Header menu link for other important links
X
Scalable Grid-Based Data Gathering Algorithm for Environmental Monitoring Wireless Sensor Networks
Y. Padmanaban,
Published in Institute of Electrical and Electronics Engineers Inc.
2020
Volume: 8
   
Pages: 79357 - 79367
Abstract
Proper utilization of the available low-power is essential to extend the lifetime of the battery-operated wireless sensor networks (WSNs) for environmental monitoring applications. It is mandatory because the batteries cannot be replaced or recharged after deployment due to impracticality. To utilize the power properly, an appropriate cluster-based data gathering algorithm is needed which reduces the overall power consumption of the network significantly. So, in this paper, a grid-based data gathering algorithm called energy-efficient structured clustering algorithm with relay (EESCA-WR) is proposed. In this algorithm, the grids have a single grid leader (GL) and multiple grid relays (GRs). The count of GRs in a grid is variable based on the geographic location of the grid with respect to the destination sink (DS). By doing this, we ensure that the reduction in power consumption is achieved because of the multi-hop short-distance data communications. Also, the GLs are rotated in the right intervals in hybrid modes to minimize the usage of control messages considerably. A hybrid GL selection policy, a threshold-based GL rotation policy, and the policy of allotting dedicated relay-clusters in every grid make the proposed algorithm unique and better for homogeneous and heterogeneous wireless sensor networks. Performance evaluation of the proposed algorithm is carried out by varying the length of the field, the node-density, the grid-count, and the initial energy. Experimental results show that EESCA-WR is extremely scalable, energy-efficient with a minimum number of control messages, and can be used for large scale WSNs. © 2013 IEEE.
About the journal
JournalData powered by TypesetIEEE Access
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.
ISSN21693536