Header menu link for other important links
X
Seamless Key Agreement Framework for Mobile-Sink in IoT Based Cloud-Centric Secured Public Safety Sensor Networks
Al-Turjman F., Kirsal Ever Y., Ever E., Nguyen H.X.,
Published in Institute of Electrical and Electronics Engineers Inc.
2017
Volume: 5
   
Pages: 24617 - 24631
Abstract
Recently, the Internet of Things (IoT) has emerged as a significant advancement for Internet and mobile networks with various public safety network applications. An important use of IoT-based solutions is its application in post-disaster management, where the traditional telecommunication systems may be either completely or partially damaged. Since enabling technologies have restricted authentication privileges for mobile users, in this paper, a strategy of mobile-sink is introduced for the extension of user authentication over cloud-based environments. A seamless secure authentication and key agreement (S-SAKA) approach using bilinear pairing and elliptic-curve cryptosystems is presented. It is shown that the proposed S-SAKA approach satisfies the security properties, and as well as being resilient to node-capture attacks, it also resists significant numbers of other well-known potential attacks related with data confidentiality, mutual authentication, session-key agreement, user anonymity, password guessing, and key impersonation. Moreover, the proposed approach can provide a seamless connectivity through authentication over wireless sensor networks to alleviate the computation and communication cost constraints in the system. In addition, using Burrows-Abadi-Needham logic, it is demonstrated that the proposed S-SAKA framework offers proper mutual authentication and session key agreement between the mobile-sink and the base station. © 2013 IEEE.
About the journal
JournalData powered by TypesetIEEE Access
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.
ISSN21693536
Open AccessNo