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1. Introduction

Throughout in this paper, we will denote set of natural numbers by N and set of real
numbers by R. A mapping 7" on a subset C' of a Banach space F is said to be nonexpansive
if

[Tz — Ty|| < |[|lz —yl|, for all z,y € C.
An element ¢ € C is said to be a fixed point of T if ¢ = T'(¢). From now on, we will
denote set of all fixed points of 7" by Ty. A mapping 7' : C — C is said to be quasi-
nonexpansive mappings if T¢ # 0 and ||[Tx — Tq|| < ||z — ¢|| for all z € C and ¢ € T¥.
The existence of fixed points for nonexpansive mappings in the setting of Banach spaces
was studied independently by Browder [3], Gohde [6] and Kirk [8]. They proved that, if
C' is nonempty closed bounded and convex subset of a uniformly convex Banach space,
then every nonexpansive mapping 7" : C — C has at-least one fixed point. A numbers of
generalization of nonexpansive mappings have been considered by some authors in recent
years.
It is natural to study the computation of fixed points for the known existence results,
which is not an easy task. The Banach contraction mapping principle uses Picard iteration
process Tn11 = Tz, for approximation of the unique fixed point. Some other well-known
iteration schemes are Mann [9], Ishikawa [7], S [13], Noor [10], Abbas [1], Thakur et. al.
[4] and so on. Speed of convergence plays an important role for an iteration process to be
preferred on another iteration process. Rhoades [12] mentioned that the Mann iteration
process for decreasing function converge faster than the Ishikawa iteration process and
for increasing function the Ishikawa iteration process is better than the Mann iteration
process. More details can be found in [16], [18], [15], [19], [5].
The most popular and simplest iteration method is formulated by

{po €c (1.3)

Pn+1 = T'pp, neN

and is known as Picard iteration method, which is communally used to approximate fixed
point of contraction mappings satisfying

[T =Tyl < pllz—yll,  ne(01), (1.4)

for all ,y € C. The subsequent iteration methods are mention to as Mann, Ishikawa,
Noor, SP, S, CR, Picard-S, Garodia’s, K and K* iteration methods, respectively:

vy € C, (1 5)
Gnt1 = (1= 00)Cn +09TCr,  nEN, '

vy € C,
Uny1 = (1= op)vn + opTwy, (1.6)
wy, = (1= oo, + ol To,, n € N,



L.N Mishra et al. / Eur. J. Pure Appl. Math, 13 (5) (2020), 1110-1130 1112

w(]EC,

_ 0 0
Wnt1 = (1 — oy)wp, + oy Twy,

1.7
vp = (1 — o))w, + ol Tu,, (.7)
up = (1 — 02)wy, + 02Twy, n €N,

qo € Cv

Gnv1 = (1= op)ry +opTry, (18)
= (1—0})sp, + ol Tsp, '
sp=(1—02)gn + 02Tqy, n €N,

to € C,

thir = (1 — o) Tty + 09Ty, (1.9)
up = (1 —ol)t, +olTt,, n €N,
up € C,
Uns1 = (1 — Qv + 00T vy, (1.10)
vp = (1 —o))Tu, + ol Tw,, '
up = (1 — 02)uy + 02T uy, n €N,

Jo € Ca

=Tk

j’n+1 nvo 0 (111)
kn=01—=0,)Tyn + 0,1,

by =1 =00+ LT, n e N,

zp € C,

vn = (1= op)z + o1z,

2l =Taxl, n €N,

M = T((l - Ug)TCn + J?LTQ”),

Go € C,
0, = (1 —0})Cn + 0T, neN
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z( € C,
/ /
Tpy1 = Tynv
Yp =T((1—0p)z, +opTz),

=1 —ob)al, +olTal, neN

(1.14)

where ay,, 5, € (0,1).

2. Preliminaries

The following definitions about the rate of convergence are due to Berinde [2].

Definition 1. Let {a,}72, and {b,}32, be two sequences of real numbers with limits a
and C, respectively. Assume that there exists
. lan —d
lim —— =/, 1.15
n—oo |by, — b ( )
(1) If £ =0, then we say that {a,}2>, converges faster to a than {b,}2>, to C.
(11) If 0 < £ < oo, then we say that {a,}52 o, and {b,}°2 , have the same rate of convergence.

Definition 2. Suppose that for two fized point iteration processes {u,}o>, and {vy}o2,
both converging to the same fized point p, the following error estimates

[un — pl| < an (1.16)

for alln € N
v =PIl < bn (1.17)

for all n € N, are available where {an}2>, and {b,}7>, are two sequences of positive
numbers (converging to zero). If {an}se, converges faster than {b,}5%, then {u,}5,
converges faster than {v,}>2, to p.

Recent study of Ullah and Muhammad (1.14), Hussin et. al. (1.13) proved that their
iterative methods converges faster than all the above mentioned iterative methods for a
different class of mappings which include the aforementioned class of contraction opera-
tors. Now, the question arises whether it is possible to find scheme which is faster than
K*.

Inspired by the works mentioned above, we introduce the following iteration method
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namely N7y iteration:

CO € Ca
Tin = Tena .

Cnt1 = T, n €N,

Let E be a Banach space and C' be a nonempty closed convex subset of E. Let {x,} be a
bounded sequence in C. For z € F, set

r(z, {xn}) = limsup Hx - xn”
n—00

The asymptotic radius of {z,} relative to C is given by
r(C,{zn}) = inf{r(z,{z,}) : x € C}.
The asymptotic centre of {x,} relative to C' is the set

A(C {zn}) ={z € C:r(x,{z,}) =r(C,{zn})}.

It is well-known that in a uniformly convex Banach spaces, A(C,z,) consists of exactly
one point. Also, A(C,z,,) is nonempty and convex in the case when C' is weakly compact
and convex, see e.g., [14, 17]. Following are some basic definitions and results.

Definition 3. A Banach space E is said to be uniformly convex if for each ¢ € (0,2],
there is a A > 0 such that for every x,y € E,
|zl <1 1
lyll <1 = gllz+yll < (1 -=A).
lz—yll > ¢

Definition 4. [11] A Banach space E is said to have Opial’s property if for each sequence
{zn} in E which weakly converges to x € E and for every y € E, it follows the following

limsup ||z, — z|| < limsup ||z, — y||.
n—oo n—oo

Definition 5. Let E and E be two Banach spaces and let T : E — E'. Then the mapping
T is said to be demiclosed if t — x € E and Tx, — y in E imply Tz = y.

Lemma 1. Let C' be a non-empty closed convex subset of a uniformly convexr Banach
space E and T be a non-expansive on C'. Then I —T is demiclosed at 0.
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3. Convergence Analysis

Theorem 1. Suppose that there is a Banach space E, having subset C, which is nonempty
closed and convex. Also, let there be a contraction mapping 7' : C' — C. Let {(,}22,
be an iterative sequence generated by N7 and with real sequences {69}2%, and {o}}2,

€ [0,1] such that > o2 ;0%0) = co. Then, {(,}52, converges strongly to a fixed point of
T.

Proof. 1t is obvious from Banach contraction theorem that existence and uniqueness
of fixed point zs is guaranteed. Now, it is to show that ¢, — x5 for n — oco. From NY
iteration scheme it follows that,

100 — z5]l = 1T((1 = 0)Cn + o9 TCn) — 5|
= | T((1 = 09)n + 0nTCn) — Ts |
<1 = o0)Cn + 09T — 4]
<E(L— o) — 5| + €02 TG — Tas|
<1 —o)[Cn — wsll + onE[1Cn — 5]
=1 = (1= &ap)ll¢n — as]|
also,
||77n - x6‘| < ”Tgn - 5U5”
= ||T0, — Ta;||
< ¢&|6n — 5]l

using the value of [|6,, — zs]|, we have

17 = @sll < €2(1 = (1= €)on) IGn — s

similarly, we have

a1 = 25|l = [T — 5]
= 1T — T
= &l — s

using the value of |9, — x5|| and ||¢, — zs||, we have

Gns1 — a5l < €31 — (1= €)on)lIGn — sl

Now, inductively using the behaviour of sequence, we have

16 = 25l < €1 = (1 = Eon_y)llzn-1 — a5
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201 — 5]l < €1 = (1= &)op_y)l|zn—2 — as]|
the repetition results
lz1 = asll < (1 = (1= ©)ag)lico — s
Proceeding in the same manner, we have
IGn1 = @5l < [IGo — s/l D T (1 = (1 = €)ap)
k=0
where (1 —00(1—¢)) € (0,1) because £ € (0,1) and o9 € [0, 1], for all n € N, Since we

know that 1 —z < e™? for all = € [0, 1], so from the above inequality

IGo — @[3+
6(176) ZZ:O 02

Hgn—i-l - xé“ <

Taking the limit both sides of this inequality, it yields
nh—{go HCnJrl - .7}5“ =0,

which implies that (, — x5 for n — oo, as required.

Theorem 2. Suppose that there is a Banach space E, having subset C, which is nonempty
closed and convex and also that there is a contraction mapping 7" on C with a fixed
point z5. For given z(, = (o € C, let {(,}52, and {z,}°2, be the iterative sequences
generated by NY and K* respectively, with real sequences {60}2° , {o1}%, € (0,1) such

n=0>
that Y poq0% = co and for all n € N. Then Ny converges to x5 faster than K* iteration

scheme.

Proof. Using The result of Theorem 1 it is clear that
IGsr = sl < 1o = 25D [T = (1 = €)op)
k=0

Now, for the K* iteration scheme,
27, — sl = (1 — o), + op T, — s
< (1= op)llay, — a5l + opl| T), — Tas|
< (1= ap)llay, — @5 + Eop |2, — as]|
< (1= oy (1= &))llay, — sl
Similarly

lyn, = sl < IT((onz, + (1 = o) T2y) — s
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< Ellopzy + (1= o) T2y, — ]

< €opllzn — asll + (1 — o) ||z, — ]|

< &opllzr, — ws|| + E(1 — ap)€ ]z, — sl
<E(L— (1 =&oy)llz, — ws]

<€A - (1=8op)(1— (1= §&)ay)llz], — zs]

similarly,

21 = sl = 1Ty, — sl
< &llyn — sl
using the value of ||y}, — 5| and by using the fact that (1 — (1 —¢)o)) < 0 and finally we
have
251 — 28] < €21 = (1~ €)op)
27, — 25l < €6 — (1 = &)op_y)llzfy — a5

also,

27 — @]l < (1 = (1~ €)on_s) a7,y — 5]

continually, we have

Iz — @sll < €2(1 — (1~ €)op) [l — s

So, it is quite obvious that the following deduction

1 — sl < llag — 25D T (1~ (1= €)ap)
k=0

is correct. Now, let

n

= [|¢o — 25| T (1 = (1 = &)ap)

k=0

and

n+1)

1—(1=¢op)

1

P = |l — wsll€™

n
k=
Then

o _ llzg — 25l|€ D T (1 — (1~ €)op)

o [IGo = sl T (1 = (1 = €)a))

approaches to 0 as n approaches to co. Thus, {(,} is a sequence defined in N7 iteration
defined by (1.14), then {(,} converges faster than the iteration scheme of Ullah and
Muhhamad known as K*.
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Theorem 3. Suppose that there is a Banach space E, having subset C, which is nonempty
closed and convex and also that there is a contraction mapping T with contraction factor
€ € (0,1) such that Tr # 0. if {¢,} is a sequence defined in N} iteration defined by (1.14),
then {z!'} converges faster than the iteration scheme of Garodia and Uddin defined by
(1.12).

Proof. Using the result of Theorem 1 it is clear that
[Gna1 = sl < lIGo — as}€*" D (1~ oR(1 —€))
k=0

Now, for scheme (1.12),

Iz — @sll = T2y, — a5
< &llay — s
lyn — =5l = I(1 = o)z — o T2y — 4]

< = on)zy — op Tz, — ]|
< (1= op)llzy — sl + EopllTzy — ws]]
< (1= op)llzn — @5l + Eonllzy — 5]

= (1~ (L= &an)llzn — 5]l

Thus,
Iz 41 — sl = Ty — s
< llypn — @5l

using the value of ||y — x;|| and using the inductive behaviour, we have

2541 — sl = €(1 = (1 = o) lay, — ]
Iz, = @5l = €21 = (L = an_y)llz_y — a5
0
-

-1 = asll = (1 = (1 = €)on o)l _s — 6]

on combining all the inequalities, we have

n

41 = @5l < [l2f — 26| €*" D T =01 =€)
k=0

Let

=[G — 25T T (1 = (1 = &a)

k=0
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and

n

pu = |l2g — 25| T = (1= €)ap)
k=0

Then

o _ llzg — 2|2 D TTEo(1 — (1 = €)op)

rn |G — zs]| D TR_o(1 = (1= &)o?)

approaches to 0 as n approaches to co. Thus {(,} is a sequence defined in Ny iteration
defined by (1.14), then {(,} converges faster than the iteration scheme of Garodia and
Uddin defined by (1.12).

Lemma 2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E and a nonexpansive self mapping T on C' with Ty # ). Let {(,} be an iterative
sequence defined as N{. Then lim,_, ||¢, — 25| exists for all x5 € TF.

Proof. From N7 iteration scheme it follows that,

10, — 5]l = I T((1 = o) én + o0 Tn) — s
= [|T((1 - Ug)(ﬂ + UgTCn) —Txs||
< N[(1 = 00)Gn + o TGn — s
< (1= op)l|¢n — sl + o | T — Tas |
< (1= op)lI¢n — sll + opl|¢n — sl
< |[¢n — ws]|
[ — sl < | T0n — 25|
= |T0n — Tas|
< |0n — 5|

using the value of ||0,, — x5||, we have

112 = 25|l < [1Gn = 5]

similarly, we have

1Cns1 = @5l = T — 5]
= [T — Tas|
< [lmn — sl

using the value of ||n, — z5||, we have

ICnt1 — @5l < [ICn — 5|
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which confirms the existence of limy o0 [|¢n — @] for all z5 € Ty. Since, {[[¢x — x5/} is
bounded and non-increasing for all z5 € T7.

Now, we prove the weak convergence of N{ iteration process.

Theorem 4. Suppose that there is a uniformly Banach space E, having a nonempty
subset C', which is nonempty closed and convex satisfying Opial’s condition and also that
there is a nonexpansive mapping 7' : C' — C with Ty # 0. If {¢,} is an iterative sequence
defined by N7, then {(,} converges weakly to a fixed point of T.

Proof. Let x5 € Ty. Then from Lemma 2 , it is obvious that lim,_ [|¢, — 25| exists.
To prove weak convergence of N7 iterative process, it is to be shown that {(,} has a weak
subsequential limit in Ty. Let {z,,} and {z,,} are the subsequences of {(,}, converges
to u and v respectively. Using Lemma 2 lim,,_, ||T), — {,|| = 0, I — T is demiclosed at 0.
So u,v € T}.
Next, to show the uniqueness, we assume that lim, o ||, — u|| and limy, o0 || — V||
exists. Assuming v # v. Then using Opial’s condition, we have

lim |G —uf = lim ||z, —uf
n—00 n—00

< lim [y, —vf|

= lim {|Gy — o]
n—o0

= lim |z, —v]|

< lim ||zp, — ull
n—oQ

= lim |Gy — ull
n—oo

which is a contradiction, so u = v. So, {(,} converges weakly to a fixed point of 7.

Now, we prove the strong convergence of Ny iteration process.

Theorem 5. Suppose that there is a uniformly Banach space E, having a nonempty
subset C, which is nonempty closed and convex. Also, there be a nonexpansive mapping
T :C — C with Ty # ¢. If {(,} is an iterative sequence defined by N7, then {(,}
converges strongly to a point of T iff liminf,, o d((,, Ty) = 0.

Proof. If a sequence {(,} converges to a fixed point ¢ € Ty, then it is obvious that
liminf,, o0 d(n, T¢) = 0.

For converse, lim inf,, o d(¢n, T¢) = 0. From Lemma 2, we have the existence of lim inf,, o ||(n—

q|| for all ¢ € Ty, we have

€1 — all < |IGu — ql| for any q € T}
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which yields
d(Cn-&-lan) < d((n’Tf)

which implies that {d((,,T¥)} is a decreasing sequence which is bounded below by zero.
Results,

Now, to prove that {¢,} is a Cauchy sequence in C. Let € > 0 be arbitrarily chosen. Since,
liminf,, o d(Gn, T¢) = 0, there is an existence of ng in such a manner that V n > ng, we
have

d(Cn, Tf) < i

Particularly,

inf{llzn, —all : g €Ty} <e
so there must be an existence of a € Ty in such a manner that |z,, — «| < e. Thus, for

m,n > ng, we have

€
1Znym = Gn < lenm — ol + 16— all <2|zn, —all <25 =€

which proves the Cauchy behaviour of {(,}. Since it is given that C' is a closed subset of a
Banach space F, therefore the convergence of {(,} in C' is confirmed. Let lim,, o (, = «
for some o € B.

Now using, lim, 0 [|7¢n — G| = 0, we get

oo = Tal| <l = Gull + 16 = TCall + [|TCn — T
<l = Gall + 116 = TGall + [ — ]|

which proves that ||« — Tal| approaches to 0 as n approaches to co. This shows that
« = T«. This proves our result.

4. Numerical Example

In this section, an example is to be given which confirms the behaviour of N7. In order
to support the proof of Theorems 2 and 3, we will use a numerical example as follow

Example. Assuming F = (—oo0,00) and C = [1, 50]. Let T : C — C be mapping

defined as T'(xz) = Va2 — 9z + 54 for all z € C. Clearly, z = 5 is the fixed point of T'. Set

o) = ol =02 =0.75 for all n € N. choose initial value as 40. Then, we get the following

table and graph. Also, in table N{ is represented by n” of iteration values:
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A NEW FASTER METHOD
CR Picard-S S Mann
40 40 40 40
30.79269192254298 29.810580256664 33.73902692017991 36.97915862290742
22.04554167901685 20.221670780422908 27.647788101546006 33.99076370160429
14.213234183814762 11.961302016080737 21.81068402363568 31.040838849624564
8.476620796498484 7.000927795053547 16.382877826904743 28.137119349259297
6.298022369447628 6.049690678581749 11.66859631695794 25.289708311093783
6.02061161491331 6.001825416893833 8.223614190302776 22.51204131218168
6.0013116110571385 6.000065997657282 6.539687645469721 19.8223152821583
6.000082969862263 6.000002384733529 6.090382473599866 17.245590289342086
6.000005246519448 6.000000086167199 6.01340512395956 14.816755272141435
6.000000331750666 6.000000003113463 6.001944962269297 12.584183729729153
Ishikawa Noor SP K
40 40 40 40
34.74597404587743 33.09913487808448 31.040838849624564 25.968740303084196
29.60941701882642 26.436520344771075 22.51204131218168 13.571922184554948
24.63615554168236 20.155969504050155 14.816755272141435 6.615550226137753
19.90092505908047 14.54283644691706 8.977646915366886 6.0068416866188175
15.531660598892563 10.14751401807788 6.453959009081129 6.000061948435167
11.750034102312975 7.576122883221963 6.041927817484542 6.000000559604765
8.888936848096153 6.523734904690029 6.003543275911321 6.000000005055024
7.190457756259381 6.1666335029362465 6.000296944182746 6.000000000045664
6.4304664344781335 6.052332918398102 6.000024867786343 6.000000000000413
6.1472262080237785 6.016370527034029 6.000002082445555 6.000000000000004
Garodia's K" nP
40 40 40
29.08214360104216 26.209490048705245 25.258002332048
18.89759552091176 13.96352052291395 12.461420120882993
10.484796658965704 6.769336442232295 6.313982447524068
6.452679669681885 6.011327288189042 6.002368918530358
6.014592571160892 6.000135918062143 6.000016205805245
6.000401231816844 6.000001626031984 6.000000110782435
6.000010972856014 6.0000000194520515 6.000000000757303
6.000000300040283 6.000000000232704 6.000000000005177
6.0000000082042275 6.000000000002784 6.0000000000000355
6.000000000224334 6.000000000000033 6.000000000000001

1122
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Xy =40
I. =
ﬂ—
=] |
=| - |
=
Xn

Figure 1: Comparison Graph based on Numerical example to prove the efficiency of Ny .

Thus, it is evident from the above table and graph that the newly defined iteration
scheme N} converges much faster and is more efficient than many iteration schemes in
exiting literature.

5. T-stability of N} iteration algorithm

Now, we prove the stability of N7.

Theorem 6. Suppose that there is a Banach space E, having subset C, which is nonempty
closed and convex. Also, let there be a contraction mapping 7' : C — C. Let {(,}22, be
an iterative sequence generated by N7 and with real sequence {09} ; € [0,1] such that
3% ;00 = 0o. Then the iteration algorithm defined as NV is T — stable.

n=0%n

oo

Proof. Let an arbitrary sequence {t,},~, C E in C, generated by N} and now defined
as (o1 = f(T,¢,) converges to a fixed point x5 (by Theorem 1) and €, = ||tp+1— (T, tn)]|-
We will prove that lim, . t, = p.

Let lim,, o0 €, = 0, as from Theorem 1 using the inequality

1Gn+1 — 25l < €(€ = (1= €)an) Gn — a5 (-14)

we have,

[tnt1 = sl < ltnss = (T tn)l| + | F(T tn) — 5]

T<T(T((1 - Ug)gn)) + JgT(n) — x5

€n +
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<0 - (1 =&op)litn — a5 + €n

Define ¥, = ||t, — x5/, ¢n = (1 — €)0% € (0,1) and ¢ = ¢,, which implies that :;—: — 0 as
n — oo. Thus all the conditions of Lemma 2 are satisfied by above inequality. Hence, we
get lim,, . t, = p, we have

€n = |[tny1 — f(T,t0)||
< tntr — zsll = (I f (T, t) — 25|
<EE = (1=oplltn — zsll + €n

This implies that lim,,_,~ t, = 0. This also implies that N7 is T — stable with respect to
T.

6. Data Dependence Result

In this section we establish some data dependence result.

Theorem 7. Let T be an approximate operator of a contraction mapping T'. Let {(n}n —0
be an iterative sequence defines as Ny for 7" and defined an iterative sequence {Cn}n _g for
T, as follows constructed as, for arbitrary {; € X by

én = T((l - Ug)én + Ugf&ﬂ)
ﬁn = Tén
gn—l—l = Tﬁn neN

where real sequence {o9} > in [0,1] satlsfymg 3 <ob foralln € Nand Y o) = .
Also, if Tp = p and T = p such that hmn_m,{ P, then we have

11e
<
lp =2l < 5 ¢

Proof. Using {(,}oo, and {Cn}n o> we have

160 — 0]l = | T((1 = 620 + 02TCo) — T((1 = 02)Cn + 00T¢,)

((1 -0 )Cn + UOTC’VL) - ((1 - U’I[’)L)é:n + Ug,fgn)

T
(1_0 Cn+UTCn>_ ((1_0 Cn+UOTCn>H

(1= ol = anJrUQHTCn—Tfn)!)JrG
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< s<<1 — )|[¢n — Call + 02<||Tcn — Tl + 1T — T@)H)) +e

< 5((1 — )|¢n — Call + 2 (5( [ ) +e+e>> te

<AL= (1 =&l — Call +Eopete
In similar manner, we have

70— 7|l = [ T6n — Tén”

17 — il = 1 T6n — Tén + Tén - Tén”
< HTen - Ténu + HTén - Tén”
<¢l6n — éH e

on substituting the value of |6, — 6,]|, we have

I = il < (601 (1= o)1 Gl + e+ ) L

In a similar manner, we have

Gt — En—l—l” = [T — Tﬁﬂ”
16n = Gall = 1T = Tt + T, — T
< | Tnn = T || + 1770 — TﬁnH
< Ellmn — il + ¢

on substituting the value of ||, — 7,|| , we have

160 = Gall < 5(5(1 — (1= 8op)llGn — Gall + Eope + e) + €

using {00} in [0,1] and £ € (0,1) and combining the above inequalities of same theo-
rem,we have
16 — Call + 09 + Be

HCn - énH < (1 - (1 - 5)02
. HCn - énH + 026

)
<1 -01=8&oy)
+5(1 =02 +0%)e

N ~ 11
160 = Call < (1= (1= €)aD1n — Call + 021 — &) —

1=¢
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Let ¥ = [|Go — Call, én = (1 — 02)(1 =€), o = ll—iz, then from the Lemma 2, we have

11e

0 < limsup ||¢y, — G|l < limsup

n—oo n—oo 1 — f

considering the result of Theorem 1 we have limsup,,_,, ¢, = p and by the assumption
we have that lim sup,,_,,, ¢, = p. Using the results together with

- - 11e
160 = Gall < (1= (1= ©an)llCn = Gall + on(1 = )7 y:
we have, ||p — pnl| < % as required.
7. An Application
Let a Banach space (E([a,b]),||.||oo) Which is space of all continuous real valued func-
tions on a closed interval [a, b] a with endowed chebyshev norm ||z — y||cc = max |z(t) —

y(t)|. In this section solution of a particular delay differential equation hatSE[;b]solution
generated by N7 iteration scheme.
' (t) = f(t,z(t),z(t — 7)), t € [to, b (7.1)
with initial condition
x(t) = (), t € [to — T, to]- (7.2)
We opine that the following conditions are performed

(i) to,b e R, 7 > 0;
(i) f € E([to,b] x R, R);
(iii) ¥ € E([to — 7, b],R);
(iv) if 2L¢(b —to) < 1, there exist Ly > 0 such that

2
|f(twr,uz) = f(E,v1,00)] < Lp Y s — vil, (7.3)
n=0

Yu;,v; E R, =1,2,t € [to,b],
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By a solution of the problem (7.1)-(7.2) we understand function z € E([to—,b], R) () E*([to, b], R).
The problem (7.1)-(7.2) can be reformulated in the following form of integral

. Q/)(t), te [to - T, to]
=) = { to)+ J f a(s—7))ds,  te [t b (7-4)

Theorem 8. Suppose that conditions (1)-(4) are satisfied. Then the problem (7.1)-(7.4)
has a unique solution in E([to — 7,b], R) () E!([to, ], R).

Proof. Let {(,}22, be an iterative sequence generative by N}, iteration method (1.18)
for the operator

. w(t), te [t(] -7, to]
Talt) = { R (s —7)ds,  telto,b]. (7:5)

Let x5 denote the fixed point of T'. We will show that (,, — x5 as n — oo.
For t € [ty — T, 1¢], it is easy to see that (, — x5 as n — oo. For t € [ty, b] we obtain

16n = z5]l00 = [IT((L = o) + 00 TCn) — 5]|0
=[|T((1 - Ug)gn + UgTCﬂ) — T
<= UO)Cn + UOTCn - x5H
< (1= 0¢n = Z5lloo + 00 max  |T¢, — Ty

tefto—,b]
— (1= 0l - waumazteﬁag’]]w) (s, a(s), s — 7)ds
~ ) = [ oalo)aato = )i
= (1= o8~ sl + b s lotto)+ [ f(s.a(s)a(s = )
~ ) = [ sl - )i

= (1 —0)¢n — T5]loo + 08 max

f(S (s), x(s — 7))ds

[tg Tb]
t
f(s,x5(s),x5(s — 7))ds
to
t
= (1= 09I — Zslloo + 0% max / £(s,2(s), 2(s — 7))
tE[to—T,b] to

— f(s,zs(s),x5(s — 7))ds
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t
= (1= o) 1Gn ~ walloc + 0% o [ Lf(\<n<s>—xa<s>\

te [to 7T,b] to

+|Ca(s —7) —x5(s — T)])ds

t
= (1= o)l — sl + 0 max Lf(\<n<s>—m(s)\ﬂ@(s—ﬂ

te [to —T,b] to

w5(57)|>ds

=<1—02>H<n—xa||oo+02Lf( max_[Ca(s) — 25(s) +  max[Ca(s—7)

te[to—T,b] te[to—T,b)
t
—x5(s — T)|> / ds
to

= (1= %)l — oo + 203155 — o)1 — 5]
6~ ol = 1= 0301 = 22,6~ )16, ~ 3] (7.6)

similarly, we have

”nn - xé“oo = HTHn - T%&Hoo
t

f(8,0n(5), 0n(s — 7)) — f(s,25(s), 25(s — 7))lds

to

t
< max /
tG[to—T,b] to

~ max /th<\9n(8)—935(8)!+!9n(8—7)—$5(8—7)\>d8

tE[tofT,b] to
17 — @slloc < 2Lp(b—10)[0n — 25lloo (7.7)

and hence, we have

= Imax
te[to—T,b]

f(S,Gn(S), en(s - T)) - f(s,:c(;(s),x,g(s - 7—)) ds

[Cnt1 = @slloo = 1T — T5]| oo
t

= s || 56l s = 7)) = F(s,20(6), 2ol — 7)]ds

t
max /
te[to—T,b) to

— o / L (1n(6) = a5(6)1 + s = 7) = s = )] ) s

te[to—T,b)
HCn — Z5loo < 2Lf(b_t0)H77n_x5”oo (7.7)

IN

F(s,mm(s),mn(s — 7)) = f(s,25(s), m5(s — 7))|ds

using the equations (7.6), (7.7) and (7.8)

IGns1 = @slloo < ALF(b — t0)* |11 — @5]loc
!
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1Cns1 — Tslloo < ALF(b — t0)® [1 —op(1—2Ls(b— to))} 16 — 5]

Proceeding in the same manner, we have
160 = sl < 1= 08401 = 2240 = 0)| It ~ 2l
and
601 = sl < |1 %1 = 2L5(0 = 1) 612 = 23]

and hence we have
61 = sl < TT |1 = 080 =220~ 10) o 2l (7.9)
k=0

where [1—00(1—2L(b—tp)) € (0,1) because op € (0,1), for all natural numbers n. Also,
since (1 —x) < e ? for all x € [0,1], from (7.9) we can easily conclude that

l|Co — zs]|
o(1=(2L £ (b—10))) 72 oF

[Cnt1 = @5l < (7.10)

which led us to lim, e [|[Cat1 — %5]|oc = 0 when taking limits of both sides of equation
(7.10).

8. Conclusion

A whole new iteration scheme namely Ny having rate of convergence, faster than
almost all pre-existing iteration schemes to find the solution with minimum possible steps
is established.
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