Header menu link for other important links
X
Spatial and semantic convolutional features for robust visual object tracking
Zhang J, Jin X, Sun J, Wang J,
Published in Springer Science and Business Media LLC
2020
Volume: 79
   
Issue: 21-22
Pages: 15095 - 15115
Abstract
Robust and accurate visual tracking is a challenging problem in computer vision. In this paper, we exploit spatial and semantic convolutional features extracted from convolutional neural networks in continuous object tracking. The spatial features retain higher resolution for precise localization and semantic features capture more semantic information and less fine-grained spatial details. Therefore, we localize the target by fusing these different features, which improves the tracking accuracy. Besides, we construct the multi-scale pyramid correlation filter of the target and extract its spatial features. This filter determines the scale level effectively and tackles target scale estimation. Finally, we further present a novel model updating strategy, and exploit peak sidelobe ratio (PSR) and skewness to measure the comprehensive fluctuation of response map for efficient tracking performance. Each contribution above is validated on 50 image sequences of tracking benchmark OTB-2013. The experimental comparison shows that our algorithm performs favorably against 12 state-of-the-art trackers. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
About the journal
JournalData powered by TypesetMultimedia Tools and Applications
PublisherData powered by TypesetSpringer Science and Business Media LLC
ISSN1380-7501
Open Access0