + 	G3(t))ξ (t) + (G4 + 	G4(t))ξ (t − ϑ )
]

dw(t),

where

G0 =

[

2 1

1.2 3

]

, G1 =

[

−1.5 0.6

0.6 −1.5

]

, G2 =

[

0.5 1

1.2 0.6

]

,

G3 =

[

0.2 0

0 0.2

]

, G4 =

[

0.2 0

0 0.2

]

, E =

[

0.5 0

0 0.5

]

,

P =

[

0.6 0

0 0.2

]

, Hi =

[

0.4 0

0 0.4

]

, i = 1, 2, . . . , 5.

By using theMatlab LMI toolbox, setting ϑ = 1.07 and solving the LMI con-
dition in theorem 2, the following feasible solutions may be obtained:

Q =

[

0.8138 −0.1295

−0.1295 0.7336

]

, R1 =

[

0.8319 0.3215

0.3215 1.0335

]

,

R2 =

[

1.1506 0.1763

0.1763 0.8954

]

, Z1 =

[

0.1333 −0.0283

−0.0283 0.1264

]

,
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240 R. Suresh and A. Manivannan

Z2 =

[

0.2124 0.0077

0.0077 0.2186

]

, U0 =

[

2.0680 0

0 2.0680

]

,

U1 =

[

0.7096 0

0 0.7096

]

, ǫ1 = 0.8241, ǫ2 = 0.6937, ǫ3 = 0.5805.

Feng, Zhang, and Wu (2008) showed that the uncertain SNNs are glob-
ally, robustly, and asymptotically stable in mean square for the maximum
time delay allowed, 0.6. However, using theorem 2, the maximum allow-
able bound can be obtained as ϑ = 1.07. Hence, the results provided in this
example are less conservative compared to those of Feng et al. (2008), and
it follows from theorem 2 that the delayed SNNs, equation 4.1, are globally,
robustly, and asymptotically stable in the mean square.

5 Conclusion

This letter has discussed robust, asymptotic stability analysis for uncertain,
stochastic-delayed NNs. In theorem 1, by constructing a suitable LKF and
utilizingWirtinger-based inequality, we derived the sufficient condition for
asymptotic stability of the system with time delay. An LMI approach has
been proposed to check the mean square stability of stochastic uncertain
neural networks, which can be tested easily using Matlab’s LMI toolbox.
We provided examples to illustrate the effectiveness of our main results.
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