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Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1) destabilize protein and have
been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syn-
drome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid
substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation
techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been
estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%),
PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most dele-
terious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that
P722S mutation leads to increase in flexibility, and deviated more from the native structure which was
supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a
clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by
these in silico tools were in good concordance with the experimental results.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The number of identified amino acid variants in the human genome
has grown rapidly owing to the application of high-throughput se-
quencingmethods, but identification of variants responsible for specific
phenotypes is understood poorly. Hence, the use of computational
based tools with different algorithms significantly helps to overcome
the difficulty of selection and prioritizing pathogenic variants from a
pool of data. Amino acid substitutions may disrupt protein binding
sites or ligand-binding pockets that are critical in protein function and
may leads to alterations in the protein structure, folding or stability.
In recent years, there has been considerable interest in understanding
the genetic basis of FGFR1 associated with human disorder (Jiao et al.,
2011; Rodriguez-Otero et al., 2011; Hitosugi et al., 2011). FGFR1 is one
of the most commonly amplified gene involved in cancer which regu-
lates cell proliferation, migration and differentiation (Ford et al.,
2001). FGFR1 comprises of an extracellular region contacting three
sms; FGFR1, Fibroblast growth
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Ig-G like domains, single transmembrane helix and intracellular region
containing tyrosine kinase domain.

Molecular dynamics (MD) simulation study may be useful to gain
insight to the impact of non-synonymous polymorphisms (nsSNPs)
on structural changes thatmay affect the activity of FGFR1. In particular,
the effect of amino acid substitution that disrupts protein–protein inter-
action has been investigated for selected nsSNPs in our study. A number
of algorithms based on sequence and structure based approach have
been developed to predict the impact of missense mutations on protein
function. To increase the confidence in prediction of functional and del-
eterious nsSNPs in this analysis, we have incorporated most commonly
used computationalmethods like sorting intolerant from tolerant (SIFT)
(Ng and Henikoff, 2003), polymorphism phenotyping (PolyPhen 2.0)
(Adzhubei et al., 2010), I-Mutant 3.0 (Capriotti et al., 2008), and screen-
ing for non acceptable polymorphisms (SNAP) (Bromberg et al., 2008).
Based on the results obtained from these methods, we proposed a
model structure for the mutant proteins and compared this with the
native protein in the three dimensional (3D) modeled structure of the
FGFR1. In order to quantify the structural changes resulting from the
SNPs, the native and mutant modeled proteins were evaluated using
a range of structure assessment software. The ProSA-web z-score
(Wiederstein and Sippl, 2007) was used to determine any change in
the quality of the structure as a result of the mutation. Verify 3D
(Luthy et al., 1992) was used to check improperly built segments
based on the range of score between native and mutated residues. In
order to biophysically validate the proposed impact of mutation on

http://dx.doi.org/10.1016/j.atg.2012.06.002
mailto:georgecp77@yahoo.co.in
mailto:georgepriyadoss@vit.ac.in
http://dx.doi.org/10.1016/j.atg.2012.06.002
http://www.sciencedirect.com/science/journal/22120661


38 C.G.P. Doss et al. / Applied & Translational Genomics 1 (2012) 37–43
protein structure and function, align GVDV (Tavtigian et al., 2006) and
what if web service (WIWS) (Hekkelman et al., 2010) were used. By
analyzing the structural environment of substituted amino acids, we
were able to develop a physiochemical hypothesis on the effect of the
substitution in FGFR1. Furthermore, we suggest future experimental
work that could be undertaken to confirm these findings and thus im-
prove our knowledge in understanding the molecular basis of FGFR1
functionality. To the best of our knowledge this is the first study that
incorporates the results of polymorphism analysis in conjunction with
molecular dynamics approach for predicting disease causing mutation
in FGFR1 gene.

2. Materials and methods

2.1. SNP dataset

Human FGFR1 genedatawere collected fromOnlineMendelian Inher-
itance in Man (OMIM) (Amberger and Bocchin, 2009) and Entrez Gene
onNational Center for Biological Information (NCBI)web site. The SNP in-
formation (protein accession number (NP), mRNA accession number
(NM) and SNP ID) of FGFR1 was retrieved from the NCBI dbSNP (http://
www.ncbi.nlm.nih.gov/snp/) (Sherry et al., 2001), and SWISS-Prot data-
bases (http://expasy.org/) (Amos and Rolf, 1996). Protein 3D structure
was obtained from protein data bank (PDB) (Berman et al., 2002).

2.2. Predicting functional context of missense mutation

The functional context of nsSNPs was predicted using SIFT,
PolyPhen 2.0, I-Mutant 3.0 and SNAP. SIFT is a sequence homology-
based tool that predicts variants as neutral or deleterious using
normalized probability score. Variants at position with normalized
probability score less than 0.05 are predicted to be deleterious and
score greater than 0.05 is predicted to be neutral (Ng and Henikoff,
2006). PolyPhen 2.0 utilizes a combination of sequence and structure
based attributes and uses naive Bayesian classifier for the identifica-
tion of an amino acid substitution and the effect of mutation. The out-
put levels of probably damaging and possibly damaging were
classified as deleterious (≤0.5) and the benign level being classified
as tolerated (≥0.51). I-Mutant 3.0 (http://gpcr2.biocomp.unibo.it/
cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) is a support vector ma-
chine (SVM)-based tool. We used the sequence-based version of
I-Mutant 3.0 that classifies the prediction in three classes: neutral mu-
tation (−0.5≤DDG≤0.5 kcal/mol), large decrease (≤−0.5 kcal/mol)
and large increase (>0.5 kcal/mol). The output file shows the predict-
ed free energy change (DDG) which is calculated from the unfolding
Gibbs free energy change of the mutated protein minus the unfolding
free energy value of the native protein (kcal/mol). SNAP is used for the
prediction of impact of missense mutation based on neural network
and improved machine-learning methodologies. For each mutant,
SNAP returns three values: the binary prediction (neutral/non-neutral),
the reliability index (RI, range 0–9) and the expected accuracy that
estimates accuracy on a large dataset at the given RI.

2.3. Modeling of the mutant protein structure

For understanding the significance of a single amino acid substitu-
tion on protein function, knowledge about 3D structure of protein is
very important. We used the dbSNP to identify the protein coded by
FGFR1 (PDB ID 3RHX). We also confirmed the mutation positions
and residues from this server. These mutation positions and residues
were in complete agreement with the results obtained with SIFT,
PolyPhen 2.0, I-Mutant 3.0 and SNAP. The mutation analysis was
performed using SWISSPDB viewer, and energy minimization for
three-dimensional structures was performed using NOMAD-Ref serv-
er (Lindahl et al., 2006). NOMAD-Ref use Gromacs as default force
field for energy minimization based on methods of steepest descent,
conjugate gradient and L-BFGS methods. In order to quantify the
structural changes resulting from the SNPs, the wild and native type
structures were evaluated using a range of structure assessment
software.

2.4. Model verification

The quality of 3D models was assessed by ProSA-web and Verify
3D. ProSA-web calculates energy profiles (z-score) for modeled struc-
ture by using molecular mechanics force field. The z-score predicts
overall model quality and measures the total energy deviation of
the structure using random conformations. The modeled structure is
predicted to be erroneous if the z-scores range outside the character-
istic for native proteins. z-Score plot can be used for better interpreta-
tion of the z-score of the specified protein, which displays z-scores of
all experimentally determined protein chains in current PDB. This
plot can be used to check whether the z-score of the protein is within
the range of scores typically found for proteins of similar groups. Ver-
ify 3D is used to identify unreliable regions in protein that have been
improperly modeled and constructs a 3D model profile in which each
amino acid residue position is characterized by its environmental
score. Scores of mutated amino acid residues were compared with
wild type residue to identify any structural problems arising from
the mutation. For experimentally verified high resolution structure,
Verify 3D score is positive and highly consistent.

2.5. Molecular dynamics simulation

All the molecular dynamics simulations were carried out using the
program package GROMACS 4.0.5 (Hess et al., 2008) along with
GROMOS9643a1 force field (van Gunsteren et al., 1996). Initially all
models were solvated with the 0.9 nm simple point charge (SPC)
water embedded in the simulation boxes. In order to neutralize the
systems, one chlorine ion was added to replace one SPC water mole-
cule (Jorgensen et al., 1983). Subsequently, all the systems investigat-
ed were subjected to a steepest descent energy minimization until
reaching a tolerance of 100 kJ/mol. After the solvent molecules were
equilibrated with the fixed protein at 300 K for a while, the entire
system was gradually relaxed and heated up to 300 K. Finally, 6 ns
MD simulations were performed under the normal temperature and
pressure with coupling time constant 1.0 ps. The particle mesh
Ewald method (Essmann et al., 1995) was used to treat long-range
Coulombic interactions and the simulations performed using the
SANDER module. The SHAKE algorithm was used to constrain bond
lengths involving hydrogen, permitting a time step of 2 fs. Van der
Waals force was maintained at 1.4 nm, and coulomb interactions
were truncated at 0.9 nm.

2.6. Analysis of molecular dynamics trajectory

The trajectory files were analyzed by using g_rmsd and g_rmsf
GROMACS utilities in order to obtain the root-mean-square deviation
(RMSD), root-mean square fluctuation (RMSF). Number of distinct
intermolecular hydrogen bonds formed between during the simula-
tion was calculated using g_hbond utility. Number of hydrogen
bond is prominent when donor–acceptor distance is smaller than
3.9 nm and donor–hydrogen–acceptor angle is larger than 90 nm.

2.7. Biophysical validation of nsSNPs

Align-GVGD (http://agvgd.iarc.fr/) combines the biophysical char-
acteristics such as side chain composition, polarity and volume of
amino acids and protein multiple sequence alignments (Grantham
Variation (GV) and Grantham Deviation (GD) scores) to predict
where amino acid substitutions fall in a spectrum of deleterious to
neutral. The prediction is based on GV and GD scores (0 to >200)
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and graded classifiers (C0 to C65). WIWS predicts accessible surfaces
and the contact surfaces for a water probe with a radius of 1.4 Å. The
default parameters of all programs were applied, and only the protein
sequence and missense variant were given as input information for
each program.

3. Results

3.1. Analysis of deleterious mutation

The functional impact of nsSNPs can be assessed by evaluating the
importance of the amino acids they affect. A total of 38 nsSNPs was
retrieved for our analysis. Protein sequence with mutational position
and amino acid residue variants were submitted as input in SIFT. Out
of 38 nsSNPs, 8 nsSNPs were predicted to be highly deleterious with
score ranging from 0.00, 6 nsSNPs were predicted to be deleterious
with a score range of 0.01–0.05 and, the remaining 14 nsSNPs were
categorized as benign. All protein sequences submitted to SIFT were
submitted to PolyPhen 2.0 server. PolyPhen 2.0 reports a score rang-
ing from 0 (neutral) to 1 (damaging), which represents the confi-
dence of its internal classifier. A total of 15 nsSNPs were predicted
to be probably damagingwith score ranging from 0.99 to 1.00, 8 nsSNPs
were predicted to be possibly damaging with a score range of 0.5–0.9
and the remaining 15 nsSNPs were categorized as benign. The protein
stability change due to a single point mutation was predicted using
support vectormachine-based tool I-Mutant 3.0. All the nsSNPs submit-
ted to SIFT and PolyPhen 2.0 was submitted as input to I-Mutant 3.0.
A total of 26 nsSNPs were predicted to cause stabilizing mutation
Table 1
Summary of nsSNPs (tolerated/deleterious) that were analyzed by computational methods

SNP ID Allele Variant SIFT PolyPhe

rs143341876 C/T P23L 0.2 0.994
rs149206728 C/T P25L 0.39 0.00
rs145434725 C/T P28L 0.42 0.111
rs121909640 C/T G48S 0.01 0.999
rs145315779 C/A R54H 0.13 0.962
rs150042321 A/T D59V 0.16 0.383
rs140254426 G/A G70R 0.13 0.871
rs143241978 C/T A74V 0.29 0.00
rs139867599 G/T V88L 0.37 0.074
rs150973404 C/A A94E 1.00 0.00
rs55642501 G/A V102I 0.47 0.016
rs140382957 C/T S107L 0.68 0.001
rs121913473 C/T S125L 0.37 0.018
rs77734798 A/C D128A 0.63 0.998
rs121909630 G/T A167S 0.19 1.00
rs17851623 T/G W213G 0.03 1.00
rs121909635 G/A G237S 0.01 1.00
rs186746130 G/A V248M 0.12 0.95
rs121909645 G/A R250Q 0.03 0.967
rs121913472 C/A P252T 0.52 0.575
rs121909627 C/G P252R 0.00 0.999
rs4647901 G/C L261F 0.02 1.00
rs121909633 T/C I300T 0.39 0.01
rs121909632 A/T N330I 0.00 1.00
rs121909638 T/C L342S 0.13 0.976
rs121909641 C/T P366L 0.34 0.002
rs121909631 A/G Y374C 0.23 0.997
rs121909634 T/C C381R 0.29 0.99
rs183376882 G/A R424H 0.55 0.032
rs121909637 G/T R470L 0.00 0.002
rs77988343 T/G V513G 0.00 0.999
rs121909629 G/A V607M 0.00 0.998
rs121909642 C/T P722S 0.00 1.00
rs121909643 G/T Q764H 0.01 0.841
rs149979921 T/G L767R 0.00 0.987
rs2956723 C/G L769V 0.32 0.046
rs56234888 C/T P772S 0.15 0.017
rs17182463 C/T R822C 0.00 0.999

AA — Amino Acid; NA — Not Available, N.N — Non neutral, and N — Neutral. SNP ID highlig
(ΔΔG≤−0.5 kcal/mol) and, the remaining 12 nsSNPs were found to
be neutral mutations (−0.5≤ΔΔG≤0.5 kcal/mol). SNAP was used to
predict the overall severity of the missense mutations based on neural
network and improved machine-learning methodologies. Out of 38
nsSNPs, SNAP predicted 22 nsSNPs as non neutral which could bring
about changes in protein function and, the remaining 16 nsSNPs were
predicted as neutral (Table 1).

3.2. Concordance analysis of predicted results using in silico tools

The accuracy of deleterious nsSNPs predicted can be increased by
combining different computational methods. Out of 38 nsSNPs, 14
nsSNPs were predicted to be deleterious by SIFT, 23 nsSNPs were
predicted to be damaging by PolyPhen 2.0, 26 nsSNPs were predicted
to be deleterious by I-Mutant 3.0, and 22 nsSNPs were predicted to be
non neutral by SNAP server. For the resultswe could infer that, I-Mutant
3.0 predict 68% deleterious nsSNPs, slightly higher than SIFT (37%),
PolyPhen 2.0 (61%) and SNAP (58%). Most of the nsSNPs predicted to
be deleterious were in very well concordance with the experimentally
derived data, highlighting the accuracy of our prediction method
(Trarbach et al., 2006; Albuisson et al., 2005; Greenman et al., 2007;
Dode et al., 2003; Gerhard et al., 2004; Pitteloud et al., 2006; Muenke
et al., 1994; Kress et al., 2009; White et al., 2005; Dode et al., 2007).

3.3. Modeling deleterious nsSNPs

Single amino acid mutations can significantly alter protein structure
thereby disturbs stability. In this context, knowledge of a protein's 3D
SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP.

n 2.0 I-Mutant 3.0 SNAP References

−0.12 N
−0.02 N

0.06 N
−0.96 N (Trarbach et al., 2006)
−1.26 N
−0.18 N
−0.63 N.N
−0.15 N
−0.62 N
−0.23 N
−0.55 N (Albuisson et al., 2005)
−0.19 N
−0.49 N (Greenman et al., 2007)
−0.68 N
−0.77 N.N (Dode et al., 2003)
−2.29 N.N (Gerhard et al., 2004)
−1.26 N.N (Pitteloud et al., 2006)
−1.11 N.N
−0.95 N.N (Trarbach et al., 2006)
−1.3 N (Muenke et al., 1994)
−0.96 N.N (Greenman et al., 2007)
−1.1 N
−2.33 N.N (Pitteloud et al., 2006)
−0.97 N.N (Muenke et al., 1994)
−1.02 N.N
−0.38 N.N (Trarbach et al., 2006)
−1.11 N.N (Muenke et al., 1994)
−0.16 N.N (Muenke et al., 1994)
−1.45 N.N
−0.45 N.N
−2.28 N.N
−1.81 N.N (Albuisson et al., 2005)
−2.69 N.N (Trarbach et al., 2006)
−0.93 N.N
−1.71 N.N
−1.39 N.N
−1.68 N.N (Kress et al., 2009)
−0.84 N (Kress et al., 2009)

hted in bold is predicted to be deleterious by all 5 tools.
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structure is essential for better understanding the functionality of pro-
tein. Mutation analysis was performed based on the results obtained
fromvarious in silico tools. SWISS-PDB viewerwas used to performmu-
tations at their respective coordinates and energy minimizations were
done by NOMAD-Ref server for the native protein and mutant modeled
structures. The crystal structure of human FGFR1 [3RHX] at 2.01 Å reso-
lution was obtained from protein data bank (PDB) for structural analy-
sis. By visualizing the position of the mutated amino acid residues, it is
possible to suggest a physiochemical rationale for the effect on protein
activity. The quality of 3D structure was assessed two programs: Verify
3D and ProSA-web. Furthermore, the results of each nsSNPs examined
are reported in detail.
3.3.1. V513G variant
Each amino acid has unique size, charge and hydrophobicity value.

SNP with ID rs77988343 results in the mutation of valine to glycine at
position 513. The mutant residue is smaller than the wild type residue
which leads to an empty space in the core of the protein. This mutation
might cause loss of hydrophobic interactions in the core of the
protein. Substitution of valine to glycine results in a slight worsening
of ProSA-web z-score, from−9.13 to−9.05,while therewas no change
in Verify 3D score (0.81). The total energy of native protein after energy
minimization using NOMAD-Ref was −890,123.34 kcal/mol, and for
the mutant protein was found to be−889,931.09 kcal/mol. The RMSD
value between native and mutant modeled protein was 1.01 Å. The
superimposed structures of the native protein 3RHX (chain A) with
the mutant model is shown in Fig. 1A.
Fig. 1. Superimposition of native and mutant modeled structures (cartoon shape) of FGFR1. A
mutant amino acid glycine (red color) at position 513 in PDB ID 3RHX of FGFR1. B. Superim
amino acid methionine (red color) at position 607 in PDB ID 3RHX of FGFR1. C. Superimp
amino acid serine (red color) at position 722 in PDB ID 3RHX of FGFR1.
3.3.2. V607M variant
SNP with ID rs121909629 resulted in the mutation of valine to me-

thionine at position 607. The wild type residue is buried in the core of
the protein, while the mutant residue being larger probably does not
fit. Substitution of valine to methionine results in a slight worsening
of ProSA-web z-score, from−9.13 to−9.10,while therewas no change
in Verify 3D score (0.81). The total energy of native protein after energy
minimization using NOMAD-Ref was −890,123.34 kcal/mol whereas,
for the mutant model, it was found to be −889,755.16 kcal/mol. The
RMSD value between native and mutant modeled proteins was
1.12 Å. The superimposed structures of the native protein 3RHX
(chain A) with the mutant model is shown in Fig 1B.

3.3.3. P722S variant
SNP with ID rs121909642 resulted in the mutation of proline to

serine at position 722. The mutant residue is smaller than the wild
type residue. The mutation will cause empty space in the core of the
protein. Proline is in a cis conformation, and its side chain is engaged
in numerous hydrophobic contacts with residues from neighboring α
helices of the kinase domain. The P722S substitution could weaken
these hydrophobic contacts and induce structural perturbations,
which at the active site of kinase domain lead to a reduction in tyro-
sine kinase activity of FGFR1. Proline is known to have a very rigid
structure, sometimes forcing the backbone in a specific conformation.
Therefore, mutation of proline to uncharged polar serine may disturb
the local structure of protein thereby altering protein function.
Substitution of proline to serine results in a slight increasing of
ProSA-web z-score from −9.13 to −9.14 and Verify 3D structure score
. Superimposed structure of native amino acid valine in sphere shape (blue color) with
posed structure of native amino acid valine in sphere shape (blue color) with mutant
osed structure of native amino acid proline in sphere shape (blue color) with mutant
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from 0.81 to 0.88. The total energy of native protein after energyminimi-
zation using NOMAD-Ref was −890,123.34 kcal/mol, whereas for the
mutant model total energy was found to be −889,012.14 kcal/mol. The
RMSD value between native and mutant modeled protein was 1.21 Å.
The superimposed structures of the native protein 3RHX (chain A) with
the mutant model is shown in Fig. 1C.
3.4. Molecular dynamics conformational flexibility and stability analysis

To examine the extent to whichmutation effects protein structure,
RMSD values were determined for native andmutant protein structure.
We calculated the RMSD for all the atoms from the initial structure,
which were considered as a central criterion to measure the conver-
gence of the protein system concerned. It is evident that the native
(3RHX) and mutant structures (V513G, V607M, P7222S) remain close
to its starting conformation till 200 ps resulting in a backbone RMSD
of about 0.14 nm (Fig. 2A). Between ranges of 500–2000 ps, wild type
structure attained a maximum RMSD value of about 0.25 nm and
among mutants 607 attained a maximum deviation of about 0.28 nm.
From 2000 ps till end, mutant P722S retained a large deviation from
other structure attaining a maximum RMSD of about 0.35 nm around
3600 ps. Throughout the analysis, mutant model P722S showed maxi-
mum deviation, while mutant model V607M exhibited intermediated
deviated and native and mutant model V513G showed least deviation.
A small variation in the average RMSD values of native and mutants
after the relaxation period (~0.14 nm) lead to the conclusion that the
Fig. 2. Molecular dynamics simulation of native and mutant model protein at 6000 ps. A. Tim
structures at 6000 ps. The symbol coding scheme is as follows: wild (black color), mutant P7
carbon alpha over the entire simulation. The ordinate is RMSF (nm), and the abscissa is at
color), V607M (red color) and V513G (blue color). C. Average number of intermolecular hyd
wild (black color), mutant P722S (green color), V607M (red color) and V513G (blue color)
mutations could affect the dynamic behavior of mutant protein, thus
providing a suitable basis for further analyses. For determining the mu-
tation affects dynamic behavior of residues, RMSF values of mutant and
native structure were calculated. RMSF value of native residues fluctu-
ates from a range of 0.08–0.28 nm in the entire simulation period.
Moreover, mutant model V513G and V607M exhibited flexibility of
~0.35 nmand ~0.36 nm,whilemutant P722S showed amaximumflex-
ibility of about 0.38 nm (Fig. 2B). Analysis of the fluctuations revealed
that the greatest degree of flexibility was shown by mutant model
P722S. The reason for deviation in flexibility of residueswas further val-
idated by hydrogen bond analysis. Native protein exhibited maximum
number of hydrogen bond 178–235, while the mutant model V513G
and V607M showed an intermediate number of hydrogen bonds in
the range of 180–235 (Fig. 2C). P722S exhibited least number of hydro-
gen bond ranging from ~170 to 213, which was in agreement with the
stability ofmutantmodels observed from the RMSD and RMSF analyses.
These results imply that mutations might destroy the ability of hydro-
gen bond formation.
3.5. Biophysical analysis of missense mutation

We used Align-GVGD to assess the functional effect of missense
variants,with alignment to 95 similar sequences down to humanbeings
(BlastP). 21 nsSNPs occurred at strongly conserved residues (GV=0)
and had a GD≥65. Thus, these were inferred to belong to the class
(C65) of substitutions most likely to interfere with function. Two
e evolution of backbone RMSDs is shown as a function of time of the wild and mutant
22S (Green color), V607M (red color) and V513G (blue color). B. RMSF of the backbone
om. The symbol coding scheme is as follows: wild (black color), mutant P722S (green
rogen bond in native and mutant versus time. The symbol coding scheme is as follows:
.

image of Fig.�2
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FGFR1 variants were defined as interferingwith function (A-GVGD class
C55), and the additional 12 nsSNPs had either a lowGVor highGD score
which lifted them above class C0 and the remaining 3 amino acid
substitutions were less likely to compromise function (C0) (Table 2).
In order to compare the biophysical property of native and mutant
amino acids, solvent accessibility for surface was calculated. The loca-
tion and type of a mutated residue affects the stability changes in-
duced by mutations. In particular, as the solvent accessibility of a
residue decreases, stability of protein due to mutation decreases.
Based on WIWS, the solvent accessibility of V513G increases from
0.00 (native) to 0.873 (mutant), contrary there was a decrease in sol-
vent accessibility value for V607M and P722S. A huge drift in solvent
accessible surface area was observed in P722S (native 3.42 and mu-
tant 0.873).
4. Discussion

Predicting the phenotypic effect of nsSNPs using in silico methods
may provide a greater understanding of genetic differences in suscep-
tibility to disease. Our previous studies on polymorphisms screening
Table 2
Prediction of functional effect of missense variants in FGFR1 using the Align-GVGD
program.

Variant A-GVDV

GV GD Prediction class

P23L 73.35 97.78 Class C15
P25L 102.71 56.87 Class C0
P28L 0.00 97.78 Class C65
G48S 0.00 55.27 Class C55
R54H 0.00 28.82 Class C25
D59V 0.00 152.22 Class C65
G70R 0.00 125.13 Class C65
A74V 65.28 0.00 Class C0
V88L 0.00 30.92 Class C25
A94E 0.00 106.71 Class C65
V102I 0.00 28.68 Class C25
S107L 144.08 0.00 Class C0
S125L 0.00 144.08 Class C65
D128A 0.00 125.75 Class C65
A167S 0.00 99.13 Class C65
W213G 0.00 183.79 Class C65
G237S 0.00 55.27 Class C55
V248M 0.00 20.52 Class C15
R250Q 0.00 42.81 Class C35
P252T 0.00 37.56 Class C35
P252R 0.00 102.71 Class C65
L261F 0.00 21.82 Class C15
I300T 0.00 89.28 Class C65
N330I 0.00 148.91 Class C65
L342S 0.00 144.08 Class C65
P366L 0.00 97.78 Class C65
Y374C 0.00 193.72 Class C65
C381R 0.00 179.53 Class C65
R424H 0.00 28.82 Class C25
R470L 0.00 101.88 Class C65
V513G 0.00 189.55 Class C65
V607M 0.00 12.52 Class C15
P722S 0.00 193.35 Class C65
Q764H 0.00 24.08 Class C15
L767R 0.00 101.88 Class C65
L769V 0.00 30.92 Class C25
P772S 0.00 73.35 Class C65
R822C 0.00 179.53 Class C65

A-GVGD graded classifiers, ordered from most likely to interfere with function to least
likely:

GD>=65+tan(10)×(GV^2.5)=>Class C65b=>most likely.
GD>=55+tan(10)×(GV^2.0)=>Class C55.
GD>=35+tan(50)×(GV^1.1)=>Class C35.
GD>=25+tan(55)×(GV^0.95)=>Class C25.
GD>=15+tan(75)×(GV^0.6)=>Class C15.
Else (GDb15+tan(75)×(GV^0.6))=>Class C0b=>less likely.
using in silico analysis helped in predicting the functional nsSNPs as-
sociated with genes such as G6PD and ATM (George and Rajith, 2012;
Rajith and George, 2011). Our findings also revealed that combination
of different algorithms often serves as powerful tools for prioritizing
candidate functional nsSNPs. Recent work by Thusberg and Vihinen
(2009) compared several in silico tools, out of which SIFT, PolyPhen
2.0 and SNAPwere reported to have better performance in identifying
functional nsSNPs. The accuracy of SIFT and PolyPhen 2.0 was further
validated by Hicks et al. (2011), which makes these tools more appro-
priate for the prediction. I-Mutant 3.0 was ranked as the one of the
most reliable predictor based on the work performed by Khan and
Vihinen (2010). Based on these in silico studies, we choose SIFT,
PolyPhen, I-Mutant and SNAP for the prediction of functional and dele-
terious nsSNPs in FGFR1. It has been estimated that 68% nsSNPs were
predicted to be deleterious by I-Mutant, slightly higher than SIFT
(37%), PolyPhen 2.0 (61%) and SNAP (58%). In addition,we choosehigh-
ly deleterious nsSNPs namely rs77988343 (V513G), rs121909629
(V607M) and rs121909642 (P722S) for further structural analysis. Out
of this, V607M and P722S exhibited transition (2761 G→A, 3106
C→T) while V513G exhibited transversion (2480 T→G). Several
groups have studied the relationships between nsSNPs and their loca-
tion in protein structure (Capriotti and Altman, 2011; Yue and Moult,
2006). As a result, 3Dmodel of native protein (PDB ID 3RHX) was com-
pared with mutated modeled protein using SWISS PDB viewer (Fig. 1).
Calculating the total energy difference between native and mutant
model proteins gives the information about the protein structure stabil-
ity.We compared RMSD value and total energy values (kcal/mol) of na-
tive and mutated modeled structure (V513G, V607M and P722S).
Mutant model P722S showed an increase in total energy level (less fa-
vorable change) and increase in RMSD value deviation in comparison
with native structure. Divergence in mutant structure with native
structure is due to mutation, deletions, and insertions (Han et al.,
2006) and the deviation between the two structures is evaluated
by their RMSD values which could affect stability and functional activ-
ity (Varfolomeev et al., 2002). To better understand how these muta-
tions affect the structural behavior of FGFR1, we incorporated
molecular dynamic approach using GROMACS force field 43a1. Wang
and Moult (2001) in his analysis revealed the key atomic events that
allow substrate access and kinase activation due tomutation usingmo-
lecular dynamics approach. The results that we have presented high-
light the difficulty of unambiguously distinguishing native and mutant
trajectories. The precise difference in the RMSD trajectories of P722S
mutation, indicate the differences in the path of transition of structures
from the starting conformation to their final states despite the initial
structures being identical (except at the mutation sites). This informa-
tion clearly speaks of the influence of amino acid substitutions on the
dynamics of the protein. The RMSF data indicate that mutations are
characterized by a subtle, but significant increase in the flexibility of
the molecule. A clear insight of stability loss was observed in the
RMSD and RMSF,whichwas further accompanied bydecreased number
of intermolecular hydrogen bonds in P722S mutant structure. This
might eventually disrupt FGFR1 domain function which in turn alters
the interaction with its protein partner there by affecting the signalling
pathway. A more comprehensive characterization of disease causing
and benign variants based on biophysical property were performed
using Align GVDV andWIWS. Both relative entropy (Grantham param-
eters) and solvent accessibility (WIWS score) exclusively characterize
the mutation site in a protein. Tokuriki et al. (2007) in his work argued
that as the solvent accessibility of a residue decreases, the destabilizing
ΔΔG values of its mutation increases. We observed a good concor-
dance between stability of the protein (I-Mutant 3.0) and solvent
accessibility (WIWS), in which P722S showed a huge drift in solvent
accessibility followed by decrease in protein stability. Our analysis
strongly indicates that amino acid substitution P722S is highly del-
eterious mutation which has been experimentally verified by
Trarbach et al. (2006).
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5. Conclusion

Impact of single amino acid substitution on protein stability
remains one of the most promising setbacks in protein science. But
its illumination by experiments that take advantage of large numbers,
both experimentally and computationally, offers new hope for a solu-
tion in the years ahead. In our analysis, we identified the most delete-
rious mutation in FGFR1 based on various in silico tools. The following
mutations V513G, V607M and P722S were screened for its deleteri-
ous impact on protein function based on these tools. To examine the
structural consequences of these mutations, molecular dynamics simu-
lations were carried out. A clear insight of stability loss of P722S muta-
tionwas observed in RMSD, RMSF and number of hydrogen bondwhen
compared to othermutations. Impact of P722Smutation on protein bio-
physical property was further validated based on solvent accessibility
analysis and Grantham parameters. In conclusion, our study shows
that SNP analysis could be an ideal platform for identifying both somatic
and germline genetic variants that leads to various disease. Hence the in
silico analysis we performed proved to be both practical and valuable
for a posteriori comprehension of human disorder, thereby greatly facil-
itating valuable resource for the pharmacogenomics approach.
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