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Abstract
Main conclusion  Rice sheath blight research should prioritise optimising biological control approaches, identification 
of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection.

Abstract  Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To 
move forward with effective crop protection against sheath blight, it is important to review the published information related 
to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has 
been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain 
unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, 
biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce 
spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in 
early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of 
biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that 
show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expres-
sion, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines 
overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection 
against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance 
genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.

Keywords  Biological control · Fungicide · Genome editing · Integrated disease management · Smart farming · 
Transcription factor

Introduction

As the world population is expected to reach over 9 billion 
by 2050, it has been predicted that total food production will 
only be sufficient for 60% of the population (FAO 2018). 
Rice (Oryza sativa L.), the world’s most widely consumed 
cereal crop, is especially important to the rapidly growing 

populations in South Asian countries (Pareja et al. 2011) and 
provides 20% of the dietary protein in the developing coun-
tries where rice is the staple to the diet (FAO 2004). Around 
40,000 different varieties of rice (Oryza sativa L.) exist in 
the world (http://www.ricea​ssoci​ation​.org.uk/conte​nt/1/18/
types​-of-rice.html). China produces largest amount of rice 
(142.3 million tonnes) followed by India (110.4 million 
tonnes) (According to FAO: Rice Market Monitor 2018). 
Rice productivity is affected by several pathogens that 
often place major constraints on production,. among which, 
Rhizoctonia solani, the causative agent of sheath blight 
(ShB), is responsible for yield loss up to 45% (Margani and 
Widadi 2018). The pathogen Rhizoctonia solani Kunh AG1-
IA (anamorph), Thanatephorus cucumeris (Frank) Donk 
(teleomorph) is a soil-dwelling saprotroph and facultative 
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parasite. The pathogen causes lesions on the sheath affecting 
grain filling and yield in rice (Wu et al. 2012).

ShB in rice was first reported in Japan in 1910. ShB in 
rice subsequently spread across the region, particularly 
where rice was grown under intense cultivation (Srini-
vasachary Willocquet and Savary 2011). As the disease 
spread to other Asian countries it was referred to by differ-
ent names such as ‘Oriental leaf and sheath blight’, ‘Sheath 
blight’, ‘Pellicularia sheath blight’, ‘Sclerotial blight’ and 
‘Banded blight of rice’ (Srinivasachary Willocquet and 
Savary 2011). The ShB pathogen, R. solani Kühn, survives 
in the soil and water as sclerotia that remain viable for up 
to 3 years and form mycelia when coming into contact with 
plants (Kumar et al. 2009). The disease emerges around the 
late tillering to joint elongation stages in rice and achieves 
an aggressive state at the time of panicle differentiation. The 
early disease symptoms are the formation of lesions on the 
sheath leading to softness and lodging of the sheath and inhi-
bition of grain filling (Wu et al. 2012). The fungus spreads 
rapidly via contact between plant parts such as tillers and 
leaves, and also via sclerotia (densely packed hyphal masses) 
present in surface water (Tsiboe et al. 2017). The severity 
of the disease depends upon cultivation practices, growth 
stages of the plant at the time of infection, usage of nitrogen 
fertilisers (Norman et al. 2003) and rice variety susceptibil-
ity (Tang et al. 2007).

ShB in rice is difficult to control because of the wide 
host range of the pathogen and persistence of sclerotia on 
exposure to adverse environmental conditions. Most insidi-
ously, the pathogen evolves with time, allowing the sclerotia 
to overcome the resistance that may have been the hard-won 
achievement of the farmers and breeders. In order to com-
bat the spread of ShB, it is necessary to use information 
compiled from studies of the biology of the pathogen, of 
the infection process and to determine how this information 
can be applied and supported with ShB management prac-
tices. Here we provide a review of the current information 
on identification criteria, modes of infection, hosts range and 
molecular basis of pathogenicity along with current manage-
ment practices.

Biology of the sheath blight pathogen

Taxonomy and host range of the pathogen

Rhizoctonia solani Kunh is a collective species belonging to 
the order basidiomycetes but rarely producing basidiospores 
(Parmeter and Whitney 1970). Julius Kuhn first observed 
this fungus on diseased potato tubers in 1858 and named it 
R. solani (Almasia et al. 2008). Rhizoctonia solani infects 
over 27 families of plants, causing root, crown, hypocotyl, 
pod and belly rot, sheath and leaf blight, banded leaf, brown 

patch and canker (Sneh and Ichielevich-Auster 1998; Fenille 
et al. 2002) (Table 1). The species is subdivided into anasto-
mosis groups (AG) based on their compatibility for hyphal 
fusion with known tester isolates. Anastomosis between 
genetically similar isolates that are compatible, form a fused 
hyphal network involving fusion of cell wall, cytoplasm and 
nuclei, whereas genetically distant isolates may form anas-
tamoses but show no changes in the hyphal organisation 
(Kuninaga et al. 2002). A total of 14 different anastomo-
sis groups (AG1 to AG13 and AGBI), which exhibit high 
variation in colony morphology, host range, aggressiveness 
and nutritional requirement, have been reported in R. solani 
(Guillemaut et al. 2003; Ahvenniemi et al. 2009; Ajayi-
Oyetunde and Bradley 2018). Based on sequence homology 
and on size and shape of sclerotia, R. solani AG1 isolates 
are subdivided into three subgroups, IA, IB and IC (Sneh 
et al. 1991), all of which cause ShB, with the AG1-IA most 
commonly reported as the causal agent (Bernardes-De-Assis 
et al. 2009; Gonzalez-Vera et al. 2010).

Rice sheath blight infection and disease cycle

Typical R. solani infections result from sclerotia from a 
previous cropping season (Kumar et al. 2009). Initially, 
hyphae from sclerotia in the soil form a network and roots 
of newly planted seedling are penetrated at or near the water 
line (Ou 1985). Infection is favoured by warm temperatures 
(~ 28–32 °C), high humidity (~ 95%) and high levels of nitro-
gen fertiliser (Savary et al. 1995). The disease progresses 
in classical phases of early to late necrosis, with the cycle 
completed by the infection of soil by sclerotia from the 
infected rice plants (Fig. 1). After entering plant tissues, R. 
solani produces RS toxin, a mixture that includes N-acetyl 
glucosamine, N-acetyl galactosamine, glucose and mannose 
(Vidhyasekaran et al. 1997) along with pathogen effectors 
(such as glycosyltransferase, cytochrome C oxidase CtaG/
cox11 and peptidase inhibitor I9), which co-relate with the 
virulence of the pathogen (Zheng et al. 2013). The fungus 
spreads in infected plant with the hyphae penetrating the 
stomata, producing lobate appressoria or infection cushions 
(Groth and Nowick 1992; Singh and Subramanian 2017). 
The formation of appressoria triggers enzymatic degrada-
tion, causing necrosis of the host plant and assisting colo-
nisation by the fungal pathogen (Groth and Nowick 1992). 
The green or grey ellipsoid lesions (0.5–3 cm) formed on 
the sheath of leaves in acropetal succession (reviewed in 
Srinivas et al. 2013) give the classical sheath blight symp-
toms. As plant colonisation by the pathogen extends from 
leaf sheath to leaf blades, panicles and tillers, the necrotic 
lesions enlarge to 2–3 cm length and 1 cm width, with 
beached centres and borders turning purple-brown (reviewed 
in Srinivas et al. 2013). Finally, lesions on the upper part 
of leaves coalesce, covering entire stem and sheath of the 
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plant leading to stem lodging. Stem lodging blocks the water 
transport, which disturbs canopy architecture and reduces 
photosynthetic capacity. As a result, grain filling is reduced 
and ultimately the infection leads to plant death (Bahuguna 
et al. 2012).

After rice harvest, R. solani sclerotia from infected plants 
persist in the soil for periods of up to 3 years and act as 
a source of infection for subsequent crop cycles (Savary 
et al. 1995). Individual sclerotia typically range from 5 mm 
in diameter to much bigger masses formed by fusion of 
multiple sclerotia (Keijer et al. 1996). Sclerotia are white 
initially and gradually turn brown after maturation as a 
result of melanin formation in the cell walls. The resilience 
of sclerotia can be related to the mature form, which has 
impermeable cell walls and high nutrient content: Melanin 
is an oxidised phenolic with hydrophobic properties (Wil-
letts and Bullock 1992) reducing cell wall permeability and 
protecting cells from biological degradation (Sneh et al. 
1991). Sclerotia have a rich nutrient reserve of proteins, 
polyphosphate, glycogen and lipids in the cytoplasm (Wil-
letts and Bullock 1992), which serves as an energy source 
during extreme environmental conditions and also supports 
reinfection process (Keijer et al. 1996). The sclerotia are 
generally transported to the surrounding field from infected 
crops via irrigation of infested soil. At the time of re-infec-
tion, sclerotia undergo myceliogenic germination (Webster 
1980) and hyphae spread horizontally (average is recorded 
to be 20 cm/day) on the plants hence making the disease 
to spread very fast (Savary et al. 1995). ShB development 
is also accelerated by high seedling rate, dense canopy of 
plants in the fields and growing of high-yielding improved 
varieties (which requires nitrogen fertilisers) (Savary et al. 
1995).

Molecular basis of pathogenicity

The publication of whole genome sequence assemblies of R. 
solani AG1-1A (Zheng et al. 2013; Nadarajah et al. 2017), as 
well as genome sequences for rice (Eckardt 2000), provide 
useful resources for determining key mechanisms underly-
ing R. solani infection and disease. Initial stages of ShB 
infection involve recognition between the rice host and the 
fungal pathogen. While rice roots produce exudates, com-
prised of carbohydrates and protein molecules that act as 
a chemoattractant for soil-borne bacteria (Bacilio-Jiménez 
et al. 2003) and influence fungal diversity (Van Der Wal 
et al. 2013; Hugoni et al. 2018), there are no reports of any 
specific fungal pathogen attracting molecules and a molecu-
lar mechanism explaining the role of root exudates in attract-
ing R. solani is unknown. Genome sequence studies pre-
dict an array of secreted proteins, enzymes of primary and 
secondary metabolism, carbohydrate-active enzymes and 
transporters (such as ATP binding cassette) associated with Ta
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the necrotic phase of infection (Zheng et al. 2013). Follow-
ing that, transcriptome analysis of R. solani=infected rice 
sheath also showed involvement of various plant genes such 
as extracellular protease, ABC transporter and transcription 
factors during establishment and sugar transporters, cellular 
metabolism and protein degradation-related genes during the 
necrotrophic phase of infection (Ghosh et al. 2018). Follow-
ing attachment of the fungal hyphae to rice roots, enzymic 
degradation of the plant primary and secondary cell walls 
occurs. The breakdown of complex macromolecules of cell 
walls such as cellulose, hemicellulose and pectin into simple 
sugars via cell wall degrading enzymes (pectinase, laccase 
and xylanase) secreted by R. solani facilitates host cell pen-
etration (Talbot 2010; King et al. 2011). In the later stages 
of the disease, the pathogen activates sugar membrane trans-
porters to enable the transport of simple sugar molecules to 
the fungal cells (Zheng et al. 2013; Quistgaard et al. 2016; 
Ghosh et al. 2018).

Signal transduction mechanism in R. solani infection is 
not yet well understood, though it likely involves G protein-
mediated signalling through second messengers including 
cAMP and a number of downstream pathogenesis effector 
molecules: The G protein (Rga1) homologue to Ga subunits 
reported in other fungi was identified in R. solani (Char-
oensopharat et al. 2008). The disruption of Rga1 resulted in 
slow growth and reduction in pathogenicity, changes in col-
ony structure and inability to form sclerotia. G proteins are 
the largest group of cell wall receptors in fungi, well-known 

for their function in promoting survival, propagation and vir-
ulence (Brown et al. 2018). A loss in pathogenicity because 
of disruption in G protein function has been reported for 
other pathogenic fungi including Magnaporthe grisea (Fang 
and Dean 2000) and Fusarium oxysporum (Jain et al. 2002). 
Changes in cAMP levels upon disruption of G proteins dur-
ing infection have been reported for other pathogenic fungi 
but are yet to be explored in R. solani. A few studies have 
identified R. solani secreted proteins that are upregulated 
during infection and may be downstream effector molecules 
involved in enhancing plant infection and/or suppressing 
plant defense responses (Zheng et al. 2013; Ghosh et al. 
2018). Studies of effector molecules identified in differ-
ent R. solani strains show high diversity in gene sequences 
which indicates its adaptative flexibility (via gene duplica-
tion, deletion and point mutation) to escape host recognition 
and optimise virulence function (Oliver and Solomon 2010; 
De Wit et al. 2012; Ghosh et al. 2018). This could be one 
of the possible factors underlying the broad host range of R. 
solani strains.

Management of sheath blight disease in rice

Field disease history, weather conditions and prior infor-
mation on cultivar susceptibility are major checkpoints to 
minimise disease occurrence. Current management practices 
and research to improve crop protection are discussed below 

Fig. 1   Disease cycle of Rhizoctonia solani showing different phases of sclerotia development and disease symptom on rice
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and can be considered as related to agronomic practices, 
to chemical and biological control and crop improvement 
(Fig. 2).

Agronomic practices

Rice cultivars have considerable variation in terms of mor-
phological traits including plant height, days to heading 
(date of sowing to panicle emergence), plant compactness, 
tiller angle, flag leaf length and width and stem thickness, 
which each have been reported to be associated with sus-
ceptibility to sheath blight (Zou et al. 2000; Pinson et al. 
2005; Willocquet et al. 2012; Dey et al. 2016). To increase 
the grain yield, rice varieties with short height and abundant 
tillers are generally used in the field. Such varieties are also 
commonly cultivated with a high use of nitrogen fertilis-
ers (Norman et al. 2001), which together create a denser 
canopy than taller varieties and provides a microclimate that 
enhances R. solani infection (Tang et al. 2007). Hence a sys-
tematic study on variety selection and correlation of nitrogen 
fertiliser with the seedling stage as well as the frequency of 
ShB infection may provide better information for optimis-
ing the use of nitrogen fertiliser while minimizing infection.

Regular monitoring, early detection of inocula and 
removal of weed-hosts are important points to be considered 
for ShB management. ShB infection in rice is also associated 
with the spacing in the plantation: Field studies in China 
showed a wider space plantation method such as square 
(Yang et al. 2008) and sparse plantation (Sugiyama et al. 
2007) to improve the canopy architecture, produce a higher 

leaf area index, increase the grain yield and reduce disease 
occurrence. Clearance of plant debris and tubers from rice 
fields and postharvest drying was found to be effective in 
minimising sclerotia movement (Ritchie et al. 2009). Fol-
lowing drainage, complete sanitation using fungicides and 
destroying host-weeds from field boundaries (Anand et al. 
2014) and crop rotation with the non-host plant (Wright 
et al. 2017) should be practiced to reduce inoculum density 
for next cropping season.

Rice farmers are on the front line in responding to crop 
diseases in the field. It is, therefore, important for the farmer 
to understand the available options to mitigate crop dam-
age and the possible control methods that can be applied 
in the field (Nelson et al. 2001). Farmers in many devel-
oping countries rely only on fungicides because of lack of 
information on alternative disease management techniques. 
Hence awareness programmes are needed for implement-
ing more effective disease management systems (Khoury 
and Makkouk 2010). In the early 90s, a farmer field schools 
(FFS) programme was conducted by the FAO’s Intercountry 
Programme on Rice Integrated Pest Management in South 
and Southeast Asia (Van de Fliert 1993; Matteson 1996) 
and farmers were trained with integrated disease manage-
ment systems. In the programme, farmers were involved in 
observing and performing experiments such as rice geno-
type mixing to produce disease resistant cultivars; optimum 
use of nitrogen fertiliser for increasing yield and avoiding 
disease development; optimal plant density to avoid fungal 
infections and suitable concentrations of fungicides to grow 
susceptible varieties (Nelson et al. 2001). Likewise, more 

Fig. 2   Disease management 
approaches for sheath blight 
of rice
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training programmes should be conducted to educate the 
farmers on good agricultural practices, marketing strate-
gies and financial management, modern technologies such 
as remote sensing with Unmanned Aerial Systems (UAS, 
commonly known as drones) for early detection of ShB in 
the field. UAS provides high-spatial resolution to perform 
plant phenotyping and disease diagnosis (Mulla 2013). UAS 
equipped with multiple types of sensors are used to measure 
plant phenotypic traits, physiological status and water stress 
(reviewed in Yang et al. 2017). During ShB infection, the 
infected leaf tissue usually changes its colour from green 
(healthy tissue) to brown-to-yellow (diseased tissue) with the 
development of the disease. UAS equipped with digital and 
multispectral camera and green Seeker handheld crop sen-
sor showed efficient detection of the colour changes during 
ShB infection in rice compared to manual disease scoring 
(Zhang et al. 2018). UAS can be further used to quantify 
the phenotypic parameter such as plant height, leaf texture 
and canopy architecture and physiological parameters such 
as chlorophyll content, photosynthetic activity and biomass 
and pigment content associated with ShB symptoms. By 
providing quick and accurate data on disease development, 
at a low cost, deployment of UAS can alert farmers to effec-
tively take necessary measures on time and minimise the risk 
of spread and re-occurrence. Compared to manual methods 
for disease detection, the application of Unmanned Aerial 
Vehicle technology has helped to reduce the use of chemical 
fungicide as well as reduce soil and water pollution (Mulla 
2013). The adoption of this technology can contribute to 
cost-effective and eco-friendly rice farm management by 
facilitating site-specific fungicide and/or fertiliser applica-
tion, soil health scanning, planning irrigation schedules and 
yield rate estimation. A strong effective networking system 
connecting scientific research, management practices and 
farmer awareness programmes are highly recommended 
(Shaw and Pautasso 2014). Such improvements will enhance 
the livelihoods of vulnerable farmers and contribute to food 
security (FAO 2018) (Table 2).

Chemical control

The most widely applied method for control of ShB is 
through the application of fungicides (Kandhari et al. 2003). 
Fungicides are toxic substances, often chemical compounds 
(natural or synthetic) with unique modes of action, used 
to kill or inhibit fungi (reviewed in Gullino et al. 2000). 
Selection of fungicide depends upon the intensity of the 
disease and also the tolerance level of the rice cultivar (Bis-
was 2004). The most popular fungicide application meth-
ods practiced for ShB control are foliar spray (McGrath 
2004) and seed treatment (Kabir et al. 2006). Fungicides 
restrict the disease development on rice sheaths, acting on R. 
solani and its sclerotia by various means such as damaging 

the fungal cell membrane (Roberts et al. 1998), acting as 
enzyme inhibitors (Kumar et al. 2018), interfering in key 
processes including respiration or energy production (Ichiba 
et al. 2000; Lal et al. 2017) or by interfering with metabolic 
pathways associated with sterol and chitin biosynthesis for 
cell wall formation (Morton and Staub 2008). The best time 
to apply fungicides in a field is from 7 days after panicle dif-
ferentiation until heading reaches 50–75% (Uppala and Zhou 
2018). For susceptible rice varieties, application of fungi-
cide is needed early in the crop cycle, at the booting stage 
of rice, when the leaf stem bulges to initiate panicle emer-
gence (Yeshi et al. 2013). Some of the commercially avail-
able fungicides that are used against ShB in rice, their active 
ingredients and their modes of action are shown in Table 3. 
Apart from chemical fungicides, a few natural fungicides 
such as strobilurins (also known as β-methoxyacrylates) 
or QoI (Quinone outside Inhibitors) derived from the wild 
mushroom Strobilurus tenacellus have been tested for ShB 
management (Bag et al. 2016). Among analogues of strobi-
lurins, Azoxystrobin (Methyl(E)-2-2-[6-(2-cyanophenoxy) 
yrimidin-4 yloxy] phenyl-3- methoxyacrylate) (commercial 
name Quadris 2.08 SC, Syngenta, Raleigh, NC, USA) was 
reported to be effective in reducing ShB and increasing grain 
yield (Bag et al. 2016). The above-mentioned fungicides 
arrest fungal growth via disrupting the electron transport 
chain, preventing ATP synthesis and restricting respira-
tion in fungi (Ichiba et al. 2000). A recent comparison of 
the effect of Azoxystrobin and of the chemical fungicides 
thifluzamide, pencycuron, validamycin and hexaconazole 
showed the chemical fungicides to completely inhibit scle-
rotia formation while the natural fungicide, Azoxystrobin, 
also reduced sclerotia formation and resulted in better grain 
yield (Kumar et al. 2018).

The use of fungicides has been highly effective for con-
trolling fungal diseases of crops. However, this is not with-
out important considerations over the choice of fungicide 
and application practices: The prolonged use of a single 
fungicide increases the risk of fungicide resistance (Uppala 
and Zhou 2018). Fungal genomes may mutate resulting in 
altered target sites of fungicide binding, increased produc-
tion of the target protein, or reduced uptake or increased 
metabolic breakdown of the fungicide (reviewed in Gullino 
et al. 2000). The above processes result in varying levels 
of resistance described as quantitative fungicide resistance 
(Deising et al. 2008). Therefore, the composition of fun-
gicides is frequently modified to enhance the specificity 
to recognise and attack target fungus (reviewed in Gullino 
et al. 2000). However, the process of screening and selec-
tion for more specific and durable fungicides creates a cost 
burden to developers that may end up being passed on to the 
farmers in terms of higher prices who may then continue 
to use less effective but lower-cost earlier generation fun-
gicides. Another concern over fungicide use is associated 
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with hazard to human health (reviewed in Kim et al. 2017) 
and to natural ecosystems (Mahmood et al. 2016) requir-
ing appropriate risk management strategies for their safe 
use. Many fungicides are persistent in soil and in above and 
below ground water bodies, ultimately entering and affecting 
the food chain (Rodrigues et al. 2018). Application of fun-
gicides in agriculture also has a negative impact on aquatic 
organisms since the active ingredients of the fungicide often 
become concentrated in lakes and ponds through spray drift 
or agricultural runoff during heavy rainfall (Schulz 2004). 
The lethal effect of fungicides on detrivores also slows down 
leaf decomposition and thus impacts nutrient recycling 
(Hanazato 2001; Chang et al. 2005). The detrimental effect 
derived from fungicide treatment prompted policy actions 
that impose stringent regulation in several countries (Neha 
et al. 2017). Beside policy development, research and devel-
opment efforts have been deployed to explore alternatives 
to the use of chemical fungicides such as use of biological 
agents to control ShB.

Biological control

Biocontrol is the use of parasites, predators or microorgan-
isms (biocontrol agents) to reduce the population of a pest 
or pathogenic organism and is often considered to be a safe 
and reliable option for plant disease management (reviewed 
in Etesami and Maheshwari 2018). Microorganisms such as 
plant growth-promoting rhizobacteria (PGPR) can provide 
protection to rice cultivation via reducing R. solani infec-
tion (reviewed in Prasad et al. 2019). PGPR are free-living 
bacteria from the rhizosphere, which have been reported to 
actively participate in the biosynthesis of phytohormones 
(indole acetic acid, gibberellic acid, abscisic acid), increase 
N uptake, cause phosphate solubilization and interfere with 
pathogen toxin production (reviewed in Prasad et al. 2019). 
PGPR strains that are effective at controlling ShB infection 
in rice include Pseudomonas fluorescens and various Bacil-
lus spp. (reviewed in Kumar et al. 2009; Karnwal and Man-
nan 2018). Pseudomonas fluorescens has been reported to 
inhibit R. solani by producing the antimicrobial compound 
hydrogen cyanide; the extracellular lytic enzymes β 1,3-glu-
canase and chitinase (Radjacommare et al. 2004) and by 
inducing systemic resistance in plants (Bakker et al. 2007). 
Bacillus spp. secrete phenylalanine ammonia lyase, peroxi-
dase and other pathogenicity-related proteins to inhibit R. 
solani growth (He et al. 2002). Foliar spray of B. subtilis and 
B. megaterium was found to be highly effective in inhibiting 
the formation of sclerotia (40–60%) and mycelial growth (Li 
et al. 2003; Chen and Kang 2006). Pseudomonas fluorescens 
was also reported to be highly effective in preventing myce-
lial growth and sclerotia development (45%) when applied 
as a foliar spray or soil amendment (Kazempour 2004). 
Application of another strain of Pseudomonas, GRP3, as a Ta
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coating on rice seed, followed by root dipping of germinated 
seedlings showed inhibition of the R. solani sclerotia up to 
46%. (Pathak et al. 2004).

Eukaryotic microbes, mainly fungi from the genera 
Trichoderma and Gliocladium, have also been used as 
antagonists for ShB management. Trichoderma spp. and 
Gliocladium spp. inhibit R. solani by competition for nutri-
ents and by mycoparasitism involving antifungal secondary 
metabolites (Qualhato et al. 2013). The major antifungal 
secondary metabolites reported are volatile antibiotics (e.g. 
6-pentyl-α-pyrone and isocyanide derivates), hydrophilic 
compounds (e.g. heptelidic acid or koningic acid) and 
amphipathic polypeptides (e.g. peptaibiotics and peptaibols) 
(reviewed in Lorito et al. 2010, Bailey and Lumsden 2014). 
Fungal antagonists in the form of conidial biomass are used 
in the preparation of talc formulations for application as fun-
gicides (Singh and Nautiyal 2012). The formulations applied 
to soil, seeds, root dip and foliar spray have shown inhibi-
tion of sclerotia formation up to 59% (Nagaraju et al. 2002; 
reviewed in Kumar et al. 2009).

Integrated, or combination approaches have also shown 
effectiveness for ShB control. As an example, applying a 
combination of a PGPR with an antibiotic was found to be 
very effective in suppression of ShB infection in rice: B. 
subtilis NJ-18 strain with jinggangmycin (a glucosamini-
dase glycoside antibiotic produced by Streptomyces var. 
jinggangensis) showed suppression of R. solani infection 
in rice under greenhouse conditions (Peng et al. 2014). A 
combined application of PGPR and fungus also showed 
promising results in controlling R. solani infection. T. viride 
and P. fluorescens reduced the disease by 47.3% (measured 
based on percentage disease scoring) compared with the 
individual application of either P. fluorescens (42%) or T. 
viride (45.7%) (Mathivanan et al. 2005). Combined applica-
tion of T. viride and P. fluorescens demonstrated escalation 
in phytoalexin production, callose deposition, lignification 
of the plant cell wall, antimicrobial secondary metabolite 
production and upregulation of pathogenesis-related (PR) 
proteins (Nanda et al. 2010; Singh et al. 2016). Despite the 
promising results with biocontrol agents, the introduction of 
new biocontrol agents involves various considerations such 
as the tedious work of selection and screening, optimization 
of mode of application to achieve best results (reviewed in 
Tabassum et al. 2017), shelf life of the organism, efficacy 
in the field trials, environmental safety, and registration to 
be used as a PGPR (reviewed in Etesami and Maheshwari 
2018).

Molecular biocontrol agents, such as antibiotics and 
the cell derivative trehalose have also been used against 
ShB. Trehalose (α-d-glucopyranosyl-(1 → 1)-α-d-
glucopyranoside) is a carbohydrate energy source (Jin et al. 
2015) present in all organisms except mammals (Bena-
roudj et al. 2001). In fungi, it is reported to be an important 

component of energy conservation and is also used as a scav-
enger of ROS (reactive oxygen species) under stress condi-
tions (Perfect et al. 2017). Although generation of ROS is 
related with stress, ROS production has been reported to be 
crucial for the formation of R. solani sclerotia (Wang et al. 
2018). ROS production is accelerated at the hyphal branches 
during the initial stage of sclerotia formation (Georgiou et al. 
2000). During the mycelial growth, fungal cells remain sta-
ble and the amount of intracellular oxygen remains low, but 
in the transition period between mycelial growth to differ-
entiation, fungal cells produce free radicals [ROS: hydroxyl 
radicals (·OH), superoxide anion (O2

·), singlet oxygen (1O2), 
and hydrogen peroxide (H2O2), etc.], which stabilise the 
antioxidant level in the cells (Georgiou et al. 2006). The 
whole process leads to excessive accumulation of intracel-
lular ROS, initiating the formation of sclerotia (Wang et al. 
2018). The application of exogenous trehalose showed a 
prominent increase in the ROS-related enzyme activities and 
induced oxidative burst as well as the decline in R. solani 
sclerotial dry weight (Wang et al. 2018). In addition, appli-
cation of other antioxidants such as β-carotene (Zervoudakis 
et al. 2003) and ascorbic acid (Georgiou et al. 2003) also 
showed inhibition of sclerotial biogenesis. Hence, applica-
tion of antioxidant or mimetics (chemicals which can act as 
antioxidant) can be utilised to restrict the sclerotia biogen-
esis (Papapostolou and Georgiou 2010) (Table 4).

Genetic improvement of rice for sheath blight 
resistance

A long history of human selection, then traditional breeding 
in rice, are now supported by molecular information that can 
be used, often together with biotechnological approaches, 
to develop improved varieties, including ShB resistant cul-
tivars. Below we discuss the different strategies which have 
been implemented in genetic improvement of rice against 
ShB infection:

Selection and breeding

ShB resistance is a quantitative trait which is controlled 
by multiple genes (Li et al. 1995; Zeng et al. 2011). Map-
ping of QTLs (quantitative trait loci) has revealed associa-
tions between gene loci and traits which have been used 
for marker-assisted selection in breeding (Mulualem and 
Bekeko 2016). Li et al. (1995) identified six QTLs associ-
ated with ShB resistance using restricted fragment length 
polymorphism (RFLP) analysis. Following this, more than 
50 QTLs were identified for ShB resistance (Lavale et al. 
2018), using mapping of various populations such as double-
haploid populations (Zeng et al. 2015), a backcross popu-
lation (Li et al. 2009), recombinant inbred lines (Channa-
mallikarjuna et al. 2010), an F2 population (Sharma et al. 
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2009), chromosomal segment substitution lines (Zuo et al. 
2014) and near-isogenic introgression lines (Loan et al. 
2004). Association mapping of simple sequence repeats in 
rice genomes including landraces, further identified several 
markers significantly associated with ShB resistance (Jia 
et al. 2012; Lavale et al. 2018). However, the reliability of 
those QTLs is variable, as most of the QTLs remain unde-
tected in multiple environments and/or mapping populations 
(Zuo et al. 2014; Eizenga et al. 2015). A recent genome-wide 
association study predicted two reliable QTL in rice based 
on significant correlation of the identified loci with ShB 
resistance in 299 cultivars (Chen et al. 2019). However, to 
date no QTL for ShB resistance has been well characterised: 
Identification of ShB resistance genes in QTL loci, func-
tional characterization and application in marker associated 
breeding will be useful for generating resistant cultivars.

Genetic modification through biotechnology: 
Defense‑related proteins and peptides

Genetic modification to develop resistant lines is a poten-
tially powerful strategy to combat ShB infection in rice. 
The first tissue culture regeneration of rice (Oryza sativa 
cv. ‘Nipponbare’) was reported in 1985, using protoplasts 
derived from rice seed scutellum (Fujimura et al. 1985). 
The first genetically modified rice, (Oryza sativa L.v Tai-
pei 309), containing an antibiotic resistance gene neomy-
cin phosphotransferase II (NPTII), was reported in 1988 
(Zhang et  al. 1988). Following this, several genetically 
modified lines were developed expressing biotic and abiotic 

stress-resistant genes (reviewed in Ansari et al. 2015). More 
recently, the use of RNA interference (Tiwari et al. 2017) 
and gene editing (Gao et al. 2018) has demonstrated the 
possibilities to precisely manipulate expression of target 
genes to generate resistance rice varieties. Plant defense 
mechanisms are induced upon perception of a pathogen 
attack and include a hypersensitive response, generation of 
reactive oxygen species (ROS), accumulation of secondary 
metabolites such as phytoalexins, phenolics and tannins, 
and production and accumulation of pathogenesis-related 
(PR) proteins (Helliwell et al. 2013; Jain and Khurana 2018). 
Among the defense-related metabolites, expression of PR 
proteins has demonstrated potential to reduce ShB infec-
tion in rice (Table 2). Examples include rice plants overex-
pressing PR genes, such as Oryza sativa chitinase 11 (PR3 
family) to inhibit R. solani via hydrolysis of β-1,4 linkages 
of the N-acetylglucosamine polymer of fungal chitin and 
degradation of the cell wall (Datta et al. 2001). The use of 
multiple disease resistance genes is likely to provide more 
enduring resistance than use of single resistance genes. 
Plants expressing three PR genes; chitinase-11 (PR3 fam-
ily), thaumatin-like protein (PR5 family) and Xa21 (recep-
tor like kinase) together showed fewer lesions compared to 
plants expressing each individual gene (Maruthasalam et al. 
2007), while Karmakar et al. (2017) showed plants express-
ing OsCHI11 and AtNPR1 together displayed fewer sheath 
blight symptoms than plants expressing either single gene.

Expression of small antimicrobial peptides (AMPs) 
(45–54 amino acids), such as defensins in rice, have also 
been demonstrated to inhibit R. solani infection (Jha et al. 

Table 4   Summary of putative genes/proteins involved in Rhizoctonia solani-rice interaction

a Source: Rao et al. 2019; Ghosh et al. 2019 and Ghosh et al. 2018

Phase of infection Genes/proteins Role in infectiona

Establishment phase Polygalacturonase Polygalacturonase secreted by R. solani degrades enzyme pectin which is a 
major plant cell wall component

Extracellular metalloprotease, Mpr1 Fungalysins (zinc metalloproteases) which protect the pathogen from the 
action of host chitinases

ABC3 (ATP-binding cassette) transporter ABC3 helps to efflux of cytotoxic compounds such as phytoalexins produced 
by the host

CRaZy (calcineurin-responsive zinc 
finger) transcription factor

Transcription factors helps in regulating expression of pathogenicity-associ-
ated genes during host colonisation

GAS1 GAS1, encodes β-1,3-glucanosyltransferase which helps in formation of 
infection cushions

Necrotrophic phase AOX1 AOX1 is involved in alternative oxidative pathway and provides resistance 
against oxidative stress during pathogenesis

SidH SidH (Enoyl-CoA hydratase protein family) is involved in siderophore 
production, which in turn assists the pathogen to survive under iron starved 
oxidative stress conditions

DHOD DHOD (dihydroorotate dehydrogenase) is involved in maintaining cellular 
redox homeostasis to survive in anaerobic host conditions

MoCDIP4 MoCDIP4 encodes effector proteins and cell wall degrading enzymes that 
induce cell death
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2009). Plant defensins bind to the fungal hyphae damag-
ing the cell wall and plasma membrane thereby inhibiting 
fungal growth (Van Der Weerden et al. 2008). Expressing 
Dahlia merckii derived defensin, Dm-AMP1 in the apoplast 
of rice, suppressed the growth of R. solani by destabilising 
the plasma membrane. Dm-AMP1 also reduced the hyphal 
proliferation inside the plant tissue creating a disease resist-
ance cascade (Jha et al. 2009). Although the role of AMPs 
has been widely studied and well characterised against biotic 
stresses there is a concern on the stability and innate toxicity 
of AMP. Much research is needed to develop less toxic and 
more stable AMPs for plant protection against ShB (Tang 
et al. 2018).

The recent addition of gene editing technology to plant 
biotechnology has expanded the possibilities for gene targets 
for the inhibition of pathogenesis. CRISPR/Cas9 editing has 
been used to restrict the growth of the R. solani in rice (Gao 
et al. 2018): R. solani activates the OsSWEET11 sugar trans-
porter in infected plant cells, to efflux the sugar molecules 
for nutrition. Pathogen infection experiments showed that 
CRISPR-Cas9-based OsSWEET11 knock-out mutants were 
less susceptible to ShB, compared to OsSWEET11 overex-
pressing and wild-type plants (Gao et al. 2018). The preci-
sion of gene editing methods makes them attractive for crop 
improvement, particularly for loss of function mutations.

Genetic modification through biotechnology: 
Transcriptional and post‑transcriptional regulation of gene 
expression

Strategies for manipulating gene expression at the transcrip-
tional and post-transcriptional level have shown promise for 
improving rice ShB resistance. The rice genome encodes 
around 63 families of transcription factors (Gao et  al. 
2006), proteins that are master regulators of gene expres-
sion. Overexpression of members of the WRKY family of 
transcription factors, including OsWRKY30 (Peng et al. 
2012), OsWRKY4 (Wang et al. 2015a) and OsWRKY80-
OsWRKY4 (Peng et al. 2016) in rice each showed a reduc-
tion in the level of infection by R. solani. The reduction 
in the level of infection was found to be associated with 
WRKY-mediated elevated expression of defense-related PR 
genes of jasmonic acid and ethylene-responsive pathways 
(Peng et al. 2012; Wang et al. 2015a). Other than WRKY, 
transient expression of a rice transcription factor from the 
MYB family, Osmyb4 in rice leaf also demonstrated to ele-
vate the expression of disease-resistant genes (aminotrans-
ferase, ankyrin and WRKY 12) (Singh et al. 2015) associated 
with the R. solani resistance (Zhang et al. 2010).

Other than the manipulation of gene expression via tran-
scription factors, post-transcriptional regulation via RNA 
silencing is an effective biotechnological approach that 
has been applied in various crop. RNA silencing exploits 

the innate mechanism of double-stranded RNA-mediated 
suppression of gene expression via targeted destruction 
of mRNAs (Guo et al. 2016). With recent advancements 
in dsRNA delivery methods such as topical application 
of crude bacterial extract of exogenous dsRNA (Tenllado 
et al. 2003; Lau et al. 2014) and clay nanosheets loaded 
with dsRNA (Mitter et al. 2017) RNA silencing has already 
shown effect in disease management, especially for crop 
viruses. Information for the application of RNA silencing-
based control to manage fungal pathogens is expanding, 
and this method offers an additional tool against fungi for 
which existing fungicides have been ineffective (Mclough-
lin et al. 2018). An RNA silencing approach was able to 
reduce infection and delay symptoms of ShB by expressing 
a hairpin construct designed from the coding sequence of 
the PATHOGENICITY MAP KINASE (PMK), PMK1 and 
PMK2 genes of R. solani in rice (Tiwari et al. 2017). PMK is 
required in the fungal developmental pathway including the 
formation of appressorium infection structures, penetration 
of plant cuticle and overall viability inside host plant (Mey 
et al. 2002; Jenczmionka et al. 2003).

Conclusion and future prospects

ShB in rice is favoured by warm climatic conditions and 
high humidity. The key factors behind ShB outbreaks are 
broad host range and absence of single resistance gene and 
lack of awareness and access to best management practices 
among farmers. The most common practice in the field is 
still the application of fungicide, which if not used with 
care and good management, has negative environmen-
tal consequences and harmful effects on human health. 
The persistent use of fungicides leads to accumulation 
in agricultural soil and to ground-water contamination. 
The prolonged use of a fungicide also induces pathogen 
resistance. A more sustainable approach for ShB manage-
ment in rice, with less reliance on synthetic fungicides, is 
to make greater use of natural fungicides such as strobi-
lurins and biological agents such as P. fluorescens, Bacil-
lus spp., Trichoderma spp., Gliocladium spp. and trehalose 
to restrict ShB occurrence. Further, testing of combina-
tions of natural fungicides with biological agents and/or 
antibiotics to inhibit R. solani infection will likely lead to 
improved strategies for ShB management and can be used 
to determine more cost-effective approaches for farmers 
in various different settings. As ShB spreads more quickly 
with a poor spacing between plants and with over use of 
nitrogen fertilisers, adopting a square method of spacing 
and sparse plantation to avoid plant to plant contact and a 
combination of management practices such as postharvest 
drying and clearing of the field, crop rotation with the 
non-host plant will aid in restricting the fresh infection 
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or re-occurrence. Furthermore, early disease detection of 
phenotypic and physiological parameters using Unmanned 
Aerial Systems can minimise the disease spread.

Use of tolerant and ideally resistant varieties is another 
sustainable approach. While QTL analysis has identified 
some potential ShB resistance loci and transcriptomic stud-
ies have identified candidate resistance genes, the underlying 
mechanisms for pathogenicity and resistance are not well 
understood and should be a priority for further studies. Also, 
genes associated with different phases of R. solani patho-
genesis have been identified and further validation of such 
genes will serve as a reference for developing ShB tolerant 
varieties. Biotechnological approaches have shown prom-
ise: Transgenic lines overexpressing pathogenesis-related 
genes PR3, PR5, OsCHI11 and AtNPR1 (Table 2) and TF 
family WRKY (Peng et al. 2012; Wang et al. 2015a; Peng 
et al. 2016) showed inhibition against R. solani infection. 
It will be important to demonstrate protection against dis-
ease in field testing of the transgenic lines including under-
warm and humid climates (optimal condition for R. solani 
infection) to further screen and select elite resistant varie-
ties. Also, it will be interesting to study the productivity 
of transgenic lines in a field setting, especially at ShB hot-
spot locations. Host-derived dsRNA mediated silencing of 
pathogen-related kinase (PATHOGENICITY MAP KINASE 
1) also demonstrated promising inhibition of R. solani infec-
tion. Exploration of pathogen- related genes through the 
exploitation of recent alternative approaches such as topical 
application of dsRNA as crude bacterial extract (Tenllado 
et al. 2003; Lau et al. 2014) or RNA clay (Mitter et al. 2017) 
and CRISPR mediated knock-out are additional approaches 
that should be included to achieve efficient and cost-effective 
disease management.

With climate change, ShB, along with other important 
crop diseases will require strong and concerted efforts in 
many areas of research from fundamentals though to appli-
cations. Strengthening linkages between researchers, media, 
non-governmental and community-based organisations in 
publicising information on ShB disease and its management 
will further aid in raising awareness to improve adoption of 
current available technologies to minimise ShB infection.
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