Header menu link for other important links
X
Simulated monazite crystalline wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1(P0.9Mo0.1O4): Synthesis, phase stability and chemical durability study
Pratheep Kumar S,
Published in Elsevier BV
2015
Volume: 458
   
Pages: 224 - 232
Abstract

In this work, incorporation of hexavalent molybdenum and selected trivalent lanthanides using divalent calcium as charge compensator into the monazite structure were studied. Rare earth substituted phosphomolybdates of the formula REE0.9Ca0.1P0.9Mo0.1O4 (REE = Ce, Nd, Sm, Gd) and the wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1P0.9Mo0.1O4 were synthesized by simple solution route. The prepared compounds were characterized by powder X-ray diffraction, Fourier transformed infrared spectra, thermogravimetric analysis, energy dispersive X-ray analysis and scanning electron microscopic techniques. Chemical durability of the wasteform was studied by dynamic MCC-5 test for a period of one month. Normalized elemental mass loss and leach rate of molybdenum was found to be in the order of 103 g/m2 and 103–101 g/m2/d respectively. Polymer-monazite composite wasteform was prepared to control the leaching of molybdenum. The composite approach reduced molybdenum leach rate order from 101 to 10−4 g/m2/d.

About the journal
JournalData powered by TypesetJournal of Nuclear Materials
PublisherData powered by TypesetElsevier BV
ISSN0022-3115
Open Access0