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Abstract: Agricultural land is extensively affected by salinity stress either due to natural phenomena

or by agricultural practices. Saline stress possesses two major threats to crop growth: osmotic stress

and oxidative stress. The response of these changes is often accompanied by variety of symptoms,

such as the decrease in leaf area and internode length and increase in leaf thickness and succulence,

abscission of leaves, and necrosis of root and shoot. Salinity also delays the potential physiological

activities, such as photosynthesis, transpiration, phytohormonal functions, metabolic pathways,

and gene/protein functions. However, crops in response to salinity stress adopt counter cascade

mechanisms to tackle salinity stress incursion, whilst continuous exposure to saline stress overcomes

the defense mechanism system which results in cell death and compromises the function of essential

organelles in crops. To overcome the salinity, a large number of studies have been conducted on silicon

(Si); one of the beneficial elements in the Earth’s crust. Si application has been found to mitigate salinity

stress and improve plant growth and development, involving signaling transduction pathways of

various organelles and other molecular mechanisms. A large number of studies have been conducted

on several agricultural crops, whereas limited information is available on horticultural crops. In the

present review article, we have summarized the potential role of Si in mitigating salinity stress in

horticultural crops and possible mechanism of Si-associated improvements in them. The present

review also scrutinizes the need of future research to evaluate the role of Si and gaps to saline stress

in horticultural crops for their improvement.
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1. Introduction

Salinity is a major threat to agriculture under irrigation, thereby instigating damage and inhibition

of crop growth and development. More often than not, salinity affects the physicochemical properties

of the soil and ecology of the area. Lower agricultural productivity, lower economic returns, and

erosions of soil are the eventual consequences of salinity stress [1]. It is estimated that 7% of the

land on Earth and 20% of the arable land are salinity affected, and the percentage of salinity affected

land is projected to rise to almost 50% by the middle of the 21st century [2,3]. The unsupervised

irrigation practices, fertilizer usage, low precipitation, higher surface evaporation, weathering of native

rocks, and industrial pollution are the various reasons that can be associated with the emergence of

salinity-affected lands [4,5]. The typical definition of saline soil is based on the electrical conductivity

(EC) measurements of the saturation extract (ECe) in the root zone of a plant. When EC of the ECe in root

zone exceeds 4 dS m−1 at 25 ◦C with exchangeable sodium of 15%, the soil is said to be saline. At this
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ECe, most of the crops are affected, while lower ECes can also be unfavorable to certain crops [3,6].

Thus, strategies to develop tolerant varieties of plants to abiotic stresses are a major challenge so as to

surpass the depleting food production system and meeting the global food demands [7].

Salinity stress occurs due to the accumulation of Na+ and Cl− ions in the soil at concentrations

higher than adequate levels [8]. The overall developmental stages of the plants, viz., germination,

vegetative growth, and the reproductive stages, are affected by salinity. These effects can be attributed

to the multifaceted interplay of morphological, physiological, and biochemical processes in plants [9,10].

In plants, during salinity stress, the reduction in leaf area, chlorophyll content, and stomatal conductance,

directly affects rate of photosynthesis. In addition to this, decreased photosystem II efficiency can also

be held accountable for disturbing photosynthesis [11]. Salinity also inhibits microsporogenesis and

stamen filament elongation, which leads to programmed cell death, abortion of ovule, and senescence

of fertilized embryos, ultimately affecting the reproductive development [12]. Moreover, the deterrent

effect of salinity in plants can be seen in the form of osmotic stress and ion-specific stress. The former

is known to dismantle homeostasis in water potential due to the accumulation of solutes at higher

concentrations than is required, and the latter leads to accumulation of Na+ and Cl− in excess quantities,

in turn affecting the K+/Na+ ratio [13]. K+ plays a pivotal role in synthesis of proteins, maintenance of

turgor pressure in cell, and stimulation of photosynthesis; therefore, its absence can be detrimental for

the plants. The osmotic and ionic stresses along with nutrient deficiencies (e.g., N, Ca, K, P, Fe, and Zn)

lead to the development of oxidative stress in plants [14]. The reactive oxygen species (ROS) which

accumulate in plants have negative effects on cell structures and various other molecules such as DNA,

lipids, proteins, and genes [15–17]. The mechanisms in plants that regulate the K+/Na+ homeostasis,

concentrations of nutrients (N, Ca, K, P, Fe, and Zn), and balanced ROS production and detoxification

can be depended upon to provide tolerance towards salinity stress [18].

Attempts have been made for sustainable management of salinity stress, such as by changing

farming systems so as to include perennials in rotation with annual crops (phase farming), in mixed

plantings (alley farming, intercropping), or in site-specific plantings (precision farming) [19]. But the

execution is restricted by factors such as cost, abundance of water of good quality, or good water

resource. Other alternative approaches to mitigate adverse effects of salinity stress include development

of salt-tolerant crops and transgenics, application of plant growth-promoting bacteria, endophytes, salt

leaching from root zone, and using the drip or micro-jet irrigation technique such that the use of water

is optimized [20,21]. However, very little information is available to us regarding the mineral status and

plant dynamics towards tolerance to salinity stress [22]. Therefore, a major challenge in this regard is

the development of efficient, affordable, and easily adaptable methods for salinity stress management.

Silicon (Si), despite being touted as the second most abundant element in Earth’s crust, its status

in terms of its essentiality for growth and development in plants is often debated. This is because of

the fact that different plant species have different abilities of Si uptake [23]. On the basis of the mode of

Si uptake, plants are categorized into high, intermediate, and non-Si accumulators [24]. Monocots

such as Zea mays and Oryza sativa are known to accumulate silicon in the order of 5% or higher in their

tissues on a dry weight basis and are called Si accumulators, whereas dicots, such as Helianthus annuus

(sunflower) and Benincasa hispida (wax gourd), accumulate 0.1% Si in their tissue on a dry weight

basis and are commonly called an intermediate type of Si accumulator [25,26]. However, even the

plants that are non-accumulators of Si show significant result in mitigating abiotic stress if the nutrient

solution or soil is enhanced with exogenous Si [24]. Scientists usually consider Si a ‘non-essential’

element for the development of plants, but some researchers prefer to refer to Si as a ‘quasi-essential’

element in plants of higher orders due to the findings that Si-supplemented plants show better growth

than non-supplemented ones [27,28]. Silicon has proved to be very important in alleviating various

environmental stresses such as biotic stress (diseases of plants and damage by pests) and abiotic

stresses, namely salinity stress, drought stress, freezing stress, and toxicity by heavy metals [29–32].
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Abiotic stresses in general cause numerous alterations in the physiological, molecular, and

biochemical processes that operate in plants. In response to abiotic stress, various signaling pathways

are activated which results in the development of a multifaceted regulatory network that involves

transcription factors, ion homeostasis, antioxidants, hormones, kinase cascades, ROS, and osmolytes

synthesis [33,34]. The current times have witnessed the advancement in “omics” technologies that have

profound application in plant sciences to identify key proteins or metabolites which are responsible for

stress tolerance in plants and the genes that regulate such molecules [35]. Amongst the various “omics”

approaches available, proteomics is useful for determination, protein identification, expression profile,

post-translational modifications (PTM), and protein–protein interactions in both stress and non-stress

conditions [36,37]. A response towards abiotic stress at the molecular level usually involves the change

in protein expression pattern, thus making the proteomic approach very suitable in deciphering a link

between accumulation of protein during stress conditions and its relation with stress tolerance [38].

Identification of the possible candidate genes by plant stress proteomics can be helpful to genetically

enhance the plants against abiotic stresses [39].

The effect of silicon in alleviating the salt-induced injury has been studied in several crops such as

wheat, barley, maize, rice, tomato, cucumber, and alfalfa [40–43]. However, these studies have basically

dealt with the morphological and physiological responses of plant towards salinity stress and no, or

very little, light have been shed on the proteome response of plants subjected to salinity stress under

silicon supplementation. Plant response to salt stress through a proteomics approach has been studied

on certain agricultural and horticultural crops, such as durum wheat [44], canola [45], sugar beet [46],

soybean [47], peanut [48], sorghum [49], tomato [50], potato [51], and cucumber [52].

Horticultural crops, particularly fruits and vegetables, acquire an important place in the food

industry. Horticultural crops have gained much importance in recent years because, besides their

human consumption, they play an important role in commerce like export trade and processing

industries. Horticultural crops also produce employment to the farm population, transport, processing

industries, and self-seeking employment in the form of entrepreneurs. However, due to several abiotic

and biotic stresses, horticultural crop production is drastically decreasing. Keeping this view into

consideration, it is important to emphasize production of horticultural crops in global plans and how

to improve their production should be taken into consideration seriously. To improve the production

of agronomical crops with Si supplementation, a lot of research has been carried out. However, very

limited studies have been carried out to elucidate the effect of Silicon in mitigating salinity stress in

horticultural crops employing proteomic approaches. Since the proteomics approach deals with the

identification and characterization of stress inducible proteins, detailed research on the efficiency of

silicon to alleviate salinity stress employing a proteomic approach can help us to comprehensively

illustrate the process of stress tolerance in plants induced by Si.

In the first half of the review, we discuss the plant cellular mechanisms that are involved in salinity

stress tolerance at the physiological and biochemical level, such as ROS production and detoxification,

role of ion pumps, phytohormones, transcription factors, osmoprotectant, etc. In the second half of the

review, we focus on cross-talk, signaling pathways, and tolerance mechanism of plants towards salinity

stress by elucidating the interaction between silicon and salinity stress in horticultural crops employing

a proteomic approach. The current review will gather the available information and decipher the

role of Si in alleviating salt stress in the field of horticulture by proteomic approach. The review will

help researchers to apprehend the gaps in the understanding of the mechanism involved in salinity

stress tolerance in crops that are either consumed on daily basis in the form of vegetables and fruits or

commercially applicable in the form of flowers.
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2. Reactive Oxygen Species (ROS) and their Production under Salinity Stress

In any given time in a plant cell, the rate of production of ROS and its quenching is at equilibrium.

However, this equilibrium is disturbed when plants are affected by abiotic stresses, such as salinity

stress, heat stress, chilling stress, drought stress, etc., and ROS is overproduced. The ROS production

center in plants is organelles, such as chloroplasts, mitochondria, and peroxisomes.

2.1. In Chloroplasts

The PSI of the thylakoid in chloroplasts is the major producer of superoxide, whereas the PSII is

involved in the production of singlet oxygen (O2
−1). In PSI, superoxide is formed by the reduction

of a single electron of molecular oxygen by plastosemiquinone in the plastoquinone pool and also

by the involvement of ferredoxin (Fd) and/or iron sulfur redox centers in the electron transport chain

(ETC) [53]. The rapid production of hydrogen peroxide from superoxide is generally found to be

spontaneous or due to SOD (superoxide dismutase). In the PSII reaction center, the excited triplet

chlorophyll molecules are known to excite the oxygen (3O2) in its triplet ground state to an excited

single state (1O2) [54,55]. Salt stress is known to cause the stomata to close, thus disturbing the

CO2-to-O2 ratio in leaves and inhibiting photosynthesis. Such conditions in plants lead the electrons to

leach out oxygen, thus increasing the rate of formation of ROS [56].

2.2. In Mitochondria

The complex I (NADH ubiquinone oxidoreductase) and complex II (ubiquinol-cytochrome c

oxidoreductase) of the mitochondrial electron transport chain is majorly responsible for the production

of O2
− [57–59]. The dismutation of O2

− that was produced from the electron transport chain leads to

generation of H2O2 and O2. Being considered a low toxic compound, H2O2 can react with Fe2+ and

Cu+ to form highly toxic compounds such as hydroxyl radicals and can diffuse out of mitochondria to

other cellular compartments [60].

2.3. In Peroxisomes

The peroxisomal matrix and the peroxisomal membranes are the two sites known for O2
−

production in the peroxisomes. In the peroxisomal matrix, the oxidation of xanthine and hypoxanthine

is catalyzed by xanthine oxidase to produce uric acid and further leads to production of O2
−

radicals [61]. In the peroxisomal membranes, three peroxisomal membrane polypeptides (PMPs) of

the electron transport chain in peroxisomes are involved in the generation of O2. These PMPs have

been characterized to have a weight of 18, 29, and 32 KDa [62]. H2O2 is produced in the peroxisomes

via a direct pathway or via disproportionation of O2
− generated in the peroxisome. Glycolate oxidase

catalyzes glycolate in the process of photorespiration, thus generating H2O2. The β-oxidation of fatty

acids is also known for generating H2O2 [63]. Lipid peroxidation of peroxisomes is enhanced by

salt stress.

The electron transport chain constituted by the flavocytochrome unit of the NAPDH oxidase in

plasma membrane is involved in the reduction of O2 to O2
−. The NADPH oxidase is the enzyme

postulated to be responsible for ROS in salt stress [64]. Amine oxidases, germin-like oxalate oxidases,

and cell wall peroxidases that are pH dependent are also assumed to be involved in the ROS production

and accumulation in apoplast [65–67]. The interplay of the various organelles involved in the production

of ROS during salinity stress conditions is shown in Figure 1.



Plants 2020, 9, 460 5 of 28

 

−

− −

β
β

Figure 1. Schematic representation of mechanisms involved in generation of reactive oxygen species

(ROS) during salinity stress. Organelles such as chloroplast, mitochondria, and peroxisome are involved

in the generation of free radicals such as O2
−, singlet oxygen (1O2), OH., H2O2. Apart from this, plasma

membrane NADH oxidase, Amine oxidase, cell wall peroxidases, and Gemin-like oxalate oxidases also

generate ROS. The generation of ROS is detrimental to cell structures, macro molecules such as DNA,

lipids, proteins, and genes affecting the overall functioning of the cell.

3. ROS Detoxification: A Response towards Salt Stress Tolerance in Plants

3.1. In Chloroplasts

The first line of defense against ROS starts in thylakoid with the formation of the thylakoidal

scavenging system, the major constituents of which are thylakoid superoxide dismutase/SOD

(tSOD), thylakoid ascorbate peroxidase/APX(tAPX) and Ferredoxin-dependent reduction of

mondehydroascorbate (MDA) [68]. The in-situ disproportionation of O2
− (that is generated in PSI)

into H2O2 and O2
− occurs by a reaction catalyzed by tSOD. The H2O2 thus produced is then reduced

by ascorbic acid (AsA) to water with the catalytic action of tAPX, and oxidation of AsA into MDA

radical occurs. The reactions above constitute the water–water cycle. Reduced ferredoxin is known for

the reduction of MDA to AsA. The MDA sometimes also disproportionate to dehydroascorbate (DHA).

Further, the ascorbate glutathione cycle (AsA–GSH) reduces MDA or DHA to AsA [69]. Detoxification

of the ROS that escaped from the thylakoid or grana is carried out by stromal SOD, stromal APX

(ascorbate peroxidase), and AsA–GSH cycle of the stroma. H2O2 removal in stroma is also carried out

by PrxR and APX cycle [68].

The 1O2 that is produced in the chloroplasts reacts with other molecules causing oxidative damage

to proteins, lipids, and DNA. This 1O2 generated is quenched by two molecules of β-Carotene in PSII.
1O2 can be scavenged by tocopherol as well but at a rate two folds lower than that of β-Carotene [70].

AsA and GSH, being non enzymatic antioxidants, are the central cellular redox buffer. As the

concentration of AsA is high in chloroplasts, it can effectively scavenge ROS such as superoxide,

hydroxyl radicals and singlet oxygen [71]. However, the enzymatic scavenging system is precedented

by APX, SOD (superoxide dismutase), and GR (glutathione reductase) of the chloroplast. Previous
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studies [72,73] showed that SOD, APX, and GR that are thylakoid and stromal bound, in halophyte

chloroplast Suaeda salsa L., are enhanced when subjected to salinity stress, which can be regarded as

an essential mechanism in halophytes for mitigating salinity stress. The overexpression of cytosolic

APX in chloroplasts of plants is found to improve tolerance towards salinity and drought [74]. The

expression of SOD and APX in chloroplasts of transgenic tobacco plants was also found to improve the

tolerance against oxidative stress mediated by MV [75]. These results ascertain the fact that chloroplasts

play a major role in protection against oxidative damage that is induced by external forces.

3.2. In Mitochondria

The O2
− generated in mitochondrial electron transport chain is scavenged by two mechanisms.

In the first, O2
− is converted to H2O2 by the catalyzing enzyme Mn-SOD [68,76,77]. In the second,

spontaneous dismutation converts O2
− into H2O2. The H2O2 is then acted upon by mitochondrial

APX and removed through the AsA-GSH cycle [78,79]. Peroxiredoxins (Prxs) use thioredoxins as a

reductant source to reduce the H2O2 produced. Thioredoxins can later be reduced by thioredoxin

reductase [80]. Rather than scavenging the O2
− produced, mitochondria can instead modulate the

production of O2
− itself via two mechanisms. The first mechanism involves the maintenance of

a basal ubiquinone pool reduction state by alternative oxidase (AOX), reducing the production of

mtROS [81]. In the second mechanism, a proton leak occurs across membrane due to the uncoupling

of an uncoupling protein (UCP), thus removing the inhibition of mtETC and consequently decreasing

the mtROS production [82].

It has been found that the wild tomato species Lycopersicon pennellii tolerant to salt shows an

upregulation in the levels of ASA and GSH and SOD activity [83]. Mitochondrial MnSOD at the

transcript level were shown to be induced by salt treatment in the variety tolerant to salt but not

in the variety sensitive to salt [84]. In another study, it was reported that mitochondrial MnSOD of

Nicotiana plumbagnifolia when overexpressed in Nicotiana tabacum mitochondria, protected the latter

from instances of oxidative damage [85].

3.3. In Peroxisomes

Three out of nine plant peroxisomal SOD, CuZn-SOD, and Mn-SOD from watermelon and Mn-SOD

from pea leaves were purified and characterized [86]. Their function is to convert O2
− produced in

the peroxisomes into H2O2 and O2. The H2O2 is further acted upon by CAT (catalase) and Asa-GSH

cycle and converted to H2O [68]. The peroxisome matrix contains Dehydroascorbate reductase (DHR)

and GR, whereas the peroxisomal membrane contains APX and mondehydroascorbate reductase

(MDAR) [86]. MDAR, in order to provide a continuous supply of NAD+ essential for peroxisomal

metabolism, re-oxidizes NADH. The antioxidant enzymes bound to membrane prevent the leakage

of H202 from peroxisomes [87]. It has been reported that leaf peroxisomes of tomato plants contain

GPX [88], and peroxisomal matrix of pea leaves are localized with Prx [89], both of which are known to

decrease H2O2 levels. Salinity stress causes upregulation of the levels of ASA and GSH, as well as

SOD, APX, CAT, and MDAR activities in root peroxisomes of the tomato species Lycopersicon pennellii

that is tolerant to salt [83]. Therefore, a comprehensive knowledge of the mechanisms involved in ROS

detoxification in plants under salinity stress can provide new insights in plant stress tolerance.

4. Role of Ion Pumps, Calcium, and SOS Pathway in Maintaining Ion Homeostasis during
Salinity Stress

High salinity stress causes an excess of Na+ ion accumulation in plants leading to imbalance in

Na+ homeostasis. Various components of the cells, such as ion pumps, calcium sensors, and their

downstream interacting partners, take part in restoring the ion homeostasis and efflux of Na+ from the

cells. However, there is bias sometimes in selectivity towards ions between channels. For example,

K+ inward rectifying channel is known to enhance the K+ influx when there is plasma membrane

hyperpolarization leading to accumulation of K+ ions rather than the usual Na+ accumulation. The
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histidine kinase transporter (HKT) also has a low affinity for Na+ ion transport and thus facilitates the

blockage of Na+ ions into cytosol [90]. There is also presence of a voltage independent nonspecific

cation channel, serving as a gateway for the influx of Na+ into cells. During the event of plasma

membrane depolarization, the K+ outward rectifying channel carries out the efflux of K+ and facilitates

the Na+ influx into the cell thus leading to accumulation of Na+ in cytosol. Excess Na+ ions are flushed

into the vacuoles by the vacuolar Na+/H+ exchanger (NHX). Generation of an electrochemical gradient

by H+-ATPase leads to the passive movement of H+ along the electrochemical gradient coupled by

NHX, and simultaneously Na+ ions are pushed out of the cytosol. The Ca2+ homeostasis is carried out

by the H+/Ca2+ antiporter (CAX1) pump [91–93].

Calcium is also considered to be in the epicenter of regulation of signaling pathways during

salinity stress. The condition of salinity stress leads to an increase in the cytosolic Ca2+, leading to

the activation of signal transduction pathways for tolerance towards salinity stress. Ca2+ release is

stipulated to be due to two major events [94]. One event involves the activity of EGTA or BAPTA in

blocking the calcineurin-mediated activity leading to release of Ca2+ ions form an extracellular source

(apoplast). The other event involves the Phospholipase C activation; as a result, phosphatidylinositol

bisphosphate is hydrolyzed into inositol trisphosphate, leading to release of Ca2+ from intracellular

Ca2+ stores. A level up in calcium signaling is seen due to the presence of calcium sensors which

detect the calcium signatures, decode them and process the information downstream leading to

phosphorylation cascade initiation and gene expression [94].

The three genes, SOS1, SOS2, and SOS3 (salt overlay sensitive) were identified as the result

of the work of Wu et al. (1996), who carried out a mutant screen for Arabidopsis plants that

were oversensitive to salinity stress. A Ca2+ binding protein, known as calcineurin B-like protein

(CBL), important in detecting Ca2+ concentration in the cytosol and relaying the signal downstream, is

encoded by SOS3 (AtCBL4) [95]. CBL interacting protein kinase (CIPK), which is novel serine/threonine

protein kinase, is encoded by SOS2. The function of SOS3 is to activate SOS2 protein kinase activity

in a calcium-dependent manner [91]. Genetic analysis established the fact that SOS1, SOS2, and

SOS3 function collectively to provide tolerance against salinity stress [96,97]. SOS1 was directly

phosphorylated by the action of SOS3-SOS2 kinase complex. It is ascertained that the SOS pathway

opens up various branches that are actively involved in sequestration of Na+ out of the cells for

maintaining ion homeostasis. NHK is also activated by SOS2 which leads to the pushing out of the

excess Na+ ions into the vacuoles, again maintaining ion homeostasis. Calnexin and calmodulin, which

are the calcium binding proteins, are known to detect the calcium concentration, thus activating NHK.

An additional target for SOS2 has been identified to be the CAX1 conferring homeostasis of Ca2+ in the

cytosol [94]. A schematic representation of SOS and a related pathway involved in maintenance of ion

homeostasis is shown in Figure 2.
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Figure 2. Salt overlay sensitive (SOS) and related pathway involved in maintenance of ion homeostasis

(Na+, K+ and Ca2+) during salinity stress. Phosphorylation of SOS1 (Na+/H+ antiporter) by SOS3-SOS2

protein kinase complex leads to Na+ efflux. SOS3-SOS2 complex also inhibits the activity of HKT1 (low

affinity Na+ transporter), restricting cytosolic entry of Na+. The Vacuolar Na+/H+ exchanger (NHX)

is activated by SOS2 and results in Na+ sequestration into vacuoles. CAX1 (H+/Ca2+ antiporter) is

involved in Ca2+ homeostasis via SOS2 signaling. All these factors, culminatively work together to

provide salinity tolerance to plants via maintaining ion homeostasis (Na+, K+, and Ca2+). (Adapted

from Tuteja 2007).

5. Role of Phytohormones and Transcription Factors during Salinity Stress

The role of abscisic acid (ABA) as a phytohormone in regulating growth and development of plant

and also its response towards salinity stress are well documented [96,98]. Stress conditions lead to

the activation of genes for enzymes carrying out ABA biosynthesis consequently increasing the levels

of ABA. A phosphorylation pathway that is calcium dependent regulates various ABA biosynthetic

genes such as zeaxanthin oxidase, 9-cis-epoxycarotenoid dioxygenase, ABA-aldehyde oxidase, and

molybdenum cofactor sulfurase when hit by salinity stress [97–99]. When ABA accumulates in

excess, it can signal the ABA biosynthetic genes through a calcium dependent pathway to activate

the catabolic ABA enzymes to degrade excess ABA. Both ABA-dependent and ABA-independent

pathways are responsible for the activation of osmotic stress-responsive genes during salinity stress [100].

Other hormones, namely Brassinosteriod (BR) and Salicylic acid (SA), also have a profound role in

response towards plant stress [101]. SA exerts its effects in plant tolerance towards stress by interplay

and signaling with various other growth hormones [102]. It is also efficient in overcoming adverse

effects of salinity stress [103]. On the other hand, BR application is known to enhance the production

of various antioxidant enzymes such as APX, GPX, POX, and SOD and also leads to the accumulation

of antioxidants that are non-enzymatic in nature [103].

Cis regulatory elements which are part of the promoters of stress-induced genes such as DRE/CRT,

ABRE, MYC, and MYB recognition sequence are acted upon by upstream transcription factors and thus

regulated [91,93]. AREB, a leucine zipper transcription factor, when activated by the ABA-dependent

salinity stress signaling, binds to ABRE in order to activate genes that are stress responsive (RD29A).

The DRE cis element of osmotic stress genes is activated by the transcriptional factors DREB2A and

DREB2B and thus maintains the osmotic equilibrium of the cell [96]. The binding of MYCRS and
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MYBRS elements by MYC/MYB transcription factors RD22BP1 and AtMYB2, respectively, also activates

RD22 gene. Hence, it can be stipulated that these transcription factors have a mechanism to cross talk

amongst themselves to provide maximal response during salinity stress.

6. Role of Osmoprotectant Osmolytes during Salinity Stress

The osmoprotectant osmolytes, namely glycine betaine and proline, are synthesized by some

plants in response to salinity stress so as to maintain osmotic homeostasis in the cell [98,104]. Choline

monooxygenase and betaine aldehyde dehydrogenase synthesize GB (Gibberellin) by their enzymatic

action. When the betaine aldehyde decarboxylase-encoding genes from Suaeda liaotungensis were

overexpressed, the tolerance to salinity stress in tobacco plants was enhanced. Tolerance towards salinity

stress in rice was enhanced by the Arthrobacter globiformis choline dehydrogenase gene (codA) [104].

In cyanobacteria and Arabidopsis, when the N-methyl transferase gene is overexpressed, it caused the

GB to accumulate in levels higher than usual and thus provided tolerance to salinity [96]. In rice [105]

and maize [106], exogenous application of GB led to the increase in growth of low or non-accumulating

plants under salinity stress. A decrease in the Na+ concentration and an increase in K+ concentration

in shoots were observed when GB was applied to plants affected by salinity stress, as compared to

plants that were untreated. Hence, GB can be considered to have a prominent effect in ameliorating

salinity stress in plants via transduction pathway and ion homeostasis.

The accumulation of amino acid proline is generally linked with osmotic regulation in cells

under salinity stress to emasculate its affects [104]. Stress responsive genes that are known to possess

proline response elements (PRE, ACTCAT) in their promoters are activated by proline itself [98].

Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) are the two

enzymes that are used by glutamic acid for synthesis of proline for plants of higher order [107]. When

the gene P5CR was overexpressed in transgenic tobacco, it conferred tolerance towards salinity [108].

Oxidative stress caused by salinity stress causes cell membrane damage. Proline comes into action in

this scenario and protects the cell membrane from damage with the help of the antioxidant system [109].

7. Si Uptake, Transport, and Accumulation

Soil generally contains Si in amounts of about 50 to 400 g Si kg−1 [110]. About 50%–70% of

soil mass has Si present in it in the form of SiO2 and other aluminosilicate forms [23]. Despite the

abundance of Si in soil, its uptake by plants is very low due to the poor solubility of Si compounds

present in soil [111–113]. Factors such as pH of soil, water content, cations, and organic compounds

that are present in soil greatly influence the solubilization of Si in soil [114]. The PAFs (plant available

forms) of silicon, such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4], are generally taken up by

plants. The range of PAF-Si concentration in soil varies from 10 ppm to 100 ppm [115]. At physiological

pH, Si in the form of silicic acid or mono silicic acid can cross the plasma membrane [116]. In soil

solution, silicic acid is found at concentrations of 0.1 to 0.6 mM at a pH below 9 [117]. Si concentrations

in leaves range from 0.1% to 10% on the basis of dry weight [118,119]. The variation in concentration

of Si among species is found to be higher than variation within species [120]. The reason behind

variations in accumulation of Si in plants lies in the differential abilities of Si uptake by roots [121].

Byrophyta, Lycopsida, and Equisetopsids are found to accumulate Si in higher concentrations, whereas

Filicopsida, gymnosperms, and angiosperms accumulate Si in very low concentrations [26,122]. The

cyperaceae, poaceae, and balsaminaceae, which are taxa of angiosperms, accumulate > 4% of Si; 2%–4%

of Si accumulation is seen in cucurbitales, urticales, and commenlinaceae, but Solanaceae and Fabaceae

are considered to be Si excluders [26,122]. On the basis of water uptake capacity in higher plants, the

adsorption of Si at lateral roots can be segregated in three ways: active uptake (uptake of Si is faster

than uptake of water). Passive uptake (rate of water uptake and Si uptake is the same) and rejective

uptake (uptake of Si is slow as compared to uptake of water) [123,124]. The apoplastic and symplastic

routes are used for the uptake of silicic acid by root. NIPs (Nod26-like intrinsic protein), which are a

class of the aquaporin (AQP) gene family, are responsible for the symplastic route of Si uptake by roots.
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Several monocots and dicots have Si transporter AQPs present in them [125–129]. The horsetail, which

is a primitive plant species, is considered to be the “king of Si accumulators” [130,131].

Ma et al. [125,132] identified two different Si transporters in rice mutants, namely OsLsi1

(Si-transporter AQPs, influx) and OsLsi2 (efflux Si-transporters), responsible for Si uptake. OsLsi1 and

OsLsi6 (OsLsi1 homolog), which are influx Si transporter AQPs, carry out the transport of Si between

the apoplast and plant cell via the plasma membrane. Thus, the Si influx from soil to root cells is

facilitated by the OsLsi1 gene belonging to NIP-III subfamily of aquaporin [125]. The efflux transporters

(OsLsi2) carry out Si release into the apoplast (xylem loading), after which the Si is translocated to

shoots with the help of a transpiration stream. Thus, the transport of Si from root cells towards stele

is facilitated by OsLsi2 gene (efflux Si-transporter), which is an anion channel transporter [132,133].

Xylem unloading is another crucial event in Si transport so as to prevent Si deposition in xylem. This is

facilitated by OsLsi6, which is an influx transporter and carries out the Si unloading from xylem into

xylem parenchymal cells [133]. Another efflux Si transporter (OsLsi3) is stipulated to carry out the

reloading of Si into the vascular bundles [134]. Such mechanisms have been observed in plants such as

maize and barley [127,128]. The schematic diagram of Si transport in rice is shown in Figure 3.

 

−

Figure 3. Si transport in Rice (Oryza sativa). Influx Si transporters (OsLsi1 and OsLsi6) and efflux Si

transporter (OsLsi2) are responsible for the transport of Si from soil to roots, then to stele and xylem,

and then upwards towards the shoot. Events of xylem loading and unloading and reloading (OsLsi3)

are also involved. Efficient Si uptake and transport leads to better activity of Si in coping up with

salinity stress. (Adapted from Khan et al., 2019).

8. Si-Mediated Regulation of ROS

The production of excess ROS in the form of hydrogen peroxide (H2O2), superoxide (O2
−),

and hydroxyl radical (OH) in an amount more than what the plant requires is seen as an immediate

consequence of salinity stress in plants, leading to oxidative damage to organelles and membranes [135].

In such a situation, the oxidative stress is mitigated by Si with the production of both enzymatic and

non-enzymatic antioxidants of the likes of superoxide dismutase (SOD), catalase (CAT), peroxidases

(POD), ascorbate peroxidase (APx), ascorbate (AA), and glutathione (GSH) [136]. Studies showed

that Si, by regulating the activities of both enzymatic and non-enzymatic antioxidants can provide an

effective ROS scavenging system in plants, and the effect would vary with varying plant species.
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Lipid peroxidation mediated by the production of ROS is found to be disastrous for the living

organisms [137]. In okra roots that were under salinity stress (7 days), foliar application of Si has been

found to increase SOD, POD, and CAT activities leading to a decrease in lipid peroxidation; however,

varied response were noted across genotypes [138]. Wang et al. [139], in an experiment in alfalfa under

salt stress, reported that Si application increased APX activity in roots, shoots, and leaves and POD

and CAT activity in shoots and leaves, respectively. A proportionate decrease in oxidative stress due to

augmentation in antioxidant enzyme activities in tomato plant under salinity stress in solution [140] as

well as sand [141] has also been reported. Similarly, in rice plant under stress, Kim et al. [142] reported

that supplementation of Si reduced the oxidative stress by increasing the antioxidant enzyme activity.

A study by Liang et al. [32] showed that Si can increase CAT, SOD, and GR in barley but not

the APX activity. However, the exogenous application of Si in cucumber leads to an increase in SOD,

APX, GR, and GPX activities but had zero effect on the activity of CAT [24]. The accumulation of

H2O2 in sorghum is reduced by the foliar application of Si, leading to an increase in water uptake,

which is otherwise affected by the hindrance of excess H2O2 in the aquaporin activity [143]. Similar

results were obtained in plants like tomato [115], grapes [144], wheat [145], okra [138], and rice [146].

In Glycyrrhiza uralensis, the POD activity was found to increase on the application of Si in 1, 2, 4, and

6 mM of concentration. In the same study, it was observed that 4 mM of Si increased the SOD activity,

whereas the MDA content (malondialdehyde) was decreased in all concentrations of Si as compared

to control [147]. Garg and Bhandari [148] reported that the Cicer arietinum genotypes exposed to

prolonged salinity, showed the presence of oxidative markers such as O2
−, H2O2, and MDA, the levels

of which declined on the application of 4 mM Si.

The above studies decipher the role of Si as an ROS scavenging system by increasing the activities of

certain antioxidant enzymes thereby countering the detrimental effects of lipid peroxidation. However,

the responses vary from plant to plant, and a clear understanding of the interplay between Si and its

interaction with various antioxidant enzymes is poorly explored. Researchers have to come up with

unified mechanisms explaining the factors that lead to variations in response of plants in antioxidant

enzyme production during Si supplementation to salinity stressed plants. Moreover, the results from a

hydroponics setup cannot be apprehended to the result obtained in soil. Further research must link the

results obtained from hydroponics to those obtained in soil, such that a unified understanding of the

shortcomings and advantages of each of the medium is known and a suitable medium (hydroponics or

soil) can be preferred so as to get the best results of Si supplementation under salinity stress. Research

on organ specific proteomics has to be carried out to elucidate which organ (leaf to root) is involved in

the signal transduction so as to carry out ROS scavenging.

9. Si-Mediated Na+ and K+ Homeostasis

When plants are under salinity stress, a condition occurs where there are increased Na+ and Cl−

levels and a simultaneous decrease in K+ and Ca2+ levels [149–151]. Such a condition affects cellular

metabolism, causing retardation in plant growth and production of ROS in excess [96]. Tuna et al. [145]

reported that Si application in salt stressed plants could reduce Na+ uptake and maintain K+/Na+ levels.

In a study by Abbas et al. [138], it was found that application of Si in okra (Abelmoschus esculentus L.)

affected by salt stress led to a decrease in Na+ and Cl− in shoots and roots in addition to which relative

water content also increased. In salt-stressed cultivars of Egyptian clover, diatomite Si application led to

a dose-dependent decrease in Na+ content [152]. Similarly, a decrease in the level of Na+ and Cl− was

observed in roots of salt stressed grapevine (Vitis vinifera L.) upon application of Si [144]. An improved

homeostasis of Na+/K+ as a result of the decrease in Na+ and increase in K+ uptake was observed in

salt-stressed wheat, when Si in the concentrations of 50–200 ppm were applied, with better effects

at higher concentrations [153]. In conclusion, SARC-5 (genotype that is salt tolerant) was reported

to be more efficient than Auqab-200 (genotype that is alt sensitive). Ali et al. [154] reported similar

results on wheat genotypes in saline field on application of Si. Gurmani et al. [155] also observed a
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decrease in transport of Na+ and increased Na+/K+ ratio upon application of Si in wheat genotypes

under salt stress.

Silicon is known to reduce the accumulation of Na+ in roots/shoots. Liang and Ding [156] reported

an even distribution of Na+ and Cl− in the whole root section of barley under salt stress on application

of Si and also a decrease in Na+ and Cl− levels but increase in K+ levels, which is considered as

a profound mechanism involved in Si-mediated tolerance against salt stress. Similarly, it has been

observed that in alfalfa (Medicago sativa L.), Si application led to decrease in Na+ level in roots rather

than shoots and an increase in K+ level in shoots [151]. Whereas Gong et al. [157] reported a significant

reduction of Na+ in shoots of rice but not roots, on application of Si, thus correlating with the fact

that silicon improves shoot growth. Application of Si led to a decrease in leaf apoplsat Na+ level,

compared to Si-untreated faba bean [158]. These results show that Si mediates salt stress tolerance via

distributing Na+ to different parts of plants.

Reduction of relative water content (RWC) of leaf generally serves as a marker for osmotic

stress [159]. Plants such as wheat [160], tomato [141], maize [161], sorghum [162], and turf grass [163]

which are under salt stress showed an improvement in RWC on application of Si. In wheat leaves,

osmotic potential dropped on application of Si [164]. Therefore, mediation of osmotic potential by Si

may be considered as an effective mechanism of regulating salt stress. However, further studies are

needed to study routes through which Si facilitates water movement under salt stress.

The Na+/H+ antiporter comes into play in this scenario as it removes Na+ from the cytosol

into the vacuoles, thus maintaining Na+ at low concentrations [165]. From Arabidopsis, SOS1

gene, encoding the plasma membrane Na+/H+ antiporter, has been cloned [166]. Compartmentation

of Na+ is carried out by Na+/H+ antiporter, driven by H+-ATPase and H+-pyrophosphatase (H+-

PPase) [166]. Salt-stressed barley roots normally showed a reduced activity of membrane-bound

H+-ATPase. However, upon addition of Si, the H+-ATPase activity increased considerably, which led

to Na+ efflux from cell [40]. On addition of Si in root tonoplast of salt stressed barley, Liang et al. [167]

reported an increase in H+-ATPase and H+-PPase activity, which is supposed to enhance the Na+ exit

into the vacuoles with the help of Na+/H+ antiporter. Silicon was also reported to increase uptake of

K+ via enhancing the activity of H+-ATPase in soil and hydroponic conditions [168]. This suggests

that Silicon encourages plasma membrane H+-ATPase activity and tonoplast H+-PPase activity and

therefore reduces the level of Na+ and increases the K+ level in cytoplasm. However, the role of silicon

in the regulation/expression of Na+/H+ antiporter during salinity stress is yet to be studied in detail.

10. Si-Mediated Biosynthesis of Compatible Solutes and Phytohormone

In addition to producing antioxidants, under stress conditions, plants also respond to stress by

the accumulation of compatible solutes such as proline [169], glycine betaine [170], polyols [171], and

carbohydrates [172]. The compatible solutes are hydrophilic in nature and are known to accumulate in

high concentration without any disturbance to the biochemical reactions going on in the cell [92]. The

high ion concentrations disturb the enzyme activity; such a condition is alleviated by compatible solutes

which function to stabilize proteins and its complexes and/or membranes that are under stress [173].

Oxygen radical scavenging is also touted to be the function of compatible solutes [174]. In a study

conducted by Seckin et al. [175], it was found that in the roots of wheat that are sensitive to salt, an

addition of mannitol increased the antioxidant enzyme activity, thus preventing any sort of oxidative

damage due to salt stress. Osmotic protection and tolerance towards salt is synonymous to proline

application in higher plants [176]. In leaves of Populus euphratica, NaCl stress and mannitol led to the

accumulation of proline [177]. However, studies conducted in several plants such as soybean [178],

wheat [145], barley [179], sorghum [162], and grapevine [144] reported that the addition of Si resulted

in lowering of proline level. Yin et al. [162] reported that application of Si in salt-stressed sorghum

for a short period of time led to an increase in sucrose and fructose levels, consolidating that Si is

effective in alleviating osmotic stress induced by salt. Since the role of proline is not clearly explained

by the previous research, wherein some researchers say proline accumulation causes alleviation of
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salinity stress, whereas other researchers state that lowering of proline levels alleviates stress under Si

supplementation. Therefore, research has to be done to understand the relation of Si application and

biosynthesis of compatible solutes and its role in stress tolerance under Si supplementation.

High concentration of salt has been known to bring about changes in level of plant growth

hormones [171]. Under osmotic stress, abscisic acid (ABA) which is commonly known as “stress

hormone” is seen to be upregulated and causes alterations in gene expression enhancing the survival

of plants under stress [180]. Karmoker and von Steveninck [181] reported that ABA causes inhibition

of Na+ and Cl− transport to shoot in bean seedlings. In soybean, ABA level was increased during salt

stress, but the addition of Si resulted in a decrease in the levels of ABA [178]. Kim et al. [142] reported

that short (6 to 12 h) exposure of salt-stressed rice to Si led to downregulation of Jasmonic acid (JA),

but the ABA level was found to increase after 6 and 12 h, and then the ABA level dropped after 24 h.

In salt-stressed rice, the expression of genes related to ABA biosynthesis, such as zeaxanthin epoxidase

and 9-cis-epoxicarotenoid oxygenase 1 and 4 (ZEP, NCED1, and NCED4), is increased on application

of Si [142]. The detrimental effects of NaCl stress can be inhibited by application of gibberellins (GA)

exogenously [182]. Seed germination and shoot elongation in plants is also influenced by GAs [159].

Lee et al. [178] found that under salt stress, the GA level decreased, but addition of Si led to an increase

in GA levels. It is reported by Kim et al. [183] that the genes involved in JA and ABA biosynthesis are

regulated by Si; however, effects are said to be time dependent. However, regulation of phytohormone

by silicon under salt stress and drawing a relation between the two is yet to be done.

11. Si Efficiency in Salinity-Stressed Horticultural Crops Employing Proteomic Approaches

The proteomic technique is one the most common and advanced techniques to analyze signaling

homeostatic pathways under abiotic stress. Several proteomic researches have been performed in

model plants like Arabidopsis, tomato, and rice under Si efficiency and various abiotic stresses.

However, limited reports are being reported in horticultural crops under abiotic stresses employing

proteomic approaches. Therefore, in the current review, we have summarized the research performed

on horticultural crops under abiotic stress (salt stress) and Si efficiency.

Muneer and Jeong [140] analyzed the root proteomics of salt-stressed tomato (Lycopersicon

esculentum L.) supplemented with Silicon (Na2SiO3). A reduction in protein spots and downregulation

of proteins were observed under salinity stress (25 and/or 50 mM NaCl/-Si). However, at higher

concentrations of salinity, the loss of proteins was higher, compared to lower concentrations, but silicon

replaced this loss effectively. A complete reduction in biosynthesis of metabolites and defense-related

proteins is attributed to the downregulation of proteins in salt stressed roots, also affecting the

antioxidant and nutrient transport signal transduction pathways [184]. About 40 proteins were

found to be downregulated in roots affected by salinity stress (25 and/or 50 mM NaCl/-Si) and the

same 40 proteins were seen to be upregulated when Si was supplemented to the salinity stressed

roots (25 and/or 50 mM NaCl/-Si). Of the various proteins identified, 17% of the proteins identified

were found to be related to stress responses, 11% to plant hormones, 11% to cellular biosynthesis,

and the remaining proteins were found to be related to transcriptional regulation, RNA binding,

and secondary metabolisms. Stress-related proteins, namely Os02g0282000 protein, COPINE 1

family Protein, and zinc finger A20, AN1 domain-containing stress-associated protein, caffeoyl-CoA

O-methyltransferase, NBSLRR disease resistance protein, and pathogenesis-related protein 10 were

identified. Proteins related to transcriptional regulation, such as transcription elongation factor and

transcription elongation factor SPT4 homolog, were identified. Proteins such as potassium channel

AKT2, AKT2/3-like potassium channel, and gibberellin 20-oxidase were found to be related to plant

hormones. Abiotic stresses such as salinity stress lead to the downregulation of various types of

transcriptional proteins [185,186]. Salinity stress results in disturbance of various signaling pathways

due to the reduction of transcriptional proteins, which, however, is seen to increase when Si was added

(+NaCl/+Si), and thus the essential pathways were restored for optimum functioning [140]. It is also

established by various reports that plant hormones play a regulatory role in development pathways
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and tolerance towards abiotic stresses such as salt stress [187,188]. Muneer and Jeong [140] showed

that plant hormone proteins were downregulated in salinity stress but were upregulated again when

Si was added to the salinity-stressed plants, indicating the role of Si in affecting the regulatory role of

plant hormones for coping with salinity stress.

In another study by Soundararajan et al. [189] on salt-stressed Rosa hybrida ‘Rock fire’, the

proteomic analysis revealed the essentiality of Si (K2SiO3) in ameliorating salt stress. Salt stress directly

affects the expression of photosynthetic proteins due to decline in development and photosynthetic

process impairment [190]. In such a situation, Si gets indulged in essential carbon fixing cycles such as

Calvin cycle, tricarboxylic acid (TCA) cycle, and pentose phosphate cycle and causes stimulation of

photosynthesis-related proteins. In Si treatments, proteins such as RuBisCo (photosynthetic protein)

and Ycf4 were found in higher amounts ensuring photoprotection and physiological development

by improving the light harvesting process [189]. Si caused an increase in the expression of enzymes

β-glucosidases, β-galactosidases, and glucose-1-phosphate adenylyltransferase large subunit, implying

its effect on starch and sucrose metabolism. Similarly, acetyl-CoA carboxylase, a precursor enzyme

known to play a major role in fatty acid synthesis, is also increased on Si inclusion. Glycerol-3-phosphate

dehydrogenase (GPDH) (NAD+), which usually maintains the NADH yield and redox potential

of mitochondria under salt stress, is also increased on Si application. This was in agreement with

the study of Muneer and Jeong [140] on Lycopersicon esculentum L. Under salinity stress, proteins

such as ribosome-recycling factor and tRNA (Ile)-lysidine synthase, associated with amino acid

biosynthesis, were downregulated but were enhanced upon Si inclusion. Ubiquitin conjugating

enzyme E2 8 and E2 36, which were affected by salinity stress, recovered when Si was applied. This

might enhance the Si–ubiquitin interaction leading to improvement in protein regulation during the

event of post-translational modifications. Thus, an overall increase in the transcription-related protein

can cause an overall enhancement in cellular processes under the influence of Si.

In another study, Manivannan et al. [191] analyzed the leaf proteome of Capsicum annuum

‘Bugwang’ under salinity stress, supplemented by Si (K2SiO3). About 245 protein spots were

identified, out of which 129 were expressed differentially. The downregulation of 83 spots and

upregulation of 46 spots were observed during salinity stress. Under salinity stress, the decrease

in protein expression can be attributed to the reduction of protein synthesis caused by reduction

in signal transduction and gene regulation pathways [185]. Moreover, the degradation of proteins

can be due to excess ROS production leading to incorrect protein folding/assembly in salt-stressed

Capsicum [192]. However, inclusion of Si led to the upregulation of 67 protein spots [192]. Proteins

such as Adenylosuccinate synthase (involved in purine metabolism) leading to enhanced growth and

biomass in capsicum, E3 ubiquitin ligase (responsible for floral development, photo morphogenesis),

RuBisCo (carbon fixation), and oxygen evolving enhancer protein (photosynthesis related protein)

were enhanced by the addition of Si. Resistance towards plant disease and hormone signaling

are taken care of by nucleoporins [193]. A nucleoporin-like protein was found to accumulate on

application of Si. The expression of RNA polymerase II transcription subunit 11, ribosomal protein

L16, and resistance protein candidate was enhanced on Si application. Several other proteins such

as Molybdopterin synthase catalytic subunit (ABA biosynthesis), β-keto acyl reductase (fatty acid

metabolism), reverse transcriptase, and eukaryotic translation initiation factor 3 subunitD were found

to be upregulated by salinity. MADS-box transcription factor 26 isoform X2 was upregulated on NaCl

and Si in combination. Addition of Si to salt-stressed capsicum also upregulated cullin 1D, which

is involved in the ubiquitin-proteasome pathway. Proteins involved in major metabolic processes,

such as phosphoglycerate kinase, ATP-synthase CF1α subunit, disease resistance protein RPS2, and

double-stranded RNA binding protein 2, were increased in NaCl+ Si treatment [191]. The list of

different proteins conferring different responses to the plants under salinity stress on application of Si,

as studied by the abovementioned researchers, are listed in Table 1.
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Table 1. List of proteins identified in horticultural crops under salinity stress under silicon supply.

Serial No.
Accession
Number

Protein Name
Biological
Function

Plant Species Theo./Exp. pI
Sequence

Coverage (%)
Author

1. Q6K3C7 Os02g0282000 protein Defense response
Lycopersicon

esculentum L.
7.86/3.6 17

Muneer and Jeong
(2015)

2. B9IFL3 COPINE 1 family protein Defense response
Lycopersicon

esculentum L.
5.54/5.3 24

Muneer and Jeong
(2015)

3. G7IZ85
Zinc finger A20 and AN1

domain containing
stress-associated protein

Stress response
Lycopersicon

esculentum L.
6.28/5.9 55

Muneer and Jeong
(2015)

4. A2TDB3
Caffeoyl-CoA

O-methyltransferase
Stress response

Lycopersicon
esculentum L.

7.86/3.6 21
Muneer and Jeong

(2015)

5. B0JEM1
NBS-LRR disease resistance

protein
Defense response

Lycopersicon
esculentum L.

6.5/4.6 12
Muneer and Jeong

(2015)

6. Q5DUH6 Pathogenesis-related protein 10 Defense response
Lycopersicon

esculentum L.
5.1/5.8 21

Muneer and Jeong
(2015)

7. M1C4D6 Transcription elongation factor
Transcriptional

regulation
Lycopersicon

esculentum L.
5.65/5.67 56

Muneer and Jeong
(2015)

8. B9HUZ8 Transcription elongation factor
Transcriptional

Regulation
Lycopersicon

esculentum L.
5.66/6.5 56

Muneer and Jeong
(2015)

9. A9PK54
Transcription elongation factor

SPT4 homolog
Transcriptional

Regulation
Lycopersicon

esculentum L.
5.66/5.6 56

Muneer and Jeong
(2015)

10. A9PK54
Transcription elongation factor

SPT4 homolog
Transcriptional

Regulation
Lycopersicon

esculentum L.
5.66/5.8 56

Muneer and Jeong
(2015)

11. A9PK54
Transcription elongation factor

SPT4 homolog
Transcriptional

Regulation
Lycopersicon

esculentum L.
5.66/6.0 56

Muneer and Jeong
(2015)

12. A9PK54
Transcription elongation factor

SPT4 homolog
Transcriptional

Regulation
Lycopersicon

esculentum L.
5.66/6.6 56

Muneer and Jeong
(2015)

13. Q75HP9 Potassium channel AKT2 ABA response
Lycopersicon

esculentum L.
6.64/7.0 21

Muneer and Jeong
(2015)
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Serial No.
Accession
Number

Protein Name Biological Function Plant Species Theo./Exp. pI
Sequence

Coverage (%)
Author

14. H9BAN2 AKT2/3-like potassium channel ABA response Lycopersicon esculentum L. 4.9/4.5 13
Muneer and Jeong

(2015)

15. B2G4V8 Gibberellin 20-oxidase GA mediated signaling Lycopersicon esculentum L. 5.97/6.5 32
Muneer and Jeong

(2015)

16. P19312
Ribulose bisphosphate

carboxylase small chain SSU5B
Photosynthesis Rosa hybrida ‘Rock Fire’ 7.60/6.50 28

Soundararajan et
al. (2017)

17. A7M975
Photosystem I assembly protein

Ycf4
Photosynthesis Rosa hybrida ‘Rock Fire’ 9.59/4.10 28

Soundararajan et
al. (2017)

18. Q7XKV5 β-glucosidase 11 Energy metabolism Rosa hybrida ‘Rock Fire’ 7.21/5.90 19
Soundararajan et

al. (2017)

19. Q9SCV4 β -galactosidase 8 Energy metabolism Rosa hybrida ‘Rock Fire’ 8.09/5.10 9
Soundararajan et

al. (2017))

20. P12300
Glucose-1-phosphate

adenylyltransferase large
subunit

Energy metabolism Rosa hybrida ‘Rock Fire’ 6.61/6.70 16
Soundararajan et

al. (2017)

21. P85438 Acetyl-CoA carboxylase Energy metabolism Rosa hybrida ‘Rock Fire’ 9.99/4.10 100
Soundararajan et

al. (2017)

22. P85438 Acetyl-CoA carboxylase Energy metabolism Rosa hybrida ‘Rock Fire’ 9.99/5.10 96
Soundararajan et

al. (2017)

23. Q8H2J9
Glycerol-3-phosphate

dehydrogenase (NAD+)
Energy metabolism Rosa hybrida ‘Rock Fire’ 9.76/6.80 22

Soundararajan et
al. (2017)

24 A2YMU2 Ribosome-recycling factor Transcription/translation Rosa hybrida ‘Rock Fire’ 9.35/5.10 23
Soundararajan et

al. (2017)

25. Q32RJ9 tRNA(Ile)-lysidine synthase Transcription/translation Rosa hybrida ‘Rock Fire’ 9.55/5.87 13
Soundararajan et

al. (2017)

26. Q9FZ48
Ubiquitin-conjugating enzyme

E2 8
Ubiquitination Rosa hybrida ‘Rock Fire’ 6.74/4.47 59

Soundararajan et
al. (2017)

27. P35131
Ubiquitin-conjugating enzyme

E2 36
Ubiquitination Rosa hybrida ‘Rock Fire’ 6.74/4.60 59

Soundararajan et
al. (2017)
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Serial No.
Accession
Number

Protein Name Biological Function Plant Species Theo./Exp. pI
Sequence

Coverage (%)
Author

28. XP 004249273 Adenylosuccinate synthetase Purine metabolism
Capsicum annuum

‘Bugwang’
7.5/4.2 25

Manivannan et al.
(2016)

29. XP 008793948
E3 ubiquitin-protein ligase

PUB23-like
Photo morphogenesis

Capsicum annuum
‘Bugwang’

8.2/4.1 20
Manivannan et al.

(2016)

30. AHL68475
Ribulose-1,5-bisphosphate

carboxylase/oxygenase, partial
(chloroplast)

Carbon fixation
Capsicum annuum

‘Bugwang’
6.7/5.0 41

Manivannan et al.
(2016)

31. XP 009398204
Oxygen-evolving enhancer

protein 3-1, chloroplastic-like
Photosynthesis

Capsicum annuum
‘Bugwang’

9.5/5.1 52
Manivannan et al.

(2016)

32. XP 003058724 Nucleoporin-like protein
Plant disease and

hormone signaling
Capsicum annuum

‘Bugwang’
9.1/4.6 33

Manivannan et al.
(2016)

33. XP 004951624
Mediator of RNA polymerase II

transcription subunit 11-like
Transcription/translation

Capsicum annuum
‘Bugwang’

5.6/6.2 59
Manivannan et al.

(2016)

34. AFB70663
Ribosomal protein L16, partial

(chloroplastic)
Transcription/translation

Capsicum annuum
‘Bugwang’

11.8/4.7 63
Manivannan et al.

(2016)

35. AAR08850 Resistance protein candidate Transcription/translation
Capsicum annuum

‘Bugwang’
9.4/5.2 100

Manivannan et al.
(2016)

36. XP 010517956
Molybdopterin synthase

catalytic subunit-like
ABA synthesis

Capsicum annuum
‘Bugwang’

6.5/4.8 80
Manivannan et al.

(2016)

37. AAL83898 Beta-keto acyl reductase Fatty acid synthesis
Capsicum annuum

‘Bugwang’
11.6/6.9 87

Manivannan et al.
(2016)

38. BAB40826 Reverse transcriptase Transcription/translation
Capsicum annuum

‘Bugwang’
7.9/6.3 30

Manivannan et al.
(2016)

39. KHG25806
Eukaryotic translation initiation

factor 3 subunit D
Transcription/translation

Capsicum annuum
‘Bugwang’

8.9/4.4 26
Manivannan et al.

(2016)

40. XP 008677250
MADS-box transcription factor

26 isoform X2
Transcription/translation

Capsicum annuum
‘Bugwang’

8.8/5.4 42
Manivannan et al.

(2016)

41. CAC87838 Cullin 1D
Ubiquitin-proteasome

pathway
Capsicum annuum

‘Bugwang’
5.0/4.5 25

Manivannan et al.
(2016)
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Serial No.
Accession
Number

Protein Name
Biological
Function

Plant Species Theo./Exp. pI
Sequence

Coverage (%)
Author

42. KIY92373
Phosphoglycerate kinase,

partial
Metabolic
processes

Capsicum annuum
‘Bugwang’

8.7/4.4 51
Manivannan et al.

(2016)

43. AIF71068
ATP synthase CF1 alpha

subunit, partial (chloroplast)
Metabolic
processes

Capsicum annuum
‘Bugwang’

8.6/5.8 49
Manivannan et al.

(2016)

44. XP 010046336
Disease resistance protein

RPS2-like
Metabolic
processes

Capsicum annuum
‘Bugwang’

5.3/7.0 19
Manivannan et al.

(2016)

45. XP 012064817
Double-stranded RNA-binding

protein 2
Metabolic
processes

Capsicum annuum
‘Bugwang’

8.7/5.7 14
Manivannan et al.

(2016)
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12. Conclusions

Horticultural crops are important sources of food for human consumption; they not only improve

the health/nutrition but also improve the economy globally. To improve the production of horticultural

crops, every country should keep the horticultural industry as a priority to meet food demands.

During the past few years, horticultural production has been decreasing due to several abiotic and

biotic stresses. Among abiotic stresses, salinity stress is one the major stresses negatively affecting

horticultural crop development via water stress, cytotoxicity, and excessive uptake of sodium (Na+)

and chloride (Cl−) ions and nutritional imbalance. Saline stress also typically causes oxidative stress in

the form of formation of reactive oxygen species (ROS). On the other hand, Si is a beneficial element

and is proven to be effective in mitigating ROS caused by abiotic stress. The signaling pathways and

co-relation of salt stress and Si-efficiency has been observed in a number of agronomical crops like

rice, wheat, soybean, etc. There is a lack of knowledge about the role of Si in horticultural crops, and a

limited amount of research has been conducted on the role of Si in horticultural crops such as cucumber,

capsicum, strawberry, melon, and rose under several abiotic stresses including salinity stress. In this

review, we summarized the reports on signaling mechanism, cross-talk, and tolerance mechanism

of horticultural crops to salt stress and efficiency of Si. Since horticultural crops are everyday food

globally, it is required to reveal the importance of Si to mitigate salt stress (global problem) to depict

the signaling mechanisms and homeostatic maintenance. We conclude that researchers need to focus

more on horticultural crops for their improvement under any abiotic stress, including salt stress, by

Si supplementation.
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