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We consider an optical pulse propagation in a one-dimensional nonlinear periodic structure doped
uniformly with inhomogeneously broadening two-level atoms wherein the pulse propagation is gov-
erned by the nonlinear coupled mode-Maxwell Bloch equations. We investigate the pulse-train like
periodic waves as well as bright and dark solitons near the photonic bandgap structure under the
influence of self-induced transparency (SIT) effect. Further, we demonstrate that the resulting bright
and dark SIT Bragg solitons may be realized both in anomalous and normal dispersion regimes,
and this novel concept is ultimately the crux of this paper.
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1. Introduction

It can be inferred from the literature that grating solitons are more advantageous than the
conventional fiber solitons, owing to the fact that the former can be realized within a grating
length of about a few cms.1–3 This is due to the fact that the grating induced dispersion
is several orders of magnitude greater than the material dispersion. This paper deals with
the impact of a phenomenon called self-induced transparency (SIT) that stems due to the
doping of resonant atoms such as erbium, ytterbium, neodymium, and thulium etc. in the
fiber Bragg grating (FBG) structure. SIT is essentially a phenomenon in which a short
optical pulse does propagate practically with no loss through the optical media. This type
of transparency takes place since each atom, even though sturdily excited, reradiates its
excitation energy coherently in the forward direction, and this eventually induces a phase
shift in the transmitted optical field. Further, in the SIT process, while the front part of
the pulse excites the doped atoms of the resonant medium from the ground state to the
upper state, the tail part of the pulse stimulates the active atoms from the upper state
to the ground state. Owing to this atom-photon interaction, the SIT pulses can propagate
through the medium with a group velocity that can be substantially lower than the speed
of light in the host medium.4 With this effect, one can envision many possible applications
such as delay line, pulse re-shaping, optical amplification, etc.
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As the aim of this paper is to investigate the generation of grating solitons in the presence
of SIT effect, we consider the nonlinear pulse propagation in a FBG structure doped with
the resonant atoms. In uniformly doped FBGs, the grating-induced dispersion balances with
both the material Kerr nonlinearity and the resonant effects as determined by the Bloch
equations. The resulting solitons are known as SIT Bragg solitons, which are essentially
distortionless optical pulses. Distortionless SIT Bragg soliton pulses have been investigated
in a uniformly doped nonlinear photonic bandgap (PBG) structure.5–9 Recently, Tseng and
Chi8,9 investigated the existence of a moving SIT pulse train in a uniformly doped PBG
structure and discussed the coexistence of SIT solitons and Bragg solitons. In this paper, we
examine if these SIT Bragg solitons withstand the impact of the higher order perturbation
effects. Besides, we study the generation of periodic waves which also satisfy both effective
nonlinear Schrödinger (NLS) and Bloch equations.

2. Theoretical Formulation of the Problem

Here we consider a one-dimensional nonlinear periodic structure doped uniformly with the
rare earth atoms. From Maxwell’s equations, one can arrive at the following nonlinear
coupled mode-Maxwell Bloch equations (NLCM-MB) that describe pulse propagation in a
uniformly doped PBG structure8,9:

i
∂qf

∂z
+ iβ1

∂qf

∂t
+ δβ0 qf + κ qb + Γ(|qf |2 + 2|qb|2)qf +

µ0ω
2
B

2βg

(
Pf +

2i
ωB

∂Pf

∂t

)
= 0

−i
∂qb

∂z
+ iβ1

∂qb

∂t
+ δβ0 qb + κ qf + Γ(|qb|2 + 2|qf |2)qb +

µ0ω
2
B

2βg

(
Pb +

2i
ωB

∂Pb

∂t

)
= 0, (1)

where Pf and Pb represent the slowly varying polarization envelopes induced by electric
field envelopes qf and qb, respectively. δβ0 = β0 − βg implies the wave number detuning
from the exact Bragg resonance, βg = π/Λg is the grating wave number, and Λg is the
grating period. The parameters β0 and β1 are determined by the mode propagation constant,
β(ω) ≡ (ω/c)n(ω). Here, Γ = n2ωB/(cAeff ) is the Kerr nonlinear coefficient, ωB = 2πc/λB

is the Bragg frequency, λB is the Bragg wavelength, c is the velocity of light in vacuum,
n2 is the Kerr-nonlinear refractive index coefficient, and Aeff is the effective core area.
The parameters κ and µ0 are the linear coupling coefficient and vacuum permeability,
respectively. It can be noted that all the second order derivatives of qf,b and Pf,b with
respect to z and t have been neglected by using the slowly varying envelope approximation.
Following Refs. 8 and 9, we rewrite the above NLCM-MB equations and the resulting
equations are called the effective NLCM equations which are as follows:

i
∂qf

∂z
+ iβe

1

∂qf

∂t
+ δβe qf + κ qb + Γe(|qf |2 + 2|qb|2)qf = 0

−i
∂qb

∂z
+ iβe

1

∂qb

∂t
+ δβe qb + κ qf + Γe(|qb|2 + 2|qf |2)qb = 0, (2)

where the effective parameters are δβe = δβ0 + sc1I1 − (2sI1/ωB) + sc2I2, βe
1 = β1 +

sc1I1 + 2sc2I2/ωB,Γe = Γ + sc1I1µ
2/(ωB�

2). Here, c1 and c2 are the constants which
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relate to the frequency detuning and pulse width of the electric field, respectively. The
parameter s = µµ0ω

2
Bωi/(2βg�), where µ is the transition matrix element. I1 and I2 are the

two integral constants which are given by I1 =
∫∞
−∞ f(∆ω) g(∆ω − ∆ωr0)d(∆ω) and I2 =∫∞

−∞ ∆ωf(∆ω)g(∆ω − ∆ωr0)d(∆ω). Here, ∆ω = ωr − ωB, g(∆ω − ∆ωr0) is the normalized
inhomogeneous broadening line-shape function and similarly, ∆ωr0 = ωr0−ωB, and ωr0 are
the center of the broadening line-shape function.

From the above NLCM-MB equations and the effective NLCM equations, it could be
seen that the nonlinear pulse propagation in a uniformly doped PBG structure may be
regarded as an effective undoped PBG structure. It should be emphasized that the hitherto
mentioned effective NLCM equations, in the hidden sense, do carry the essence of two-level
system.

3. Generation of SIT Bragg Solitons

It is well-known that the SIT Bragg soliton is a distortionless optical pulse which results
from the grating induced dispersion, balancing with both the material Kerr nonlinearity and
the resonant effects being determined by the Bloch equations. Now, we apply the multiple
scale analysis to examine the impact of the higher order perturbation effects near the PBG
structure. In order to introduce the multiple scale analysis, we extend the linear solution in
the following form:(

qf

qb

)
= ε1/2q(τ1, τ2, Z)

(
1
−1

)
e−iκt + εU1 + ε3/2U2 + ε2U3 + · · · , (3)

where τ1 = εt, τ2 = ε2t, and Z = ε1/2z. Here, U1, U2, U3, etc. represent the perturbation
parameters which indeed reflect both the linear and nonlinear higher order effects. Thus, the
desired higher order effects can be studied by balancing the successive orders in ε with the
corresponding field envelopes. In order to investigate the impact of higher order perturbation
effects, we continue balancing O(ε2) terms and this ultimately results in perturbed NLS
equation which is given below:

i
∂q

∂z1
+ A1

∂2q

∂t21
+ A2|q|2q + iA3

∂3q

∂t31
+ iA4(|q|2q)t1 = 0. (4)

Here, the variables are τ1 = z1 and Z = t1. In Eq. (4), A1, A2, A3, and A4 are the
physical parameters of the NLCM equations in the nonlinear periodic structure which
are defined as follows: A1 = 1/2κ,A2 = 3Γe = 3Γ + 3sc1I1µ

2/(ωB�
2), A3 = 1/8κ3, and

A4 = 3Γ + 3sc1I1µ
2/(ωB�

2)/4κ2. This perturbed NLS equation represents the nonlinear
pulse propagation in a periodic medium with higher order effects outside the PBG struc-
ture in a doped FBG. Now, we discuss the generation of bright soliton near the PBG
structure by using the coupled amplitude-phase method. To proceed further, we express the
field envelope, q, as,

q(z1, t1) = Q(t1 + βz1) exp[i(k z1 − ωt1)], where χ = (t1 + β z1). (5)
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Using Eq. (5) in (4) and comparing the resulting equation with Bloch equation, we get(
dQ

dχ

)2

= αQ2 − 1
2
βQ4 + γ, (6)

where

α =
(

1
c2

− c1

4c2
2

)
=
(

2A1ω + 3A3ω
2 − β1

A3

)
, β =

(
3µ2

4�2

)
=
(

A4

A3

)
, γ = C =

4c2
0

Q3
.

It should be pointed out that the Eq. (6) does have distortionless pulse-train solution i.e.
cnoidal waves for γ �= 0 as well as the single-pulse solution when γ = 0. In this work,
we discuss these two issues under the appropriate physical conditions. The choice that
γ = m2(1 − m2)α2/(2m2 − 1)2β yields the following cnoidal waves:

q =
√

p0cn

[
t − (z/V )

T0
,m

]
ei(kz1−ωt1), (7)

where the elliptic modulus is determined by the power, p0, through the relation, p0 =
2m2α/(2m2 − 1)β and the period, T0, is

√
2m2/p0β.

According to the second physical condition, γ = 0, we get the formation of bright soliton.
It is to be noted that the same bright soliton pulse can also be obtained from Eq. (7) in the
limit, m = 1.

q =

√
2
(

2A1ω + 3A3ω2 − β1

A4

)
sech

(√(
2A1ω + 3A3ω2 − β1

A3

))
χ ei(kz1−ωt1) (8)

The soliton represented by the Eq. (8) has been formed near the frequency band edge
due to interplay between positive nonlinearity, effective grating induced dispersion, and the
resonant effects. Furthermore, the resulting soliton solution also satisfies the atomic Bloch
equations. Consequently, this confirms the coexistence of a SIT soliton and a Bragg soliton.
This kind of mixed state is referred to as a SIT-Bragg soliton. Figures (1a) and (1b) depict
the intensity plots of cn wave and bright SIT Bragg soliton, respectively.

(a) (b)

Fig. 1. (a) Intensity profile of the cn (m = 0.4) and (b) intensity profile of the bright (m = 1) SIT Bragg
soliton, for f = −1, p0 = 2 W, k = 12 m−1, ω = 0.7Hz, and V = 0.4 ms−1.
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It is interesting to note that the soliton amplitude and the pulse width depend on the
Kerr-coefficient and the dopant density of the two-level atoms. These factors distinguish the
SIT-Bragg soliton from the conventional Bragg soliton. On the other hand, if the integration
constant is chosen to be γ = −(mα)2/(m2 + 1)2β, Eq. (6) generates another exact periodic
solution in terms of sn as follows:

q =
√

p0sn

[
t − (z/V )

T0
,m

]
ei(kz1−ωt1) (9)

wherein the following conditions must be satisfied:

p0 =
2m2α

(m2 + 1)β
and T0 =

√
m2 + 1

α

As discussed earlier, based on the second physical condition γ = 0, one can have the
formation of dark SIT Bragg soliton in the limit, m = 1, from Eq. (9).

q =

√(
2A1ω + 3A3ω2 − β1

A4

)
tanh

(√(
2A1ω + 3A3ω2 − β1

2A3

))
χ ei(kz1−ωt1) (10)

Similarly, we can generate the cnoidal waves, as well as their limit forms, for m = 1, which
corresponds to the bright and dark SIT Bragg solitons in the case of the normal dispersion
(βg

2 > 0) regime.
The intensity plots of cn wave and dark SIT Bragg soliton are shown in Figs. (2a) and

(2b), respectively. Our results describe that both bright and dark SIT Bragg solitons can
be generated in the cases of the anomalous and normal dispersion regimes. This should be
contrasted with the well-known situations in Refs. 1–3, where bright and dark SIT Bragg
solitons exist, solely with the anomalous and normal dispersion regimes, respectively. In
contrast to the fiber SIT soliton, SIT Bragg solitons can be realized experimentally, since
uniformly doped FBGs have a length of only a few centimeters, owing to the large dispersion.
This is long enough for generating SIT Bragg solitons.

(a) (b)

Fig. 2. (a) Intensity profile of the sn (m = 0.4) and (b) intensity profile of the dark (m = 1) SIT Bragg
soliton, for f = −1, p0 = 2 W, k = 12 m−1, ω = 0.7Hz, and V = 0.4 ms−1.
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4. Conclusion

The generation of cnoidal waves, both cn and sn types, as well as bright and dark SIT
Bragg solitons has been delineated in a nonlinear PBG medium doped uniformly with
inhomogeneously broadening two-level atoms. The results of this work bear a testimony to
the very fact that both bright and dark SIT Bragg solitons can be realized in anomalous
as well as normal dispersion regime. This is a novel concept in comparison with the well-
known situations in Refs. 1–3, wherein the existence of bright and dark SIT Bragg solitons
has been reported only in the anomalous and normal dispersion regimes, respectively.
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6. N. Aközbek and S. John, Self-induced transparency solitary waves in a doped nonlinear photonic

band gap material, Phys. Rev. E 58 (1998) 3876–3895.
7. G. Kurizki, A. E. Kozhekin, and B. A. Malomed, in Progress in Optics XLII, ed. E. Wolf (Elsevier,

Amsterdam, 2001).
8. H. Y. Tseng and S. Chi, Distortionless pulse-train propagation in a nonlinear photonic band gap

structure doped uniformly with inhomogeneously broadening two-level atoms, IEEE J. Sel. Top.
Quantum Electron. 8 (2002) 681–689.

9. H. Y. Tseng and S. Chi, Coexistence of a self-induced transparency soliton and a Bragg soliton,
Phys. Rev. E 66 (2002) 056606.

O
pt

. P
ho

to
ni

c 
L

et
t. 

20
11

.0
4:

11
-1

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 K

IN
G

ST
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/2
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.


	1 Introduction
	2 Theoretical Formulation of the Problem
	3 Generation of SIT Bragg Solitons
	4 Conclusion

