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Abstract 

Flexible flow-shop scheduling problem (FFSP) is an extended special case of basic flow-shop 

scheduling problem (FSP). FFSP is treated as complex NP-hard scheduling problem. A good 

scheduling practice enables the manufacturer to compete effectively in the market place. An 

efficient schedule should address multiple conflicting objectives so that customer satisfaction can 

be improved. In this work, a novel approach based on teaching-learning-based optimization 

(TLBO) technique incorporated with maximum deviation theory (MDT) is applied to generate 

schedules that simultaneously optimize conflicting objective measures like makespan and 

flowtime. Results indicate that the proposed multi-objective TLBO (MOTLBO) outperforms 

non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective particle swarm 

optimization (MOPSO) in majority of the problem instances. 

Keywords:  Flexible flow-shop scheduling; Flowtime; Makespan; Maximum deviation theory; 

Non-dominated solutions; Multi-objective optimization; Teaching-learning-based 

optimization 
 

1 Introduction 

Flexible flow-shop scheduling problem (FFSP) possesses an additional complexity of 

assignment of jobs to available parallel machines as compared to basic flow-shop scheduling 

problem (FSP). Duplication of machines at each stage in a FFSP helps in eliminating bottleneck 

conditions, reducing the makespan, increasing the capacity of shop floor and so on. In fact, FFSP 

is an extension of basic FSP (Singh and Mahapatra, 2012). A large body of research has gone 

into proposing various methodologies for solving FFSP with an objective to minimize makespan 

(Buddala and Mahapatra, 2018; Mishra and Shrivastava, 2018). Apart from makespan, many 

performance measures of scheduling need to be satisfied not only to generate a practical schedule 

but also improve the customer perception. This helps the manufacturing industries to survive in 

the market competition and also maintain goodwill with the customers. From managerial point of 

view, throughput (defined as the amount of work done per unit time) is an important 

performance measure of scheduling. However, makespan minimization causes increase of 

throughput in a shop floor. It also ensures maximum utilization of the machines. Flowtime is an 

important performance measure from both operator as well as business point of view. It is 

defined as the amount of time that a job spends in a shop floor. Mean flowtime is defined as the 

average time that a job spends in a shop floor (Baker and Trietsch, 2013). Minimizing makespan 

or increasing throughput causes increase in the waiting time of jobs in a shop floor resulting in 
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mean flowtime to increase. Increase in flowtime also leads to increase the risk of tardiness 

(delivering the jobs beyond the due dates). Hence, flowtime can be viewed as a contradictory 

objective with respect to makespan. Therefore, in the present work, multi-objective optimization 

of contradictory objectives such as makespan and mean flowtime are chosen for the study. For a 

multi-objective scheduling problem, the problem solving strategy may be a weighted sum 

approach aggregating both the objectives into an equivalent single objective. However, 

determination of appropriate weights for individual objectives at priori is a challenging task and 

mostly depends on subjective or intuitive approach of the decision maker. In the past, a good 

number of studies have adopted weighted sum approach to solve different multi-objective 

scheduling problems (Xia and Wu ,2005; Tay and Ho,2008; Li et al., 2010). In order to 

overcome the drawback of weighted sum approach, the present study focuses on pareto-based 

method for solving multi-objective FFSP motivated from the works of various researchers 

(Kacem et al., 2002; Lei ,2008; Singh et al., 2016). In the present work, a novel multi-objective 

teaching-learning-based optimization (MOTLBO) is proposed to obtain a set of non-dominated 

solutions. It helps the decision maker to select any one solution among the set of possible 

solutions. However,, maximum deviation theory proposed by Wang (Yingming, 1997) is used in 

order to rank the non-dominated solutions so that the decision making process becomes easy. 

Reddy et al. (2018) have recently used MOTLBO to solve flexible job-shop scheduling problem 

(FJSP). 

The current paper presents a novel approach based on teaching-learning-based optimization 

(TLBO) technique for solving multi-objective flexible flow shop scheduling problem with the 

goal of finding approximations of the optimal Pareto front. The Pareto-optimal solutions 

obtained through multi-objective TLBO (MOTLBO) have been ranked by the composite scores 

obtained through maximum deviation theory (MDT) to avoid subjectiveness and impreciseness 

in the decision-making. The instances from literature are solved and results are compared with 

non-dominated sorting genetic algorithm-II (NSGA-II) and particle swarm optimization 

(MOPSO) in terms of performance metrics. 

 

2 Literature review 

Extensive survey of scheduling literature reveals that makespan is the main objective, mostly 

gained huge attention in the past, in solving scheduling problems. In the pursuit of solving FFSP 

using traditional as well as meta-heuristic approaches, mostly a single objective performance 
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measure like makespan is widely adopted (Dios et al., 2018). For instance, Carlier and Neron 

(2000) have proposed a solution methodology based on branch and bound algorithm. Solutions 

based on exact methods breaks down when the problem size increases. Therefore, a large number 

of meta-heuristics have been adopted to solve FFSP in order to achieve quality solutions for 

large scale problem in finite computational time. Some of the important meta-heuristic 

approaches used to solve FFSP are artificial immune system (Engin and Doyen, 2004), genetic 

algorithm (Kahraman, Engin et al., 2008), quantum immune algorithm (Niu et al., 2009), particle 

swarm optimization (Liao et al. 2012), improved cuckoo search algorithm (Marichelvam et al., 

2014), improved version of discrete artificial bee colony (Cui and Gu ,2015), harmony search 

algorithm (Marichelvam and Geetha, 2016) and JAYA and teaching-learning-based optimization 

(Buddala and Mahapatra, 2018). However, sufficient attention is not paid to consider other 

performance measures like flowtime, tardiness and sequence dependent setup times while 

solving FFSP. Guinet and Solomon (1996) have applied heuristic techniques to minimize 

makespan as well as tardiness. Botta-Genoulaz (2000) has also adopted a heuristic approach to 

minimize tardiness. In order to minimize total tardiness, Lee and Kim (2004) have applied 

branch and bound algorithm to solve FFSP. Nishi et al. (2013) have used Lagranginan with cut 

generation technique to minimize the total weighted tardiness. Behnamian and Zandieh (2011) 

have applied a discrete colonial competitive algorithm to minimize the penalty costs that occur 

due to tardiness. Recently, few studies have focused to tackle the sequence dependent setup 

times of FFSP (Kia et al., 2010; Maleki-Darounkolaei et al., 2012; Kia, et al. 2017). Azizoglu et 

al. (2001) have applied branch and bound algorithm to minimize total flowtime. Marichelvam 

and Prabaharan (2012) have used bat algorithm to minimize both makespan and mean flowtime. 

Pan and Dong (2014) have proposed an improved version of migrating birds optimization 

technique to minimize total flowtime.  

Nevertheless, critical analysis of scheduling literature suggests that limited attempt has been 

made to solve multi-objective optimization in FFSP. Cho et al (2017) have proposed a two level 

method for scheduling bi-objective FFSP. Marichelvam et al. (2014) have solved the multi-

objective optimization problem of makespan and mean flowtime with weighted sum method 

using discrete firefly algorithm. Wang and Liu ( 2014) have suggested a two stage solution 

procedure for multi-objective FFSP problem. Huang et al. ( 2015) have proposed a modified 

particle swarm optimization (PSO) algorithm called subgroup PSO technique to optimize 
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makespan and tardiness as the multi-objective performance measures. Considering same 

performance measures, Tran and Ng (2013) have proposed a hybrid water flow algorithm. 

Shahvari and Logendran (2016) have proposed a tabu search based algorithm to solve the multi-

objective optimization of total tardiness and makespan using weighted sum method. Recently, Li 

et al. (2018) have proposed an algorithm called energy-aware multi-objective optimization 

algorithm (EA-MOA) to optimize makespan and energy consumption using pareto based 

method. It is clear from the literature that less attempt has been made to solve multi-objective 

optimization problem of FFSP using pareto-based methods. Research related to solving multi-

objective FFSP using pareto-based optimization method considering makespan and mean 

flowtime as objectives is extremely low. The present study attempts to address the literature gap 

by focussing on multi-objective FFSP using pareto based method. For more information, a study 

on critical review of multi-objective optimization methods used for FFSP with relative merits 

and demerits can be referred (Sun et al., 2011). 

On the other hand, teaching-learning-based optimization (TLBO), proposed by Rao et al. 

(2011), has been applied to several constrained and unconstrained optimization problems. The 

major advantage of using the TLBO algorithm is that it does not possess any tuning parameter. 

Therefore, setting the tuning parameter for a given problem, a time consuming process, can be 

minimized. Recently, TLBO has been applied to solve some of the scheduling problems. Xie et 

al. (2014) have applied TLBO to permutation flow shop scheduling problems. Keesari and Rao 

(2014) have applied TLBO to job-shop scheduling problems. Xu et al. (2015) have adopted 

TLBO to solve flexible job-shop scheduling problems. Buddala and Mahapatra (2016, 2018) 

have used TLBO to solve flexible flow-shop scheduling problems. With an inspiration from the 

recent success of TLBO in solving scheduling problems, the present work proposes TLBO to 

solve multi-objective FFSP. 

3 Flexible flow-shop scheduling 

The FFSP is considered as a special case of flow-shop scheduling problem (FSP). FFSP has 

an additional complexity called assignment of jobs to available parallel machines as compared to 

that of basic flow-shop scheduling problem FSP. FFSP is considered as NP-hard problem (Gupta 

1988). A FFSP consists of J jobs that are to be processed at g number of operation centres called 

stages. Each job j (j=1, 2, …., J) must be processed at each stage t (t= 1, 2, …., g). Each stage 

may have more than one parallel machine. All parallel machines in a stage require equal amount 
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of time to execute an operation of a job. At any given instant, a job can be processed only on one 

machine and vice versa. The processing time of a job j at a given stage t denoted as p (j, t) is 

known in advance and deterministic. All jobs are different from each other. An operation cannot 

be interrupted till it is completed once it starts on a machine (pre-emption condition). The 

objective is to find the best permutation of jobs at each stage so that the objectives of scheduling 

are optimized. 

3.1 Problem representation 

In the present work, a real number encoding system proposed by Niu et al. (2009) is adopted 

to solve multi-objective FFSP. In order to allot each job to a machine, the integer part is used and 

the fractional part is used to sequence the jobs allotted to each machine. Let us consider a FFSP 

example problem with four jobs and three stages. Also, let us consider that stage one has one 

machine, stage two has two machines and stage three has three machines (m1=1, m2=2 and 

m3=3). We generate twelve (4×3=12) number of random real numbers using uniform distribution 

between [1, 1+m(k)] where k is number of parallel machines in a particular stage. This is 

represented in the second row of table 1. The processing times are  

       (            ) 

In row one, for example, “g1 j2” means job 2 at stage 1. The assignment of machines at each 

stage is given at the third row of table 1 (according to the integer value of real number). 

Sequencing of jobs assigned to same machine is done according to the ascending order of 

fractional values. For example, all jobs are assigned to machine 1, in first stage as there is only 

one machine. Now, the sequencing of jobs assigned to machine 1 is done according to the 

increasing order of fractional values. The obtained sequence is j3>j2>j1>j4. This is because, 

ascending order of fractional values for the jobs at stage one is 0.26 (j3) <0.37 (j2) <0.53 (j1) 

<0.84 (j4). 

Table1 Problem mapping representation 

g1 j1 g1 j2 g1 j3 g1 j4 g2 j1 g2 j2 g2 j3 g2 j4 g3 j1 g3 j2 g3 j3 g3 j4 

1.53 1.37 1.26 1.84 2.86 1.24 2.47 1.68 2.19 3.23 2.58 1.75 

1 1 1 1 2 1 2 1 2 3 2 1 
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4 Teaching-learning-based optimization (TLBO) 

In the last few decades, many complex problems have been tackled successfully using the 

nature inspired meta-heuristic techniques. Among them, a recent meta-heuristic technique called 

teaching-learning-based optimization algorithm is frequently used due to its simplicity and 

“tuning parameter free” feature apart from its efficiency. Based on the general learning process 

of a student, Rao et al. (2011) have proposed the teaching-learning-based optimization (TLBO) 

algorithm. In general, the learning process of a student occurs in two phases. They are known as 

‘teacher phase’ and ‘student phase’ as explained below: 

4.1 Teacher phase 

A teacher gives a lecture and some instructions to his/her students. The students follow their 

teacher’s instructions and gain some knowledge. Thus, a teacher enhances the knowledge of a 

class of students. In TLBO, ‘best student’ of the class is considered as the ‘teacher’ and the ‘class 

of students’ as the population of the algorithm. The gained knowledge of a student is given by 

the equation 1:                   –                   (1) 

where Sn is the new knowledge of a student, So is the old knowledge of a student, r is a random 

number (0,1), Sm is the mean knowledge of all the students of the class, Tf is called teaching 

factor. Tf is assigned a value one or two randomly and it does not require any tuning. Sn is 

accepted if it provides a better solution. 

4.2 Student phase 

Not all students of the class can learn equally. The knowledge gained by a student depends 

on the capacity to learn and understand. This varies from student to student. Therefore, after a 

class is taught, the weak students try to approach their good learning fellow students to discuss 

and clarify their doubts. During this discussion process again students gain some knowledge. 

This is explained as below in equations 2 and 3                                                 (2)                                   (3) 

Sa and Sb are two students of the class (a ≠ b), Sna and Soa are the new and old knowledge of 

student Sa, r is a random number (0,1). Sna is accepted if it provides a better solution. The basic 

TLBO is extended to be applied to multi-objective optimization problems. 
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5 Multi-objective TLBO (MOTLBO) 

Multi-objective optimization (MOO) of conflicting and contradistinctive natured objectives 

has drawn the attention of researchers in the last few years. Such kind of optimization problems 

with two or more objectives arise in many real world applications. With the recent success of 

TLBO, it has been extended to solve the multi-objective optimization problems (Zou et al., 2013; 

Rao and Patel, 2014; Yu et al, 2015; Patel and Savsani, 2016) which is normally called as multi-

objective teaching-learning-based optimization (MOTLBO). The important variation between 

the basic TLBO (single objective) and MOTLBO is the distribution of teacher. In MOTLBO, 

teacher should be redefined to get a set of pareto optimal solutions (non-dominated solutions).  

There is only one teacher for a single objective problem. As more than one contradistinctive 

conflicting objective is optimized in a MOO problem, there will be multiple non-dominated 

solutions. Therefore, any of these non-dominated solutions can be used as teacher in MOTLBO. 

In a MOO problem of conflicting and contradistinctive natured objectives, optimal solutions 

mean that these solutions are non-dominating solutions in the search region and none of the other 

solutions are exceptionally good in all the objectives of multi-objective optimization. These non-

dominated solutions are termed as pareto optimal solutions. Each and every solution in the non-

dominated set of solutions dominates every other solution in the set in at least one objective of 

the MOO. In order to extract the non-dominated solutions from total solutions, each single 

solution has to be compared with each and every other solution in the total population. Following 

are the rules for comparing the solutions to find the non-dominated solutions.  

Obj1(p) ≤ Obj1 (q) and Obj2 (p) < Obj2 (q)       (4) 

Obj1(p) < Obj1 (q) and Obj2 (p) ≤ Obj2 (q)       (5) 

where p and q indicate two different solution members of the population. Obj1 and Obj2 are 

values of the two objective functions in the MOO problem. A MOO aims to meet two criteria 

such as (i) Pareto optimal solution set and (ii) Distribution and diversity in the solutions. 

The ‘teacher’ who teaches a class of students is fixed in case of solving a single objective 

optimization problem whereas in case of multi-objective optimization problem, each student may 

have more than one teacher. Out of which one teacher is chosen to teach the student. Such group 

of teachers are usually stored in a different place from the class called external archive ‘EA’. The 

non-dominated solutions found so far are stored in this external repository ‘EA’.  This external 

archive ‘EA’, maintained by MOTLBO, is updated after each iteration. In the beginning, the ‘EA’ 
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is empty and can store a maximum of user specified number of pareto-optimal solutions. Of 

course, there is a chance that the total number of solutions in the ‘EA’ may exceed the maximum 

size limit. In such case, excess solutions are omitted using size controlling methods. There are 

many methods to control the external archive ‘EA’. They are size control based on epsilon 

dominance (Mostaghim and Teich, 2003), size control based on maximum fitness (Li, 2004), 

size control based on crowding distance (Raquel and Naval Jr, 2005). It may so happen that the 

non-dominated solutions may grow quickly; hence, it is critical to control the archive size. 

Studies of Alvarez-Benitez (2005) elaborately discusses on control on archive size in MOO. 

In order to find well distributed non-dominating solutions for multi-objective optimization 

problems using meta-heuristic techniques, crowding distance (CD) is the most widely used size 

control technique (Singh et al., 2016). The crowding distance technique is first used in 

MOTLBO by Zou et al. (2013) for the selection of best ‘teacher’. With an inspiration from 

previous works, crowding distance technique is applied in the present work to generate a well 

distributed non-dominating solution. The crowding distance technique possesses the capability to 

converge towards the pareto front. In order to find at what extent the non-dominated solutions 

are crowded, the crowding distance factor is used. It actually provides a good estimate of density 

of solutions that surround a particular solution (Deb et al., 2002). The calculation of crowding 

distance is shown in the figure 1. The dots in the figure show the pareto optimal solutions of 

MOO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Figure 1 Crowding distance 

 
 

Crowding distance is the average distance, measured along each objective in a MOO, of two 

solutions that are on either side of a particular solution (point p). It is the largest cuboid that 

encloses a particular solution as shown in figure 1. The solutions with highest (fmax) and lowest 

(fmin) objective functional values are called boundary solutions. The CD values for the boundary 

solutions are taken as infinity. For the remaining non-dominated solutions, the CD values are 

calculated using the equation 6 as follows:                                (6) 

Finally, the summation of individual crowding distance (CD) factors measured along each of 

the objective gives the total crowding distance value for a particular solution. Using the CD 

values, non-dominated solutions are sorted in the decreasing order of CD values. Only top ten 

percent of the non-dominated solutions are used as teacher. 

The teaching learning based algorithm may exhibit a tendency to converge rapidly and get 

struck at the local optimum due to loss of diversity among the population. To alleviate such a 

drawback and maintain the diversity, mutation technique (often used in genetic algorithm) is 

incorporated to the MOTLBO algorithm. Mutation is only applied when the external archive 

‘EA’ does not show any change in the obtained non-dominated solutions for some fixed number 

of iterations. The ‘teacher’ who teaches a class of students is fixed in case of solving a single 

objective optimization problem whereas each student may have more than one ‘teacher’ in case 

of multi-objective optimization problem. Out of which one teacher is chosen to teach the student. 
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Therefore, in MOTLBO algorithm, the ‘teacher’ is to be redefined to get the set of pareto optimal 

solutions. All the solutions present near the pareto front has equal chance to be a ‘teacher’. As 

the iterations proceed, every student of the class will be at his best knowledge level. The 

knowledge of the students is updated using the equations 9, 10 and 11.  

5.1 Multi-objective optimization (MOO) 

In a multi-objective optimization problem, the solution is a vector of decision variables that 

simultaneously satisfy all the constraints of the given problem and optimizes the function vector 

with each element as each objective of the given multi-objective optimization problem. 

Generally, a MOO is formulized as 

Minimize (or Maximize) F(X) = [f1(x), f2(x), ……..., fz(x)] 

Subject to h(x) ≤ 0 and g(x)=0 

In a MOO, solutions optimize (minimize or maximize) the elements of the function vector 

F(X) where X is n dimensional decision variable vector X= (x1, x2, x3, …..., xn). Constraints h(x) 

≤ 0 and g(x) = 0 decide the feasible solutions in optimizing the function vector F(X) with ‘z’ 

number of objective functions. In the present work, contradictory objectives makespan and mean 

flowtime of FFSP are minimized. They are explained as follows: 

Makespan (F1): The first objective is makespan (Cmax) minimization. Makespan is defined 

(Pinedo 2018) as the completion time of last lob that leaves a manufacturing system. 

Minimization of makespan is nothing but increasing the throughput of a shop floor. This ensures 

maximum utilization of the machines in a shop floor. 

Mean flowtime (F2): The second objective is mean flowtime (MF) minimization. Flowtime (fj) 

of a job j is defined as the amount of time a job j spends in the manufacturing system.                      (7) 

Mean flowtime (MF) is defined as the average flowtime of a job in the manufacturing system.       ∑                 (8) 

where Cj is the completion time of a job j and rj is the release date of job j into the shop floor.  

A brief explanation of the proposed MOTLBO algorithm is provided in the following sections 

5.2 and 5.3. 

5.2 MOTLBO algorithm (pseudo code) 

1. For i=1 to TS (TS means total students in the class) 

a. Initialize the knowledge of all students of the class randomly. 
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b. Evaluate the knowledge of each student. 

c. Compare the new knowledge of the student with its previous knowledge. If the new 

knowledge is better than the old knowledge, update the old knowledge with the new 

knowledge. 

d. Find out the best student (‘teacher’) of the class. 

2. End For 

3. Initialize iteration counter ic=0 

4. Obtain the non-dominated solutions and store them in the external archive ‘EA’. 

5. Repeat 

a) Evaluate the CD values to each of the non-dominated solutions in ‘EA’. 

b) Non-dominated solutions are sorted in decreasing order using the crowding distance 

values. 

c) For i=1 to TS 

i. Teacher is selected randomly from the top ten percent solutions from the ‘EA’. 

ii. Evaluate the new knowledge of the students from teacher phase. 

iii.                   –                (9) 

iv. Evaluate the new knowledge of the students from student phase. 

v.                                              (10)                                 (11) 

vi. Perform mutation if there is no change in ‘EA’. 

d) End For 

e) Insert the new non-dominated solutions into the external archive ‘EA’. Now compare 

each solution with the other solutions and eliminate the dominated solutions if found 

any. If ‘EA’ reaches its maximum limit, new non-dominated solutions are inserted 

based on the following criteria: 

i. Find CD values to each of the solution present in ‘EA’. 

ii. Sort the solutions in the decreasing order of CD values. 

iii. Replace the new solution with the bottom 10 percent solutions. 

End For 

f) Update the new knowledge of each student. 

6. Until the termination criteria is met. 
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5.3 Solution ranking using maximum deviation theory (MDT) 

As the MOTLBO generates many non-dominated solutions, selecting one best solution 

among them merely depends on the decision maker’s choice. To take a decision, generally multi-

attribute decision making (MADM) techniques are applied. Scores are obtained for each solution 

and the solution with the maximum score is chosen as the best solution. However, in MADM, 

the scores are obtained using weighted sum method to convert the multi-objective problem into 

an equivalent single objective problem. The experts in the field suggest the weight vales. The 

pre-assigned weights affect the scores which in turn influence the rank of non-dominated 

solutions. In order to alleviate the drawback of pre-assigned weights, Yingming (1997) has 

proposed maximum deviation theory (MDT) to extract right information from the available data. 

The idea of MDT is simple. Attributes with similar values should be assigned smaller weights 

when compared to attributes with larger deviations.  

In order to compare two or more different attributes (objectives) of different scales and units, 

normalization is to be carried out to bring all the attributes to a common scale of measurement. 

Here, the makespan and mean flowtime belong to different scales. They should be normalized 

and brought to a common scale. Normalization depends on ‘lower the better’ or ‘higher the 

better’ type. Equations 12 and 13 are used to evaluate the normalized values of the attributes. 

The decision matrix consists of attribute values (objective functional vales) of ‘n’ number of 

non-dominated solutions obtained for the ‘m’ number of attributes (objectives) using MOTLBO. 

Each element of the decision matrix indicates the z
th

 attribute value (z=1, 2, …..., m) of y
th

 

alternative (non-dominated solution) (y=1, 2, …..., n).         (   )       (   )    (   ) for lower the better type.      (12) 

            (   )   (   )    (   ) for higher the better type.      (13) 

The performance value difference for each non-dominated solution (alternative) is computed. 

The following equation gives the deviation value of the non-dominated solution (alternative) (Ay 

| y=1, 2, …..., n) from all other non-dominated solutions (alternatives) for the objective 

(attribute) (Az| z=1, 2, …..., m).         ∑                         (14) 

where wz is the attribute weight to be calculated and Dyz(wz) is the deviation of the non-

dominated solutions (alternatives). 
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For the objective (attribute) (Az | z=1, 2, …..., m), the total deviation value of all alternatives 

with respect to other alternatives can be calculated using the equation 15 as follows:        ∑             ∑ ∑                          (15) 

where Dzwz is the total deviation of all the non-dominated solutions (alternatives) for a single 

objective (attribute). 

Now the total deviation value ‘D(wz)’ of all objectives (attributes) for all alternatives with 

respect to other alternatives can be calculated using the equation 16 as follows:       ∑            ∑ ∑ ∑                              (16) 

In case of MADM problems where the weights of the attributes are completely unknown, 

Yingming (1997) has proposed a linear programming model to find the weight vector where the 

deviation values for all the attributes are maximized.          ∑ ∑ ∑  (       )                    ∑                  (17) 

To solve the above model a Lagrange function is constructed as follows:         ∑ ∑ ∑                             ∑               (18) 

where 𝛄 is the Lagrange multiplier. The partial derivative of equation 18 with respect to 𝛄 and wz 

and equating them to zero, we get following equations 19 and 20       ∑ ∑  (       )                      (19)      ∑                     (20) 

Solving the equations 18, 19 and 20 we get expression for normalized attribute weights (wz) as 

follows    ∑ ∑                   ∑ ∑ ∑                                (21) 

By the summation of weighted performance of all objectives (attributes), the composite score 

of each non-dominated solution (alternative) is estimated and thus the non-dominated solutions 

(alternatives) obtained through MOTLBO are ranked. 

6. Results and discussion 

Multi-objective teaching-learning-based optimization (MOTLBO) has been developed in the 

present work to solve flexible flow-shop scheduling problem (FFSP) with an aim to minimize 

two contradictory objectives called makespan and mean flowtime. As the objectives are 

contradictory in nature, it is difficult to find the existence of only one optimized solution. Due to 



15 

 

such a reason, a set of non-dominated pareto optimal solutions are to be found using the pareto 

based method. By using the problem representation given in the section 3, the proposed 

MOTLBO is applied to solve the multi-objective FFSP problem. The problem is solved using 

MATLAB software on Windows 7 platform. The specifications of the desktop computer are 

4GB RAM, 500 GB ROM, intlel i7processor running at 3.40 GHz.  

Experiments have been conducted  on 77 standard benchmark problems to demonstrate the 

efficiency of proposed MOTLBO (Carlier and Neron, 2000). The obtained results of MOTLBO 

are compared with the results of MOPSO and NSGA-II taken from Singh et al. (2014). In table 

2, for example, the notation of the instance j10c5b3 means that the problem contains 10 jobs and 

5 stages. The letter j indicates jobs, c indicates stages, b indicates machine distribution structure 

and 3 indicates the index of the problem. Problem sizes in the present work vary from 10 jobs× 5 

stages to 15 jobs× 10 stages.  

On the basis of pareto dominance relation, the comparison of non-dominated solutions 

obtained using the pareto approach is made. If a solution P is better than a solution Q in all the 

objectives or solution P is not worse than solution Q for all the objectives, then it means that 

solution P dominates solution Q. If solution P is not dominated by any other solution then the 

solution P is said to be a pareto optimal solution. Through the distribution of obtained solutions, 

pareto optimal solutions produced by the pareto approach represent the trade-off between the 

objectives. Out of the several non-dominated solutions generated by the pareto optimal approach, 

a user can select any one of the solution of their choice.  

6.1 Performance measures 

In case of single objective optimization problems like makespan or mean flowtime or 

tardiness etc., results obtained by different meta-heuristics for any of these single objectives can 

be directly compared with each other to test the performance of algorithms. In case of multi-

objective optimization problems using the pareto based approach, set of non-dominated solutions 

is produced. In order to compare the efficiency of the set of non-dominated solutions obtained by 

different algorithms, the following performance measures are used ( Ahmadi et al.,2016). (i) 

Mean ideal distance (MID), (ii) Rate of achievement of multi-objectives simultaneously (RAS), 

(iii) Spread of non-dominant solutions (SNS) and (iv) Diversity (D). 
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(i) Mean ideal distance (MID) 

Mean ideal distance (MID) is used to find out the convergence power and efficiency of an 

algorithm (Karimi et al.,2010). The measurement of MID gives the proximity between pareto 

optimal solutions and the ideal point. In case of bi-objective optimization problems, (0,0) is 

generally taken as the ideal point. In the present work, as the goal is to minimize the objectives, 

lower values of MID indicate the better performance of the algorithm. The formula to find MID 

is given in the equation 22 as follows: 

    ∑ √                        (22) 

where f1i and f2i are the functional values of the objectives for a pareto optimal solution I, n is the 

number of non-dominated solutions 

(ii) Rate of achievement of multi-objectives simultaneously (RAS) 

It is the rate at which all the objectives in a multi-objective optimization problem are 

approaching towards the best possible solution. Lower the values of RAS imply better the quality 

of solutions obtained. Thus, it implies the better performance of an algorithm. The formula to 

find RAS is given in the equation 23 as follows:     ∑ |          |                          (23) 

where f1
best

 and f2
best

 are the best functional values of the objectives makespan and mean 

flowtime. 

(iii)Spread of non-dominant solutions (SNS) 

Spread of non-dominant solutions is another criterion to evaluate the quality of obtained non-

dominated solutions. This performance measure indicates the spacing or consistency of distance 

between the obtained non-dominated solutions. Smaller value of SNS indicates a good 

consistency of spread between the solutions. In other words, good quality solutions are obtained 

(Ahmadi et al., 2016). The formula to find SNS is given in the equation 24 as follows: 

    √∑ (    √         )                 (24) 
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(iv) Diversity (D) 

This performance measure provides the measure of diversity in obtained non-dominated 

solutions. Greater the diversity, better the quality of solutions obtained (Zitzler,1999). The 

formula to find diversity (D) is given in the equation 25 as follows:   √                                   (25) 

where maxf1 and minf1 are the maximum and minimum functional values of the first objective 

function (makespan) and maxf2 and minf2 are the maximum and minimum functional values of 

the second objective function (mean flowtime).  

To determine the effectiveness of proposed MOTLBO, experiments have been conducted on 

77 benchmark problems taken from Carlier and Neron (2000) and the results are compared with 

MOPSO and NSGA-II taken from Singh et al. (2014). The results are shown in table 2. In table 

2, first column shows the name of the problem. Next there are four major columns - one for each 

performance measure (MID, RAS, SNS and D). Each performance measure has again three sub 

columns corresponding to the results of each algorithm (MOTLBO, NSGA-II and MOPSO). 

Numbers in bold letters in table 2 indicate the best values for each instance corresponding to 

each performance measure. For performance measure like mean ideal distance (MID), MOTLBO 

produces superior solutions in case of 62 problems. For the performance measure like rate of 

achievement of multi-objectives simultaneously (RAS), MOTLBO results in superior solution 

for 55 problems. For the performance measure like spread of non-dominant solutions (SNS), 

MOTLBO generates superior solution for 58 problems. For the performance measure like 

diversity (D), MOTLBO gives superior solutions for 16 problems. From the above results, it is 

indicated that MOTLBO possess the capability to outperform MOPSO and NSGA-II in first 

three performance measures (MID, RAS, SNS). In the fourth performance like measure diversity 

(D), MOPSO (gives best results to 46 problems) has outperformed MOTLBO and NSGA-II. 

From the observation of overall performance analysis, it can be concluded that MOTLBO is the 

one of the competing algorithms that can be applied to solve multi-objective optimization of 

FFSP. 

In order to select the one best solution out of the many non-dominated solutions generated 

using the MOTLBO, MDT technique has been applied. In this method composite score for each 

non-dominated solution is evaluated and the solution with maximum composite score is selected 

as the best solution. For better understanding, how a solution ranking is generated using MDT, 
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solution ranking is provided for an instance j10c10c3 in table 3 and figure 2 is provided to 

describe the nature of pareto front obtained for the conflicting natured objectives of makespan 

and mean flowtime. From figure 2, it is obvious that an increase in one objective results in the 

decrement of other objective. From this result, it can be inferred that (i) Focus on single objective 

optimization may lead to inferior performance in other objectives and (ii) It is not always easy to 

find the trade-off relationship between the conflicting natured objectives.  

To further demonstrate the effectiveness of proposed MOTLBO over the MOPSO and NSGA 

II, pareto front obtained by each of these algorithms are compared for four random benchmark 

problems (j10c5a2, j10c10a2, j15c5a1 and j15c10a1) in figure 3, figure 4, figure 5 and figure 6 

respectively. From these figures, it is indicated that pareto front obtained by MOTLBO is 

superior than that obtained with MOPSO and NSGA II. Therefore, it is believed that the 

proposed MOTLBO performs better than the other algorithms considered in this work. 

 

 



19 

 

Table 2 Performance results of pareto front obtained by makespan and mean flowtime objectives 

 
MID RAS SNS D 

Problem MOTLBO NSGA-II MOPSO MOTLBO NSGA-II MOPSO MOTLBO NSGA-II MOPSO MOTLBO NSGA-II MOPSO 

j10c5a2 104.3198 116.272 114.647 5.506 5.866 8.157 1.796 1.493 2.908 7.95 9.941 15.453 

j10c5a3 135.8 141.165 140.991 4.725 3.828 3.6 1.2784 1.396 1.508 6.965 6.462 6.356 

j10c5a4 140.397 153.429 152.812 5.12 9.6 8.691 1.376 4.584 3.798 8.342 18.821 17.664 

j10c5a5 140.934 153.26 153.59 4.549 3.48 4.91 1.376 0.99 0.832 7.085 5.936 8.345 

j10c5a6 127.863 142.015 140.019 4.043 5.443 6.273 1.537 0.808 1.899 6.428 8.345 10.825 

j10c5b1 151.706 153.29 154.428 5.912 2.833 5.25 1.83 1.108 0.511 7.775 4.472 5.656 

j10c5b2 125.4822 123.346 122.853 5.186 4.925 3.075 1.193 0.452 0.703 7.616 5.08 7.295 

j10c5b3 128.061 131.888 131.302 5.263 3.699 3.365 1.044 0.872 0.34 9.161 7.584 7.192 

j10c5b4 144.931 137.831 137.453 4.252 5.614 5.825 1.42 1.879 2.159 6.514 5.656 7.746 

j10c5b5 176.32 113.214 115.875 6.051 7.67 6.791 1.952 3.74 4.33 9.049 7.277 8.109 

j10c5b6 135.85 148.912 146.24 6.615 16.923 16.602 3.326 8.459 7.537 10.625 10.206 11.37 

j10c5c1 84.25 141.039 139.922 6.957 4.88 2.944 2.602 1.079 0.872 10.93 4.77 7.56 

j10c5c2 89.4 152.719 151.899 4.255 5.966 6.05 1.51 3.32 3.409 6.5 12.182 13.201 

j10c5c3 85.891 134.272 135.733 4.704 6.069 7.585 1.473 1.609 2.058 6.982 11.095 10.284 

j10c5c4 81.598 112.185 110.519 3.538 7.677 7.477 1.64 2.823 1.901 6.118 14.038 12.389 

j10c5c5 95.76 113.18 110.641 5.012 9.687 5.623 1.378 2.672 1.735 6.773 14.045 5.063 

j10c5c6 82.795 110.302 111.747 3.848 4.92 2.4 1.539 0.428 0.52 6.302 6.253 3.551 

j10c5d1 79.955 108.134 107.962 5.676 10.471 5.04 1.247 2.811 3.657 7.401 11.403 18.236 

j10c5d2 88.09 127.49 125.16 3.514 5.21 4.775 1.723 0.274 0.381 6.072 7.172 7.632 

j10c5d3 78.039 99.637 97.951 3.79 7.05 5.801 1.514 2.532 3.27 6.264 10.25 11.162 

j10c5d4 83.63 113.808 109.844 3.923 6.12 6.375 1.578 3.773 3.913 6.245 10.084 13.388 

j10c5d5 78.971 115.26 114.932 3.59 10.133 9.075 1.687 3.996 4.737 6.146 18.629 17.535 

j10c5d6 75.055 100.285 98.803 338 3.475 4.98 1.764 1.311 1.797 6.053 5.546 7.102 

j10c10a1 148 196.419 194.815 3.982 10.67 9.93 1.863 2.012 2.747 6.395 13.313 17.915 

j10c10a2 167.624 225.517 222.837 4.208 15.483 16.1 1.828 2.498 4.25 6.527 24.022 28.801 

j10c10a3 159.221 204.318 204.042 7.407 13.77 14.418 3.045 1.165 3.058 11.925 22.177 27.62 

j10c10a4 158.29 205.065 204.076 3.714 5.16 3.25 1.88 1.027 1.063 6.371 5.635 6.348 

j10c10a5 157.45 203.83 204.64 3.954 4.641 4.903 1.805 1.382 1.169 6.708 6.356 6.025 
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j10c10a6 154.128 198.768 197.18 3.596 9.071 8.556 1.98 4.359 6.186 6.159 19.201 18.56 

j10c10b1 172.452 191.78 189.903 4.135 7.025 5.849 1.786 0.876 1.837 6.789 6.832 8.534 

j10c10b2 166.74 234.201 232.462 5.104 6.281 5.29 1.665 6.277 3.414 7.113 6.862 6.043 

j10c10b3 179.003 200.572 196.029 5.015 7.514 6.328 1.712 1.843 2.898 7.332 12.762 13.277 

j10c10b4 168.945 230.546 227.104 3.846 10.27 11.114 1.848 2.119 3.712 6.324 15.367 18.2 

j10c10b5 175.124 221.463 223.239 4.065 2.982 5.74 1.801 0.761 1.054 6.645 2.492 5.281 

j10c10b6 174.798 211.607 209.365 4.146 5.84 4.21 1.821 6.462 8.137 6.472 14.852 17.198 

j10c10c1 124.758 220.81 218.419 3.753 6.294 5.166 1.821 4.752 6.096 6.429 2.641 3.201 

j10c10c2 126.0779 207.456 206.117 5.102 9.237 8.667 1.659 4.958 5.507 7.22 3.483 4.279 

j10c10c3 125.364 216.192 214.976 3.588 5.25 4.416 2.108 0.281 0.497 7.175 7.971 7.211 

j10c10c4 123.781 226.74 227.167 3.31 10.229 10.827 1.977 6.662 7.463 6.039 10.346 11.379 

j10c10c5 134.326 216.96 214.21 3.586 8.823 8.075 1.903 10.81 12.37 6.141 18.559 17.236 

j10c10c6 114.183 209.127 210.571 3.492 7.156 6.441 1.901 9.722 10.568 6.113 13.046 14.279 

j15c5a1 223.151 210.434 210.196 6.483 7.055 7.324 0.279 1.509 1.853 9.278 11.734 12.132 

j15c5a2 202.79 175.532 174.618 4.326 10.232 9.645 1.066 1.375 1.427 6.926 13.213 15.652 

j15c5a3 160.49 161.157 160.604 3.661 5.991 5.566 0.59 2.976 2.323 5.289 10.499 10.44 

j15c5a4 191.576 153.233 154.639 4.705 5.107 4.911 0.83 3.719 2.895 6.451 12.751 13.892 

j15c5a5 201.635 198.156 196.087 4.892 6.854 8.506 0.451 3.194 4.979 6.584 13.238 14.391 

j15c5a6 222.45 176.028 174.378 5.604 7.198 6.327 0.902 4.675 3.492 7.341 15.187 15.494 

j15c5b1 212.83 153.727 152.846 6.912 6.183 5.412 0.867 4.591 4.821 12.26 8.734 10.471 

j15c5b2 191.968 149.773 148.245 5.23 5.014 4.819 0.843 6.247 7.419 7.341 13.619 12.408 

j15c5b3 198.585 166.406 167.924 3.769 8.173 8.56 1.383 9.281 10.371 6.3 13.443 14.209 

j15c5b4 186.96 174.765 173.707 4.813 3.412 2.5 0.951 1.972 1.146 6.965 12.272 13.905 

j15c5b5 212.249 181.075 180.204 4.08 7.863 6.173 1.204 5.019 6.702 6.514 10.713 11.492 

j15c5b6 222.261 155.686 152.704 4.549 5.7865 4.346 1.104 2.988 3.379 6.708 7.78 8.483 

j15c5c1 115.249 180.626 179.215 3.561 3.2951 2.625 1.391 3.397 2.519 6.107 5.637 4.242 

j15c5c2 122.211 199.406 197.906 3.867 6.279 5.811 1.317 1.745 2.494 6.167 9.287 10.394 

j15c5c3 118.058 171.763 169.941 3.765 2.881 2.763 1.332 5.523 6.942 6.184 12.492 14.225 

j15c5c4 118.752 203.59 202.873 3.918 9.831 10.317 1.106 1.186 1.701 6.676 14.372 16.505 

j15c5c5 103.679 134.456 134.127 3.5 5.25 4.066 1.401 1.822 1.661 6.107 9.738 8.814 

j15c5c6 123.064 155.178 157.763 3.979 1.6512 1.916 1.193 6.746 7.932 6.347 12.398 11.165 
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j15c5d1 207.099 158.803 157.102 4.261 9.318 8.229 1.094 2.97 3.025 6.863 13.753 14.402 

j15c5d2 114.08 169.323 167.545 3.571 4.421 3.485 1.269 1.109 2.439 6.324 7.529 8.464 

j15c5d3 112.032 166.41 166.342 3.58 11.071 10.354 1.306 5.776 6.682 6.146 16.687 17.125 

j15c5d4 111.22 167.046 165.223 4.8 4.561 3.412 0.879 1.187 1.476 7.0666 5.98 6.198 

j15c5d5 106.265 168.252 167.156 4.266 10.752 11.053 1.23 3.169 3.924 6.462 14.289 17.684 

j15c5d6 108.916 164.273 163.56 3.552 6.52 8.452 1.517 3.431 2.667 6.062 11.712 13.513 

j15c10a1 256.154 307.508 307.126 3.831 8.141 8.782 1.778 3.001 3.363 6.291 12.887 14.866 

j15c10a2 220.023 285.981 285.453 3.673 6.46 5.683 1.8 1.698 1.337 6.1288 11.1606 9.881 

j15c10a3 217.99 295.652 294.108 3.801 8.315 7.4794 1.814 2.521 3.298 6.151 12.968 13.014 

j15c10a4 244.8 298.763 300.731 5 6.934 6.456 1.607 3.874 4.074 6.964 13.275 15.403 

j15c10a5 201.11 275.043 273.554 3.688 3.864 4.591 1.778 6.402 7.528 6.151 12.151 13.85 

j15c10a6 218.852 309.584 308.875 4.688 4.578 3.941 1.623 9.052 8.154 6.91 13.67 14.788 

j15c10b1 238.525 328.57 327.432 4.178 7.801 6.773 1.735 2.991 3.436 6.446 10.083 11.609 

j15c10b2 203.189 320.931 321.608 3.647 11.728 10.195 1.826 6.991 7.46 6.202 17.321 16.585 

j15c10b3 239.196 350.458 348.036 4.239 4.367 3.034 2.778 5.075 6.297 6.486 10.211 12.51 

j15c10b4 237.624 334.895 334.412 3.617 6.289 7.545 1.848 4.528 5.478 6.211 9.148 10.188 

j15c10b5 215.537 353.425 354.318 4.494 6.904 6.267 2.719 10.032 9.258 6.527 17.574 16.123 

j15c10b6 235.379 320.679 318.618 4.632 2.982 2.123 1.601 7.626 6.477 6.789 9.678 10.083 

 

Numbers in bold indicate the best values. 
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Table 3  Solution ranking for the problem j10c10c3 obtained through MDT  

Run 
Makespan 

(Cmax) 

Mean 
Flowtime 

(MF) 
Normalized 

Cmax 
Normalized 

MF 
Weighted 

Cmax 
Weighted 

MF 
Composite 

Score Rank 

1 116 40.4069 1 0 0.503832 0 0.503832 5 

2 117 39.75862 0.857143 0.41048 0.431856 0.203667 0.635523 3 

3 118 39.38621 0.714286 0.646288 0.35988 0.320668 0.680548 1 

4 119 39.1869 0.571429 0.772489 0.287904 0.383284 0.671188 2 

5 121 38.93103 0.285714 0.934498 0.143952 0.463668 0.60762 4 

6 123 38.82759 0 1 0 0.496168 0.496168 6 

 

Numbers in bold indicate the best result obtained through MDT. 

 

Figure 2 Pareto front obtained for the problem j10c10a3 using MOTLBO 
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Figure 3 Pareto front obtained for the problem j10c5a2 

 

Figure 4 Pareto front obtained for the- problem j10c10a2 
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Figure 5  Pareto front obtained for the problem j15c5a1 

 

Figure 6  Pareto front obtained for the problem j15c10a1 
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7. Conclusions 

The present work provides an efficient methodology for finding effective solution for multi-

objective optimization commonly encountered in scheduling in a flexible flow-shop 

manufacturing setup. It is demonstrated that MOTLBO can produce near optimal schedule to 

FFSP by simultaneous consideration of contradistinctive and conflicting natured objectives such 

as makespan and mean flowtime. A pareto based method is adopted to find a set of non-

dominated solutions. In order to generate diversified solutions, crowding distance approach in 

embedded in the proposed methodology. Mutation strategy, commonly used in genetic 

algorithm, is adopted in the proposed methodology in order to prevent the premature 

convergence of MOTLBO. The best solution among the non-dominated set of solutions is chosen 

using maximum deviation theory (MDT). In a multi-objective optimization problem, maximum 

deviation theory determines the unknown weight values of the objectives (attributes). Using 

these attribute weights, a composite score (which is the sum of attribute weights) is calculated for 

each non-dominated solution (alternative). Ranking of solutions is made in descending order of 

composite score so that the best unique solution can be selected. MDT helps the decision makers 

not to rely on imprecise and subjective decision making for selection of the best solution. 

However, it is observed that MOTLBO generates less diversified solutions as compared to 

MOPSO. It can be concluded that the proposed MOTLBO is one of the competing algorithm in 

solving the multi-objective FFSP because it outperforms MOPSO and NSGA-II in majority of 

instances evaluated under various performance measures. 

Flexible flow shop scheduling finds widespread applications in industries particularly 

confectionery, printing, sugar industries etc. in which multiple processors are available at each 

stage. Further, effective solution addressing multiple conflicting objectives encountered in the 

field is of great interest. Therefore, managers look for simple but robust solution of practical 

problems with less computational efforts. Extensive computational experience on the proposed 

algorithm suggests that the algorithm can provide reasonably good solution with less 

computational effort while solving multi-objective FFSP.  

In future, the work can be extended to study the performance of other meta-heuristic 

techniques to solve multi-objective FFSP. The study can be also extended for the multi-objective 

optimization of FFSP considering other objectives like tardiness, robustness and stability used in 

the context of scheduling.  
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