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Abstract: In this paper, we present fractional differential

transform method (FDTM) and modified fractional differ-

ential transform method (MFDTM) for the solution of time

fractional Black-Scholes European option pricing equa-

tion. Themethod finds the solutionwithout any discretiza-

tion, transformation, or restrictive assumptions with the

use of appropriate initial or boundary conditions. The effi-

ciency and exactitude of the proposed methods are tested

by means of three examples.

Keywords: Fractional Black-Scholes equation, Fractional

differential transform method, Modified fractional differ-

ential transform method

1 Introduction

In the past fewdecades, financial securities became signif-

icant tools for corporates and investors. A principal prob-

lem in financial investment is the pricing of options for ex-

ample, to hedge assets and portfolios in order to control

the risk due to the movement in stock prices. The famous

theoretical valuation formula for options derived by Fis-

cher Black andMyron Scholes [1] in 1973. The central theo-

retical idea of Black and Scholes lie in the construction of a

riskless portfolio taking positions in bonds (cash), option

and the underlying stock. Thismethodology reinforces the

use of the no-arbitrage principle as well. Thus, the Black-

Scholes formula is used as a model for valuing European

or American call and put options on a non-dividend pay-

ing stock [2]. The major difference between the European

and American option is that American option can be exer-

cised at any time up to the date while the European option
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can be exercised only on a specified future date. In [3–11],

many researchers premeditated the existence of solutions

of the Black-Scholes equation.

In recent past, the glorious developments have been

envisaged in the field of fractional calculus and frac-

tional differential equations. Differential equations involv-

ing fractional order derivatives are used to model a vari-

ety of systems, of which the important applications lie in

field of viscoelasticity, electrode–electrolyte polarization,

heat conduction, electromagnetic waves, diffusion equa-

tions and so on [12, 13]. Several definitions of a fractional

derivative of order α > 0 [14] such as, Riemann-Liouville,

Grunwald-Letnikow, Caputo and generalised functions

approach. The most commonly used definitions are the

Riemann-Liouville and Caputo. Readers can refer the ba-

sic definitions and properties of fractional calculus the-

ory in [13, 14]. In recent times, fractional partial differ-

ential equation was presented further into financial the-

ory. In [15] presented the fractional Black-Scholes equa-

tion with a time-fractional derivative to price European

call option. Several fractional diffusion models of option

prices in markets with jumps and priced barrier option us-

ing fractional partial differential equation given in [16]. Ju-

marie [17, 18] derived the time- and space-fractional Black-

Scholes equations and obtained optimal fractional Mer-

ton’s portfolio.

Consider the time fractional Black-Scholes equation

∂αv(x, t)

∂tα
+
σ2x2

2

∂2v(x, t)

∂x2
+ r(t)x

∂v(x, t)

∂x
− r(t)v(x, t) = 0,

0 < α ≤ 1 (1)

Subject to the conditions

v(x, T) = max(x − E, 0), x ∈ R+, v(0, t) = 0, t ∈ [0, T]

(2)

where v(x, t) is the European call option price at asset

price x and at time t, σ(x, t) represents the volatility func-

tion of underlying asset, r(t) is the risk free interest rate,

T is the maturity and E denotes the expiration price. A

wide range of research has been carried out for analytical

and semi-analytical methods to study the fractional Black-

Scholes equation and it plays a noticeable role in financial

marketing. Due to its remarkable scope and applications

in several disciplines, a considerable attention has been
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given to exact and numerical solutions of fractional Black-

Scholes equation. Some of the methods such as Laplace

transform [19], Finite differencemethod [20], Adomian de-

composition method(ADM) [21], Homotopy perturbation

method (HPM) andHomotopy analysismethod(HAM) [22].

The proposed FDTM and MFDTM do not require lineariza-

tion, discretization or perturbation unlike the method dis-

cussed in the literature. The main drawback of the ADM

is to calculate Adomian polynomials for a nonlinear op-

erator where the procedure is very complex. The difficulty

in VIM has an inherent inaccuracy in identifying the La-

grange multiplier, correctional functional and stationary

conditions for the fractional order. The disadvantage of

the Homotopy perturbation method is to solve functional

equation in each iteration, which is sometimes compli-

cated and unattainable. Therefore, the proposed FDTM

and MFDTM are much easier when compared with ADM,

VIM and HPM.

The main aim of this paper is to extend the FDTM and

MFDTM to obtain analytic and approximate solution of

time fractional Black-Scholes equations. To the best of au-

thor’s knowledge no paper has been reported yet for the

solution of time fractional Black-Scholes equation using

FDTM and MFDTM. The differential transformmethod ob-

tains an analytical solution in the form of a polynomial.

It is different from the traditional high order Taylor’s se-

ries method, which requires symbolic competition of the

necessary derivatives of the data functions. The Taylor se-

ries method is computationally taken long time for large

orders. With this method, it is possible to obtain highly

accurate results or exact solutions for differential equa-

tions. The use of differential transform method in electric

circuit analysis was pioneered by Zhou [23]. Since then,

differential transformmethodwas successfully applied for

large variety of problems such as partial differential equa-

tions [24, 25], solitary wave solutions for the KdV and

mKdV equations [26], linear and nonlinear Schrodinger

equations [27], linear and nonlinear Klein-Gordon equa-

tions [28], nonlinear oscillators with fractional nonlineari-

ties [29], fractional linear and nonlinear schrodinger equa-

tion [30], nonlinear fractional Klein-Gordon Equation [31],

(1+n)-dimensional Burger’s equation [32], HIV infection of

CD4+T cells mathematical model [33], Black-Scholes pric-

ing model of European option valuation [34, 35] and refer-

ences therein. Recently, in [36] two dimensional extended

differential transform method has been used for solving

the local fractional diffusion equation.

As we know that, FDTM is based on Taylor series for

all variables. Even though the proposed FDTM does not

require linearization, discretization or perturbation it also

encounters difficulties while handling with the non-linear

functions. For example, let us consider the fractional dif-

ferential transform for u3(x, t) involves four summations

i.e.

u3(x, t) =

k∑

r=0

k−r∑

q=0

h∑

s=0

h−s∑

p=0

Uα,1(r, h − s − p)

Uα,1(q, s)Uα,1(k − r − q, p) (3)

Thus it is necessary to have a lot of computational work

to calculate such differential transform Uα,1(k, h) for the

large number of (k, h). Hence, we introduce the modified

version of the standard FDTM. Instead of considering the

Taylor series of u(x, t) for all variables x and t, in MFDTM,

we considered the Taylor’s series of the functionu(x, t)

with respect to the specific variable x or t. The MFDTM of

u3(x, t) for the specific variable t as follows

u3(x, t) =

h∑

m=0

m∑

l=0

Uα,1(x, h − m)Uα,1(x, l)Uα,1(x,m − l)

(4)

It is observed that MFDTM of u3(x, t) involves only two

summations therefore it minimizes the computation cost

and effective method compared with the FDTM.

The outline of this paper is as follows. Two-

dimensional FDTM are discussed in section 2. TheMFDTM

and its definitions presented in section 3. In section 4

applications of FDTM and MFDTM via time fractional

Black-Scholes equationare given to elucidate theproposed

methods. Conclusions of this work are given in section 5.

2 Two-Dimensional Fractional

Differential Transform Method

Consider a function of two variables u(x, t) and suppose

that it can be represented as a product of two single vari-

able functions i.e., u(x, t) = f (x)g(t). Based on the proper-

ties of two- dimensional fractional differential transform,

the function u(x, t) can be represented as

u(x, t) =

∞∑

k=0

∞∑

h=0

Uα,1(k, h)(x − x0)
k(t − t0)

hα (5)

where 0 < α, Uα,1(k, h) is called the spectrum of u(x, t).

The generalized two-dimensional fractional differential

transform of the function u(x, t) is given by

Uα,1 =
1

Γ(k + 1)Γ(αh + 1)

[(

D1
*x0

)k (
Dα
*t0

)h
u(x, t)

]

x0 ,t0
(6)

where
(
Dα
*t0

)h
= Dα

*t0D
α
*t0 ...D

h
*t0

︸ ︷︷ ︸

h

. In real applications the

function u(x, t) is represented by a finite series of (5) can
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be written as

u(x, t) =

l∑

k=0

n∑

h=0

Uα,1(k, h)x
k tαh + Rln(x, t) (7)

and (5) implies that Rln(x, t) =
∞∑

k=l+1

∞∑

h=n+1

Uα,1(k, h)x
k tαh is

negligibly small. Usually, the values of l and n are decided

by convergence of the series solution. In case ofα = 1, the

generalized two-dimensional fractional differential trans-

form method (5) reduces to classical two-dimensional dif-

ferential transform [24–29]. The fundamental mathemat-

ical operations performed by two-dimensional FDTM are

listed in Table 1.

3 Modi�ed Fractional Differential

Transform Method

We consider the Taylor series of u(x, t) with respect to the

specific variable t then, the Taylor series expansion of the

function u(x, t) with respect to the specific variable t = t0
is

u(x, t) =

∞∑

h=0

1

Γ(αh + 1)

(
∂αhu(x, t)

∂tαh

)

t=t0

(t − t0)
αh (8)

Themodified fractional differential transform Uα,1(x, h) of

u(x, t) with respect to the variable t at t0 is defined by

Uα,1(x, h) =
1

Γ(αh + 1)

(
∂αhu(x, t)

∂tαh

)

t=t0

(9)

The modified fractional differential inverse differential

transform Uα,1(x, h) of u(x, t) with respect to the variablet

at t0 is defined by

u(x, t) =

∞∑

h=0

Uα,1(x, h)(t − t0)
αh (10)

In real application, the function u(x, t) is expressed by a

finite series and eq. (10) can be written as

u(x, t) =

m∑

h=0

Uα,1(x, h)(t − t0)
αh + Rm(x, t) (11)

whichmeans that Rm(x, t) =
∞∑

h=m+1

U(x, h)(t − t0)
h is small

and negligible. Usually the value of m decided by the con-

vergence of the series.

Since the MFDTM results from the Taylor’s series of

the function with respect to the specific variable it is ex-

pected that the corresponding algebraic equation from the

given problem ismuch simpler than the result obtained by

the standard FDTM. The fundamental mathematical oper-

ations performed by MFDTM are listed in Table 2.

4 Applications

In this section, three examples are tested to validate the

proposed FDTM and MFDTM for solving fractional Black-

Scholes equation.

Example 1: First consider the fractional Black-Scholes

equation [11],

∂αv

∂tα
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, 0 < α ≤ 1 (12)

Subject to the initial condition

v(x, 0) = max(ex − 1, 0) (13)

where k = 2r
σ2

and it represents the balance between the

rate of interests and the variability of stock returns and the

dimensionless time to expiry 1
2σ

2T, even though there are

four dimensional parameters, E, T,σ2 and r, in the original

statement of the problem.

FDTM: The transformed version of eq. (12) is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(m, h + 1)=(m + 1)(m + 2)Vα,1(m + 2, h)

+ (k − 1)(m + 1)Vα,1(m + 1, h) − kVα,1(m, h) (14)

The transformed version of eq. (13) is

Vα,1(m, 0) = max

(
1

m!
− δ(m), 0

)

, m = 0, 1, 2, . . .

(15)

Substituting eq. (15) into eq. (14), yields the Vα,1(m, h) val-

ues,

Vα,1(0, 1) =
k

Γ(α + 1)
, Vα,1(1, 1) = Vα,1(2, 1) = . . . = 0

Vα,1(0, 2) =
−k2

Γ(2α + 1)
, Vα,1(1, 2) = Vα,1(2, 2) = . . . = 0

Using Vα,1(m, h) values in (5), we obtained the series so-

lution as

v(x, t) =

∞∑

m=0

∞∑

h=0

Uα,1(m, h)xm tαh

=

(

x +
x2

2!
+
x3

3!
+ ...

)

+
ktα

Γ(α + 1)
−

k2t2α

Γ(2α + 1)
+ . . .

(16)

MFDTM: The transformed version of eq. (12) with respect

to t is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(x, h + 1) =

∂2Vα,1(x, h)

∂x2

+ (k − 1)
∂Vα,1(x, h)

∂x
− kVα,1(x, h) (17)
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Table 1: The operations for the two-dimensional FDTM.

Original function Transformed function

w(x, t) = u(x, t) ± v(x, t) Wα,1(k, h) = Uα,1(k, h) ± Vα,1(k, h)

w(x, t) = µu(x, t) Wα,1(k, h) = µUα,1(k, h)

w(x, t) =
∂u(x, t)

∂x
Wα,1(k, h) = (k + 1)Uα,1(k + 1, h)

w(x, t) = Dα
*t0

u(x, t), 0 < α ≤ 1 Wα,1(k, h) =
Γ(α(h + 1) + 1)

Γ(αh + 1)
Uα,1(k, h + 1)

w(x, t) = (x − x0)
m(t − t0)

nα Wα,1(k, h) = δ(k − m, hα − n) =

{

1, k = m, h = n

0, otherwise

w(x, t) = u2(x, t) Wα,1(k, h) =
k
∑

m=0

h
∑

n=0
Uα,1(m, h − n)Uα,1(k − m, n)

w(x, t) = u3(x, t) Wα,1(k, h) =
k
∑

r=0

k−r
∑

q=0

h
∑

s=0

h−s
∑

p=0
Uα,1(r, h − s − p)Uα,1(q, s)Uα,1(k−r−q, p)

Table 2: The operations for the two-dimensional MFDTM.

Original function Transformed function

w(x, t) = u(x, t) ± v(x, t) Wα,1(x, h) = Uα,1(x, h) ± Vα,1(x, h)

w(x, t) = µu(x, t) Wα,1(x, h) = µUα,1(x, h)

w(x, t) =
∂u(x, t)

∂x
Wα,1(x, h) =

∂Uα,1(x,h)

∂x

w(x, t) = Dα
*t0

u(x, t), 0 < α ≤ 1 Wα,1(x, h) =
Γ(α(h + 1) + 1)

Γ(αh + 1)
Uα,1(x, h + 1)

w(x, t) = (x − x0)
m(t − t0)

nα Wα,1(x, h) = (x − x0)
mδ(hα − n)

w(x, t) = u2(x, t) Wα,1(x, h) =
h
∑

m=0
Uα,1(x,m)Uα,1(x, h − m)

w(x, t) = u3(x, t) Wα,1(x, h) =
h
∑

m=0

m
∑

l=0

Uα,1(x, h − m)Uα,1(x, l)Uα,1(x,m − l)

The transformed version of eq. (13) is

Vα,1(x, 0) = max(ex − 1, 0) (18)

The MFDTM recurrence equation (17) yields the Vα,1(x, h)

values

Vα,1(x, 1) =
k

Γ(α + 1)

(
max(ex , 0) − max(ex − 1, 0)

)
,

Vα,1(x, 2) =
k2

Γ(2α + 1)

(
max(ex , 0) − max(ex − 1, 0)

)
, . . .

Substituting Vα,1(x, h)’s into (10) , we obtained solution in

the following form

v(x, t) = max(ex − 1, 0)

+
k

Γ(α + 1)

(
max(ex , 0) − max(ex − 1, 0)

)
tα

+
k2

Γ(2α + 1)

(
−max(ex , 0) + max(ex − 1, 0)

)
t2α + . . .

v(x, t) = max(ex , 0)

− max(ex , 0)

∞∑

h=0

(−ktα)h

Γ(hα + 1)

+ max(ex − 1, 0)

∞∑

h=0

(−ktα)h

Γ(hα + 1)

v(x, t) =max(ex , 0)(1 − Eα(−kt
α))

+ max(ex − 1, 0)Eα(−kt
α) (19)

where Eα(−kt
α) is the Mittag-Leffler function defined

as [37]. The MFDTM solution obtained in eq. (19) is same

as the solution obtained in [22] and it is the exact solu-

tion of eqs. (12)–(13). It is well known from the FDTM so-

lution in eq. (16) andMFDTM solution in eq. (19) the FDTM

needsmore terms in the series to obtain the exact solution.

Fig. 1(a)–1(d) presents the comparison of the approximate

solution obtained using FDTM and MFDTM with the exact

solution for different values of fractional order α for fixed

t and k.

Example 2: Consider the generalized Black-Scholes equa-

tion [5]

∂αv

∂tα
+ 0.08(2 + sin x)2x2

∂2v

∂x2
+ 0.06x

∂v

∂x
− 0.06v = 0,

0 < α ≤ 1 (20)

Subject to the initial condition

v(x, 0) = max(x − 25e−0.06, 0) (21)
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(a) α = 1, k = 2, t = 1 (b) α = 1, k = 2, t = 0.5

(c) α = 0.7, k = 2, t = 0.5 (d) α = 0.8, k = 2, t = 0.5

Fig. 1: Comparison of the approximate solution obtained using

FDTM and MFDTM with the exact solution.

FDTM: The transformed version of eq. (20) is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(m, h + 1)

+ 0.36

m∑

l=0

h∑

n=0

δ(l − 2, h − n)(m − l + 1)(m − l + 2)

× Vα,1(m − l + 2, n)

− 0.04

m∑

l=0

m−l∑

q=0

h∑

n=0

h−n∑

p=0

δ(l − 2, h − n − p)
2q cos

( qπ
2

)

q!

× (m − l − q + 1)(m − l − q + 2)Vα,1(m − l − q + 2, p)

+ 0.32

m∑

l=0

h∑

n=0

δ(l − 2, h − n)(m − l + 1)(m − l + 2)

× Vα,1(m − l + 2, n)

+ 0.06

m∑

l=0

h∑

n=0

δ(l − 1, h − n)(m − l + 1) × Vα,1(m − l + 1, h)

− 0.06Vα,1(m, h) = 0 (22)

The transformed version of eq. (21) is

Vα,1(m, 0) = max
(

δ(m − 1) − 25e−0.06, 0
)

,

m = 0, 1, 2, . . . (23)

Substituting eq. (23) into eq. (22), yields the Vα,1(m, h) val-

ues,

Vα,1(0, 1) = 0, Vα,1(1, 1) = −
0.06

Γ(α + 1)
,

Vα,1(2, 1) = Vα,1(3, 1) = . . . = 0,

Vα,1(0, 2) = 0, Vα,1(1, 2) = −
(0.06)2

Γ(2α + 1)
,

Vα,1(2, 2) = Vα,1(3, 2) = . . . = 0, . . .

Using Vα,1(m, h) values in (5), we obtained the series so-

lution as

v(x, t) =

∞∑

m=0

∞∑

h=0

Uα,1(m, h)xm tαh

= −x

(
0.06tα

Γ(α + 1)
+
(0.06)2t2α

Γ(2α + 1)
+ . . .

)

(24)

MFDTM: The transformed version of eq. (20) with respect

to t is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(x, h + 1)

+ 0.08(2 + sin x)2x2
∂2Vα,1(x, h)

∂x2

+ 0.06x
∂Vα,1(x, h)

∂x
− 0.06Vα,1(x, h) = 0 (25)

The transformed version of eq. (21) is

Vα,1(x, 0) = max(x − 25e−0.06, 0) (26)

The MFDTM recurrence equation (25) yields the

Vα,1(x, h)values

Vα,1(x, 1) =
0.06

Γ(α + 1)

(

max(x − 25e−0.06, 0) − x
)

,

Vα,1(x, 2) =
(0.06)2

Γ(2α + 1)

(

max(x − 25e−0.06, 0) − x
)

, . . .

Substituting Vα,1(x, h)’s into (10) , we obtained solution in

the following form

v(x, t) =max(x − 25e−0.06, 0)

+
0.06

Γ(α + 1)

(

max(x − 25e−0.06, 0) − x
)

tα

+
(0.06)2

Γ(2α + 1)

(

max(x − 25e−0.06, 0) − x
)

t2α + . . .

(27)

The approximate solution obtained in eq. (24) and eq. (27)

is same as the solution obtained in [22]. When α = 1

eq. (24) and eq. (27) takes the following form v(x, t) =

max(x − 25e−0.06, 0)e0.06t + x(1 − e0.06t) and v(x, t) =

−x
(
0.06t
1! + (0.06t)2

2! + . . .
)

respectively.

Example 3: Finally, consider the following fractional

Black-Scholes option pricing equation [35]

∂αv

∂tα
+
σ2

2
x2

∂2v

∂x2
+ (r − τ)x

∂v

∂x
− r v = 0, 0 < α ≤ 1 (28)

Subject to the initial condition

v(x, 0) = max(Ax − B, 0) (29)
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FDTM: The transformed version of eq. (28) is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(m, h + 1)

+
σ2

2

m∑

l=0

h∑

n=0

δ(l − 2, h − n)(m − l + 1)(m − l + 2)

× Vα,1(m − l + 2, n)

+ (r − τ)

m∑

l=0

h∑

n=0

δ(l − 1, h − n)(m − l + 1)

× Vα,1(m − l + 1, n) − rVα,1(m, h) = 0 (30)

The transformed version of eq. (29) is

Vα,1(m, 0) = max
(
Aδ(m − 1) − Bδ(m), 0

)
,

m = 0, 1, 2, . . . (31)

Substituting eq. (31) into eq. (30), yields the Vα,1(m, h) val-

ues,

Vα,1(0, 1) = 0, Vα,1(1, 1) =
τmax(A, 0)

Γ(α + 1)
,

Vα,1(2, 1) = Vα,1(3, 1) = . . . = 0,

Vα,1(0, 2) = 0, Vα,1(2, 1) =
τ2max(A, 0)

Γ(2α + 1)
,

Vα,1(2, 2) = Vα,1(3, 2) = . . . = 0, . . .

Using Vα,1(m, h) values in (5), we obtained the series so-

lution as

v(x, t) =

∞∑

m=0

∞∑

h=0

Uα,1(m, h)xm tαh

= xmax(A, 0)

(

1 +
τtα

Γ(α + 1)
+

τ2t2α

Γ(2α + 1)
+ ...

)

(32)

MFDTM: The transformed version of eq. (28) with respect

to t is

Γ(α(h + 1) + 1)

Γ(αh + 1)
Vα,1(x, h + 1) + σ

2x2
∂2Vα,1(x, h)

∂x2

+ (r − τ)x
∂Vα,1(x, h)

∂x
− rVα,1(x, h) = 0 (33)

The transformed version of eq. (29) is

Vα,1(x, 0) = max(Ax − B, 0) (34)

The MFDTM recurrence equation (33) yields the Vα,1(x, h)

values

Vα,1(x, 1) =

1

Γ(α + 1)

(
rmax(Ax − B, 0) − (r − τ)xmax(A, 0)

)
,

Vα,1(x, 2) =

1

Γ(2α + 1)

(

r2max(Ax − B, 0) − (r2 − τ2)xmax(A, 0)
)

, . . .

Substituting Vα,1(x, h)’s into (10) , we obtained solution in

the following form

v(x, t) =max(Ax − B, 0)

(

1 +
r tα

Γ(α + 1)
+

r2 t2α

Γ(2α + 1)

+
r3 t3α

Γ(3α + 1)
+ . . .

)

− max(A, 0)x

(
(r − τ)

Γ(α + 1)
tα

+
(r2 − τ2)

Γ(2α + 1)
t2α +

(r3 − τ3)

Γ(3α + 1)
t3α + . . .

)

(35)

The MFDTM solution obtained in eq. (35) is same as the

solution obtained in [35].

Fig. 2(a–c), 3(a–c) presents the comparison of the ap-

proimate solution obtained by FDTM, MFDTMwith the so-

lution in [35] for different values of fractional order.

(a) (b)

(c)

Fig. 2: v(x, t) obtained by (a) FDTM, (b) MFDTM and (c) Solution

in [35] when α = 1, r = 0.25, τ = 0.2, A = 1 and B = 10.

5 Conclusions

In this paper, we implemented the two-dimensional FDTM

and MFDTM for solving time fractional Black-Scholes

equation. DTM is an attractive tool for solving linear and

nonlinear partial differential equations and it does not re-

quire linearization, discretization or perturbation. But it

also faces some difficulties while constructing recursive
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(a) (b)

(c)

Fig. 3: v(x, t) obtained by (a) FDTM, (b) MFDTM and (c) Solution

in [35] when α = 0.9, r = 0.25, τ = 0.2, A = 1 and B = 10.

equation for the function of three or more variables and it

requires an expensive computational cost to solve the al-

gebraic recursive equation. The proposed MFDTM for the

specific variable can obtain the simple recursive equation.

Thus it is concluded that MFDTM enhances the effective-

ness of the computational work when compared with the

FDTM. The proposed methods are simpler in its principles

and effective in solving linear and nonlinear differential

equations of fractional order and promising tool for solv-

ing wider class of nonlinear fractional models in mathe-

matical physics and financial theory with high accuracy.
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