
Review Article
Software Design Challenges in Time Series Prediction Systems
Using Parallel Implementation of Artificial Neural Networks

Narayanan Manikandan and Srinivasan Subha

School of Information Technology & Engineering, VIT University, Vellore, Tamil Nadu 632014, India

Correspondence should be addressed to Narayanan Manikandan; mkyadhav@yahoo.com

Received 1 October 2015; Accepted 29 November 2015

Academic Editor: Muthu Ramachandran

Copyright © 2016 N. Manikandan and S. Subha.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design,
and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series
data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going
on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models
and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to
solve the problems of financial data and get accurate results in prediction of the future trends and prices.This paper addressed some
architectural design related issues for performance improvement through vectorising the strengths ofmultivariate econometric time
series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called
hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel
algorithms used.

1. Introduction

The universal acceptance of agile methodology provides
plenty of evidences in need for rapid adaptation in the current
software development life cycle models. However, a number
of recent leanings illustrate that amore all-inclusive approach
is necessary rather than focusing on continuous integration of
software.

Modern time series forecasting involves exchange rates
prediction. Many factors that are correlated with each other
in a way, namely, economic factors, political factors, and
even psychological factors affect the foreign exchange rates by
interacting in a complex fashion. Hence, the exchange rates
are noisy, chaotic, and nonstationary. But research has shown
that nonrandom and predictable behaviour can be empha-
sized in liquidmarket areas such as foreign exchangemarket.

There is a strong dependency between future exchange
rates and that of the past. For more than two decades, Box-
Jenkins ARIMA was used for time series data forecasting
and widely used to benchmark other models. However, it
has an assumption that the time series forecasting is linear

and stationary by nature. So it results in a need to create a
nonlinear model to be used in the prediction exchange rates.

Soft computing techniques are used for predicting cur-
rency exchange rates because of the function approximat-
ing nature. Parallel Artificial Neural Networks (PANN) in
prediction and modelling are used. The multivariate analysis
predicts future behaviour and other indicators such as techni-
cal, economic, and social indicators are combined along with
the time series data in the forecasting process. ANN is more
appropriate for the time series forecasting problem because
of its nonparametric and adaptive properties. Research has
shown that ANNs can map any nonlinear function without
any prior assumption about the data. Earlier research in this
area has proven that simple technical indicators are enough to
obtain useful predictions and significant paper profit, without
using any extensive knowledge or data related to the market.

This paper proposes a Heterogeneous Software design
mythology in Figure 1 for forecasting currency exchange
prices using Artificial Neural Networks.The same design will
be validated by implementing of performance improvements
through parallel computing. This model uses lagged time

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2016, Article ID 6709352, 10 pages
http://dx.doi.org/10.1155/2016/6709352

2 The Scientific World Journal

Currency exchange forecasting

UID:
applications

Share market
Banking

Process:
tools and
equipment

(1) ANN-
algorithm to
be decided

(2) Parallel
computing
algorithm to
be decided

Data: data
pool

USD
exchange
and inflame
rate, gold
and curtail
price

Figure 1: First-level design decisions.

series data along with the technical and economic indicators
as inputs and the predicted exchange rates of the desirable
currency as output. This work results in forecasting the
exchange rates between USD and five major currencies,
namely, GBP, JPY, CAD, AUD, and EUR, using Back-
Propagation Neural Networks. The Error Back-Propagation
Network (EBPN) is trained with parameters like currency
exchange rates, gold rates, crude oil rates, and US Inflation
Rates for the period of January 2001 to March 2015.

Then the same design is modified without affecting its
generality. With the help of Parallel RandomAccess Machine
(PRAM), all processors act in lock-step; that is, the number
of processors is not limited and all processors have local
memory and one global memory accessible to all processors.
Read and write operations are done on global memory and
every processor involved in transaction knows its own index.
Training and prediction can be done in CPU and GPU
(graphics processing unit) based environment to improve the
performance.

This work modified the existing scalar algorithms to
address design reusability related issues and exploiting nat-
urally parallelisable parts of existing algorithm and injecting
brute force methods in each processor to use different initial
conditions.

Further organisation of this paper is as follows: Section 2
describes related works and researches in software design,
ANN, and parallel processing in the view of perfor-
mance improvements. Section 3 describes implementation
issues, Section 4 shows results and discussion, and Section 5
describes conclusion and future work.

2. Related Works

Major focus is to explain lack of thinking between value
and reducing waste. Any product piece or development
pace that does not result in adding value is considered as
waste. In software design adding and removing appropriate
component result in efficiency parameters.

Much research and software development has been going
on in forecasting the currency exchange prices in Forex
market. ANN based implementation is familiar because of
its nonlinear, predictive, and adaptive capabilities. When the
amount of training and prediction data increased there is
a definite need for parallel processing. In this section some
related works done on ANN are presented, Forex market and
parallel algorithms that are useful in decision making for
effective design.

Useful prediction and significant profit can be made
with simple technical indicators without the use of extensive
market data or knowledge [1–3].

The author used daily time series data as input and
used it to predict the Euro-USD exchange rate using genetic
algorithm with Artificial Neural Networks up to three days
ahead of the last data available. He used bothmacroeconomic
variables and market data for inputs from which it was learnt
that the exchange rate of Euro-USD was conditional. Some
of the researchers have shown that a few technical indicators
influence the exchange rates strongly. The said indicators
are Nasdaq Index, Gold Spot Price, average returns of the
government bonds, and crude oil price [4].

After much research using linear and nonlinear models,
ANNs are said to perform better than ARIMA model in
forecasting foreign exchange rates due to the nonlinear nature
of the time series data. Some researchers have used the
delayed time series data as input, while few other researchers
have used Moving Average (MA) of the time series data as
the input [2].These works [2, 4]impressed us to decide major
working components in this design.

The currency exchange rate data in the Forex market was
said to be chaotic, random, and noisy in nature. In earlier
days, the Random Walk Model and the Efficient Market
Hypothesis were the two most widely used models based
on fundamental analysis Certainly Forex data was noisy and
random. But then, research through statistical tests showed
with a significance of 95% that the Forex rates time series
are not randomly distributed. To the neural networks since
the Moving Average data tends to be a smoothed version
of the delayed time series and with much less noise. Also,
the MA technique is said to perform well only when the
market follows a trend.However, it performs poorly when the
index changes direction [5]. This work helps us in analysing
feasibility of constructing data model for software.

With the help of above analysis, trade relation, and cost
of imports and exports [2], to tackle the market evolution,
the input data should be kept consistent. Otherwise, after
training, the network is said to degrade in performance. One
way to achieve consistency is to periodically replace the past
data with recent data [5, 6]. Increasing the number of inputs
is said to have notmuch effect on improving the performance
[2].

As [7] specified in his work, the best activation function
that can be used in the neural network design for prediction
of time series data is a bipolar function [−1, 1] or a binary
function [0, 1]. Reports [6–8] suggest that performance of the
network does not improve when more than 2 hidden layers
are used in the network. It has been reported that the presence
of more than 2 hidden layers only makes the network more

The Scientific World Journal 3

complex. It also makes the training process difficult and a
danger of overfitting is present in such networks havingmore
than 2 hidden layers. All the works in the neural network area
have suggested the use of a maximum of 2 to 3 hidden layers
as the optimummethod to extract the best performance from
the network.

To capture the regularities [9] proposed amovingwindow
model that uses a two-layer back-propagation network with
a fixed number of inputs modelling a window along the
time series in fixed steps to capture the regularities in
the underlying data [2]. For a large scale problem back-
propagation learns very slowly and convergence is largely
dependent on choosing suitable values of learning rate,
momentum factor, and step size. Literature review revealed
that the testing and validation set should be exactly one-
fourth to one-eighth of the training set [5]. Kaastra and Boyd
suggests a balanced split 70-15-15 for training, validation,
and testing sets. Sigmoid function commonly used transfer
function since the time series data is nonlinear in nature
[6]. However some researchers have suggested the use of
hypertangent function and tangent function too, as transfer
functions [4, 8].

Usually the Normalised Mean Square Error is the most
widely used metric [2, 3, 7] to measure the efficiency and
the correctness of the trained neural network during the
testing and validation process. But some researchers [2, 7]
have used few other metrics too, in order to compare the
performances and get the network to perform the best at
any given situation.The error metrics that are used alongside
NMSE to measure the correctness of the trained network are
MAE (Mean Absolute Error), DS (Directional Symmetry),
CU (Correct Uptrend), CD (Correct Downtrend), PMAD
(Percentage Mean Absolute Deviation), RMSE (Root Mean
Squared Error), MAPE (Mean Absolute Percentage Error),
and MAE (Mean Absolute Error). Some have also reported
using hit rate as a measure of correctness of a network [3].
Based on performance, it was reported that having small
NMSE in validation and testing is more important than
having small NMSE for training [3].

Using models based on Artificial Neural Networks,
reports show that a correctness of up to 76% has been
achieved in the earlier works with the variants of back-
propagation algorithm as the learning method [1, 3].

In this work a fully pipelined parallel architecture exploits
“mini-batch” training that combines different input cases
to compute every set of weight updates to accelerate the
power of ANN. Authors implemented this in FPGA; training
mechanism is fully implemented in parallelised manner and
obtains 100-time performance in running on a Virtex-6
LX760 FPGA [10].

Authors investigated in examining spatial optimization
strategies like land allocation and planning will often require
multiple data layers and complicated algorithms. It also deals
with dynamic processes and the complicated relationships
with massive amount of data. Authors developed a parallel
geospatial model over the heterogeneous computer archi-
tecture of multiple CPU and GPUs. Experiments done with
the data sets of California land details resulted in overall
computing time for data collected in 50-year simulation

which was dropped from 13,000 seconds on a single CPU
into 32 seconds using 64GPU/CPU nodes [11] which gives
motivation for us to carry out this work.

In this paper ESR (Evolutionary Swarm Robotics) is an
artificial approach for developing collective behaviour of
homogenous autonomous robots. Its behaviour is generally
controlled by evolving Artificial Neural Networks. However,
ESR is unacceptable due to its very high computational cost.
Through a detailed study, authors introduced a novel imple-
mentation to overcome the computational cost problem. A
parallel algorithm for graphics processing unit (GPU) and
OpenMPbased solutions formulticore CPU. In this approach
considerable performance improvement was achieved [12].
To apply parallelisms in currency exchange rate prediction
related to Business Intelligence, the following works are
considered.

The cloud based Business Intelligence (BI) has been
demonstrated with a simulation on OPNET. It is a cloud
model with layered OLAP applications with the possibility
of applying parallel queries on relational databases. But this
work also stated some challenges in taking BI into the cloud
because of the restrictions of service providers. So much
importance should be given for coordination of elements in
architectural design and deploying it to enable the layers of
OLAP for better decision making, while designing a BI more
significance has to be given for the resource management to
avoid bottlenecks. Service providers should plan effectively
on available details and implement the same based on infras-
tructure, platform, and application components to achieve
a massively parallel processing system with the support
of enhancement framework using all available technologies
efficiently [13].

Victor Chang proposed Business Intelligence in cloud
based services is very much useful work with respect to
predictions in Business Intelligence. Proposed Business Intel-
ligence as a service (BIaas) hasHestonmodel for the investors
to take decision before investing and author has used RMSE
(Root Mean Squared Error), MA (Moving Average), and
EWMA (ExponentiallyWeighedMoving Average) as calibra-
tion. Heterogeneous Software design methodology was used
in this implementation [14].

In this work Ramachandran and Chang proposed finan-
cial software as a service in cloud environment. The archi-
tecture itself sounds good because of its heterogeneity and
integrity among the components. Major part of implementa-
tions takes Monte Carlo methods, Black Scholes Models, and
Variance Gamma process. Here Variance Gamma method is
used for outlier removal. Highlights of this paper are MAT-
LAB based implementation and focused towards achieving
accuracy and performance in cloud environment [15].

3. System Implementation

3.1. System Description. First some important design deci-
sions should be taken with the following assumptions.

The system is a forecasting model built using neural
networks, where the input layer takes the input variables.
Both technical and economic variables are taken as input.

4 The Scientific World Journal

Y(t)F(y(t − 1) (t − d))· · · y

Figure 2: Design for input data generation.

Y(t)X(t) F(x(t − 1) · · · x

y(t − 1) · · · (t − d))

(t − d),

y

Figure 3: Design of output prediction using NARX.

The hidden layers process the input variables and add value to
the system.The hidden layers contain 20 neurons.The output
layer yields univariate output. Then a parallel approach for
training the algorithm is implemented in the system with
the configurations stated in Table 3.This process analyses the
impact on change management in software design.

The network is constructed by interconnection of arti-
ficial neurons. Different components used in building the
parallel forecasting model are as follows.

(i) NAR Network to Predict Input Variables. This section
determines prediction details on ask prices of USDJPY,
USDAUD, USDCAD, USDCHF, and GBPUSD currencies,
respectively, as well as prediction of gold price, crude oil price,
CPI, and inflation rate.

The NAR (Nonlinear Autoregressive) network takes the
input variable 𝑦(𝑡), where the network is trained with the
past values of time series to predict its future values. In this
example, this approach predicts the variables like ask prices
of the five currencies, gold and crude oil price, CPI, and the
different inflation rate.

Considering Figure 2, once the network is trained with
past values, with the help of parallel algorithms values are
predicted from point of prediction and up to the threshold
level of expected accuracy.

(ii) NARX to Predict the Output Variable. Figure 3 shows the
NARX network that is used for the prediction of the bid
price of the desired currency to be forecasted, with the NAR
network predictions applied as input to the trained network.

The NARX network takes the input variables as exoge-
nous inputs that all the 10 input variables are taken for input in
this network, and the network is trained by assigning the time
series output variable that this technique needs to predict
as the target variable. Once the network is trained using
exogenous input and required output, then, all the trained
NAR network predictions of input variables can be supplied
to this network as inputs to predict the target output with the
presence of delay. This process gives Number of values from
the point of prediction to predict the next required number
of steps.

Usually the performance degrades with every step of
prediction since predicted values are used as feedback to
targets instead of original values and it can be solved by
using parallel algorithms in appropriate places. Therefore a
threshold is set to predict until a particular number of steps
to reach good amount of accuracy. NARX network is trained
with 25 neurons in hidden layer with the delay of 20.

Number of neurons in this technique is considerably high
because of the high processing requirements for data such
as a financial time series. Reason for delay of 20 is high
correlation because of target values existing in data set (values
of one month before the current value used in both input and
target variables). This can be reduced by altering design with
utilization of parallel resources.

NARX network uses “trainlm” (a predefined algorithm
function name, for Levenberg-Marquardt back-propagation
algorithm) to train the network. Mean Squared Error (MSE)
is used as the performance measure, calculating the mean
squared difference between the expected target output and
the actual output.

(iii) Time Series Data. MATLAB based implementations are
used to promote the reusability for training and prediction
process. Excel file is imported using data import Interface and
appropriate data for training and Predictions are selected.

Once the required data is selected as in Table 2, it is then
converted into either of the following formats, to facilitate the
network construction process:

(i) Matrix.
(ii) Cell Array.
(iii) Column Vectors.

In general, Matrix or Cell Array representation is used to
store data in the workspace.

The extracted data that is used for training, validating OR
predicting, are all stored in the workspace in MATLAB file
format with the extension .mat.

This MATLAB file can be accessed when a data is
required; this is a simple way of storing data, because all of
the data involved is numerical in nature and contains time
steps of time series data. There will be less usage if repository
based architecture was chosen.

(iv) Architecture Design for Handling Dependencies. The
NARX network depends on the other NAR network predic-
tions for its input as it uses those predicted inputs to support
the input layer and to predict the target output. Figure 4
represents ancient pipes and filter architecture style which is
specialized in designing applications with dependencies.

(v) Choosing Appropriate Algorithm for Low Level Design:
Parallel Back-Propagation Learning Approach. This section
elaborates the low level design decisions. First Levenberg-
Marquardt (LM) algorithm is themost widely used algorithm
for optimization. It works well in simple gradient descent
and conjugate gradient methods in varieties of problems.
LM algorithm gives solutions in the form of Nonlinear
Least Squares Minimization. The LM algorithm blends speed

The Scientific World Journal 5

Train
NAR

network

Predicted
input

variable

Train
NARX
network

Target
output

predicted
ion

Figure 4: Dependency network.

advantage of Gauss-Newton (GN) algorithm and stability of
the steepest descent method. But it is more robust than the
GN algorithm, because in many cases it can handle well even
if the error surface is much more complex than the quadratic
situation.

LM was designed to achieve second-order training speed
without calculating Hessian matrix values.

Performance function has sumof squares; Hessianmatrix
is approximated as

𝐻
𝑚

= 𝐽
𝑇

𝐽. (1)

Gradient can be computed as

𝐺 = 𝐽
𝑇

𝑒, (2)

where 𝐽 is Jacobian matrix containing first derivatives of the
network errors based on the weight and biase. 𝑒 is vector of
network errors.

The Jacobian matrix can be computed with less com-
plexity than Hessian matrix through a standard back-
propagation. The LM algorithm uses this approximation to
the Hessian matrix in the following method called Newton-
like update:

𝑋
𝑘+1

= 𝑥
𝑘
[𝑗
𝑇

𝐽 + 𝜇𝐼]
−1

𝐽
𝑇

𝑒, (3)

where scalar 𝜇 is zero, in Newton’s method for using approx-
imation Hessian matrix.

If 𝜇 is large in gradient descent with less steps, then value
will be decreased after every successful step.

Algorithm 1 (back-propagation training).

Initial Assumptions. Consider the following:

𝑒th: error threshold.
𝑇it: target iteration.
𝑒: error on output.
𝑜: actual output.
𝑡: target output.
Hid: hidden layer.
𝑃: current pattern.

(1) Divide the training data set 𝐷 into equal parts 𝐷
1
,

𝐷
2
, . . . , 𝐷

𝑁
, where 𝑁 is the number of threads in

process;
(2) initialize the weights, Desired error threshold 𝑒th and

Total iterations 𝑇it

(3) Channel weight = 0; iteration = 0;
(4) 𝑖 = size of available patterns;
(5) while 𝑖 not equal to zero;
(6) Calculate Error in output neuron 𝑒 𝑖 = 0 𝑖 − 𝑡 𝑖;
(7) Calculate Hid 𝑒 𝑖 = 𝑒 𝑖 ∗ Weight hid ∗ Derivative 𝑦

(𝑃). We hid. Derivative 𝑦 (𝑃); // derivative function
for 𝑦

(8) Calculate the channel weights𝑊
𝑖𝑗
for output neurons

and hidden layer
(9) Accumulate the newly calculated weight in initial

weight for ever iterations.
(10) End while
(11) Update weights in the network based on learning rate
(12) Calculate 𝑒out-MSE on training data 𝐷,
(13) if 𝑒out > 𝑒max and current iteration >maximum num-

ber of iterations increment the iterations and con-
tinue.

With the help of Algorithm 1, LM back-propagation
algorithms can be parallelised, and batch training approach
is used. Since batch training is relatively easy to adapt for
multithreaded and multicore CPUs, Steps (4) to (10) can
run in threads to perform back-propagation in parallel on
different patterns. For each pattern 𝑝

𝑖
weights and errors can

be separately calculated and stored.
Figure 5 represents the high level architecture of training

process. Heremajor responsibility is assigned to synchronizer
module that performs the following tasks:

(i) Wait till all threads completes the training process.
(ii) Calculate overall weight for the network.
(iii) Calculate network error for test data.
(iv) Iterate the above process until all patterns are trained

sufficiently.
(v) To stop the training process this approach has identi-

fied following conditions.

When themaximumnumber of iterations is reached ormaxi-
mum amount of time is exceeded, performance is minimized
to goal due to performance gradient below min grad.

In the first step, a time series model based on Artificial
Neural Networks generates the estimates of the currency
exchange rates and other technical parameters that are used
to forecast the exchange price of currency of our choice. In
the second step, Error Correction Back-Propagation Neural
Network is used to correct the errors of the estimates. The
proposed two-step model produces better accuracy in results
than the single step models.

4. Results and Discussion

First Heterogeneous Software design merits are given in
Table 1.

Ramachandran andChang andMuntean et al. [15, 16] also
used heterogeneous designs for prediction based systems and
the results sound good.

6 The Scientific World Journal

CPU based process
GPU based process

Read
training
and test

Test
and training data set

Training
data

samples

Test data
samples

Calculate error for
network and back-
propagation error and
accumulate the calculated
weight for the current
pattern P

N processing
threads in

GPU

Synchronizer

Figure 5: Hybrid architectural designs for training.

Table 1: Quality attributes of software design.

Factors of
heterogeneous
design

Medium High

Simplicity

High because
well-known
components of
different technology
can be used together

Portability
This design will not fit
for implementation in
all kinds of platforms

Modifiability

Actual design and
modified design
produced the same
results

Reliability
Except Japan currency
versus USD other
predictions are reliable

Implementation is done with the following steps:

(1) Collected data (as per Section 4.1) is stored in Excel
file.

(2) Use NTSTOOL of MATLAB neural network time
series tool.WithNTSTOOLNAR,NARX, and Leven-
berg-Marquardt algorithms are implemented.

Table 2: Data collected for analysis.

Process
number

Number of
daily data

Number of
training data

Number of
test data

1 48100 33670 14430
2 58200 39500 18700

Table 3: CPU and GPU configurations used.

Processor number i5-6440HQ
Intel Smart Cache 6MB
DMI3 8GT/s
Instruction set 64-bit
Number of cores 4
Number of threads 4
Processor frequency 2.6GHz
Processor graphics Intel HD Graphics 530
Graphics frequency 350MHz
Graphics maximum dynamic
frequency 950MHz

(3) Then implemented Algorithm 1 (parallelised LM alg-
orithm) inMATLABwith parallel processing capabil-
ity and execution time of each training is noted and
compared.

The Scientific World Journal 7

The following sections describe data collections, performance
metrics used, and results of implementations.

4.1. Data Collection. The data used in this analysis are the
daily foreign exchange rates of five currencies against US
Dollar along with prices of crude oil, gold, US Inflation
Rate, and CPI from the period of June 1993 to March
2015 made available by Oanda.com. This approach took into
consideration the exchange rates of AustralianDollar (AUD),
British Pound Sterling (GBP), Canadian Dollar (CAD), Swiss
Franc (CHF), and Japanese Yen (JPY).

4.2. Construction Of Performance Metrics. Performance of
the above forecastingmodel is evaluatedwith the help of three
statistical metrics.

Mean Squared Error (MSE) is as follows:

MSE =
1

𝑛

𝑛

∑
𝑖=1

(𝑌̂
𝑖
− 𝑌
𝑖
)
2

. (4)

Mean Absolute Error (MAE) is as follows:

MAE =
1

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑓𝑖 − 𝑌
𝑖

󵄨󵄨󵄨󵄨 =
1

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖
󵄨󵄨󵄨󵄨 . (5)

Sum Squared Error (SSE), also otherwise called Residual
Sum of Squares (RSS), is as follows:

RSS =
1

𝑛

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝑓 (𝑥

𝑖
))
2

. (6)

Here, MSE and MAE measure the deviation between the
actual value and the predicted value. SSE is a measure of
discrepancy between the data and the forecasting model.

Higher accuracy of prediction is indicated by the presence
of smaller MSE and MAE values.

Performance Measures for Parallel Algorithms. Consider the
following:

Efficiency =
∈single

𝑁 ⋅ ∈parallel
, (7)

where ∈ is execution time.

Assumptions.Single threaded and parallel trainings are initial-
ized with same network weights for training.The experiment
is repeated 15 times by changing network configurations.This
algorithm is tested with the following Intel based computer.

4.3. Simulation Results. To implement this, at the point of
prediction, the predicted value is given as feedback instead of
using the original input values; closed loop back-propagation
design is chosen. All NAR networks are trained with a
maximum of 35 neurons in hidden layer with delay of 20.
The maximum performances achieved around 19 to 25
epochs. Results were shown in Table 4.

Table 4: Measurement of prediction performance over 60-day
prediction.

Currency Performance metrics
MSE MAE SSE

Australian Dollar 9.74𝐸 − 05 7.64𝐸 − 03 3.45𝐸 − 03

British Pound 2.35𝐸 − 05 3.96𝐸 − 03 8.94𝐸 − 04

Canadian Dollar 3.20𝐸 − 05 4.29𝐸 − 03 1.23𝐸 − 03

Swiss Franc 1.10𝐸 − 04 8.62𝐸 − 03 4.31𝐸 − 03

Japanese Yen 2.21𝐸 + 03 2.83𝐸 + 01 9.65𝐸 + 04

The “trainlm” (a predefined algorithm function name, for
Levenberg-Marquardt back-propagation algorithm) is used
to train the network. AndMean Squared Error (MSE) is used
as the performance measure, calculating the mean squared
difference between the expected output and the actual output.

A NARX neural network model was trained with 7
technical indicators and 2 economic indicators, a hidden
layer, and an output neuron unit to predict the exchange
rate. The network uses Levenberg-Marquardt training algo-
rithm which adaptively changes weights during each back-
propagation and the training is stopped when the best
performance for the given inputs and output is obtained for
both training and validation. The number of hidden neuron
units was modified between 15 and 20 and the training was
terminated at epochs between 60 and 100.

Based on the performance metrics measurements per-
formed on the predicted data, this approach found out that
the trained networks gave the best performance predictions
with high rates of accuracy for GBP, CHF, AUD, and CAD for
60 days from the point of prediction. But for the JPY currency
exchange rate, the prediction accuracy lasted for only 15 days
from the point of prediction which is shown in Figure 6(e).
This model is created for short term trend forecasting, hence
60-day period of prediction. The model can be extended to
120–150 days withminimum loss of accuracy.The Levenberg-
Marquardt algorithm of back-propagation works well for
this application when compared to the performance of the
previous works in foreign exchange rates prediction.

The performance of such high accuracy is obtained due to
the improved technique used for learning, in the Levenberg-
Marquardt algorithm, combining the advantages of gradient
descent and Gaussian-Newton methods. The MSE, MAE
achieved by the trained NARX network is visibly higher than
those obtained using othermethods in the researches done in
the past [2].

The diagrams comparing the actual and the predicted
exchange rate of the five currencies are shown in Figures 6(a)–
6(e). The plots show that the forecasting follows the actual
rates more closely in the case of AUD, GBP, and CAD. For
CHF and JPY the prediction is relatively closer to the actual
rates.

From the above plots, performance for USD/JPY
degrades after 15 days. The other 4 currencies’ prediction
shows significant accuracy around 90–95% for the first
120 days from the prediction start date and more than
97% accuracy for the first 60 days of the prediction which is

8 The Scientific World Journal

0 20 40 60 80

Step of prediction

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985
Va

lu
e o

f t
im

e s
er

ie
s

Observed
Predictions

(a) USD versus CHF

0 20 40 60 80

Step of prediction

Va
lu

e o
f t

im
e s

er
ie

s

Observed
Predictions

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

(b) USD versus GBP

0 20 40 60 80

Step of prediction

0.97

0.975

0.98

0.985

Va
lu

e o
f t

im
e s

er
ie

s

0.99

0.995

1

1.005

Observed
Predictions

(c) USD versus AUD

0 20 40 60 80

Step of prediction

Va
lu

e o
f t

im
e s

er
ie

s

0.612

0.614

0.616

0.618

0.62

0.622

0.624

0.626

0.628

0.63

0.632

Observed
Predictions

(d) USD versus CAD

0 20 40 60 80

Step of prediction

Observed
Predictions

Va
lu

e o
f t

im
e s

er
ie

s

0

20

40

60

80

100

120

140

160

180

(e) USD versus JPY

Figure 6: Implementation results of predictions.

The Scientific World Journal 9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ex
ec

ut
io

n
tim

e (
s)

U
SD

 v
er

su
s

CH
F

U
SD

 v
er

su
s

G
BP

U
SD

 v
er

su
s

AU
D

U
SD

 v
er

su
s

CA
D

U
SD

 v
er

su
s

JP
Y

Training data used

Sequential execution
Parallel execution

Figure 7: Performance improvement through parallel execution.

significantly higher when compared the othermodels used in
the previous researches [1, 3]. This means that, for improved
accuracy, the network has to be retrained every 120 days.

4.4. Parallel Implementation of Same Algorithm. The pro-
posed approach used MATLAB based parallel libraries to
make use of library functions. It has implemented changes
stated in Figure 5, a hybrid software architecture that
addresses the following problems in the sequential execution:

(i) Increasing the execution time of training algorithms.
It gives good impact on the overall execution.

(ii) Utilizing maximum processing power of available
resources.

(iii) Reducing the cost of implementation through reduc-
ing execution time.

Same methodology is executed using parallel training
approach. Based on (7), the improvements in execution time
are obtained as shown in Figure 7.

5. Conclusion and Future Work

This analysis gave rise to the following conclusions. Het-
erogeneity based software design is more suitable for soft
computing based applications and introducing parallel algo-
rithms at any possible stages will increase the performance.
The prediction results are significantly promising for the
four currencies GBP, AUD, CAD, and CHF. The prediction
performance for Japanese Yen is very poor. Instead of using
MSE alone, the proposed approach used two other metrics
along with that to measure the performance of the network.
But other additionalmetrics can be used to significantlymea-
sure the performance which can be used for comparisons.

The Levenberg-Marquardt back-propagation algorithm
that is used in this study to build and train the network has
proved to be worthy in combining technical and economic
indicators to perform the prediction.

The above observations have confirmed the better per-
formance of Artificial Neural Networks in the forecasting of
currency exchange rates.

Further research emphasis will be on using just the
technical indicators in the NARX network and obtaining a
performance better than the models that were previously
used for the purpose of forecasting the currency exchange
rates, using the LM algorithm that was used for this study.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Yao, H.-L. Poh, and T. Jasic, “Foreign exchange rates forecast-
ing with neural networks,” in Proceedings of the International
Conference onNeural Information Processing, pp. 754–759,Hong
Kong, China, 1996.

[2] K. Joarder and R. A. Sarker, “Forecasting of currency exchange
rates using ANN: A case study,” in Proceedings of the Inter-
national Conference on Neural Networks and Signal Processing
(ICNNSP ’03), vol. 1, pp. 793–797, IEEE, Nanjing, China,
December 2003.

[3] J. Yao and C. L. Tan, “A case study on using neural networks
to perform technical forecasting of forex,”Neurocomputing, vol.
34, no. 1–4, pp. 79–98, 2000.

[4] V. Pacelli, V. Bevilacqua, and M. Azzollini, “An artificial neural
network model to forecast exchange rates,” Journal of Intelligent
Learning Systems and Applications, vol. 3, no. 2, pp. 57–69, 2011.

[5] C. Evans, K. Pappas, and F. Xhafa, “Utilizing artificial neural
networks and genetic algorithms to build an algo-tradingmodel
for intra-day foreign exchange speculation,” Mathematical and
Computer Modelling, vol. 58, no. 5-6, pp. 1249–1266, 2013.

[6] I. Kaastra and M. Boyd, “Designing a neural network for fore-
casting financial and economic time series,” Neurocomputing,
vol. 10, no. 3, pp. 215–236, 1996.

[7] D. A. Kumar and S. Murugan, “Performance analysis of Indian
stock market index using neural network time series model,” in
Proceedings of the International Conference on Pattern Recogni-
tion, Informatics andMobile Engineering (PRIME ’13), pp. 72–78,
IEEE, Salem, India, February 2013.

[8] W.-S. Gan and K.-H. Ng, “Multivariate FOREX forecasting
using artificial neural networks,” in Proceedings of the IEEE
International Conference on Neural Networks, vol. 2, pp. 1018–
1022, December 1995.

[9] A.N. Refenes,M.Azema-Barac, and S. A. Karoussos, “Currency
exchange rate forecasting by error backpropagation,” in Pro-
ceedings of the 25th Hawaii International Conference on System
Science, vol. 4, pp. 504–515, Kaual, Hawaii, USA, January 1992.

[10] Z. Y. Wu, “Portable GPU-based artificial neural networks for
data-drivenmodeling,” in International Conference on Hydroin-
formatics. Informatics and the Environment: Data and Model
Integration in a Heterogeneous Hydro World (HIC ’15), New
York, NY, USA, 2015.

10 The Scientific World Journal

[11] Q. Guan, X. Shi, M. Huang, and C. Lai, “A hybrid parallel
cellular automata model for urban growth simulation over
GPU/CPU heterogeneous architectures,” International Journal
of Geographical Information Science, 2015.

[12] K. Ohkura, T. Yasuda, Y. Matsumura, and M. Kadota, “GPU
implementation of food-foraging problem for evolutionary
swarm robotics systems,” in Swarm Intelligence, pp. 238–245,
Springer International, 2014.

[13] H. Al-Aqrabi, L. Liu, R. Hill, and N. Antonopoulos, “Cloud BI:
future of business intelligence in the cloud,” Journal of Computer
and System Sciences, vol. 81, no. 1, pp. 85–96, 2015.

[14] V. Chang, “The business intelligence as a service in the cloud,”
Future Generation Computer Systems, vol. 37, pp. 512–534, 2014.

[15] M. Ramachandran and V. Chang, “Financial software as a
service—a paradigm for risk modelling and analytics,” Interna-
tional Journal of Organizational and Collective Intelligence, vol.
4, no. 3, pp. 65–89, 2014.

[16] M. Muntean, L. G. Cabău, and V. Rı̂nciog, “Social business
intelligence: a new perspective for decision makers,” Procedia—
Social and Behavioral Sciences, vol. 124, pp. 562–567, 2014.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

