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1.  Introduction

Given an identity and a speaker model, the goal of SID is 
to determine whether the claim is true or false. Significant 
research has been carried out in improving the robustness 
of text independent automatic SID’s performance in noisy 
and reverberant conditions over past few decades.

The underlying factor for SID task is to extract the 
right feature which captures the complete phonetically 
important characteristics of the speech utterance to the 
fullest. MFCCs1 and Perceptual Linear Predictive (PLP) 
coefficients are the extensively adopted features for SID 
applications, since spectral features are more precise 
than temporal features. However, the MFCC based SID 

systems are prone to recognition mismatch in noisy and 
reverberant conditions. Recently, GFCC2 and MHEC3 
features have shown that the spectrum estimation carried 
out in these features are robust to background noise or 
reverberation.

Typically the speaker verification task is done based 
on Gaussian Mixture Model4 (GMM). This approach of 
speaker recognition is carried out by training the GMM 
and creating a Universal Background Model (UBM) from 
the training speech signals via Expectation Maximization 
(EM) algorithm. The hypothesized speaker-specific model 
is then framed by updating the well-trained parameters in 
the UBM via Bayesian learning or Maximum A Posteriori 
(MAP) adaptation5. The verification is done based on log-
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likelihood ratios of observed features of given speaker 
model. This method of verification has proven extremely 
successful in SID systems in clean conditions. However, 
if noise is taken into considerations, they yield poor 
identification performance.

Considering the daily acoustic environments, room 
reverberation, additive noise and channel or handset 
variations that combine to pose considerable challenges 
to SID systems, several methods like cepstral mean 
normalization6, RASTA filtering7, speech segregation 
and speech enhancement method such as spectral 
subtraction have been examined, motivated by auditory 
masking phenomena8 the concept of ideal binary mask 
IBM is introduced. IBM typically isolates speech from 
background noise by producing a binary Time-Frequency 
(T-F) mask that determines whether a specific T-F unit is 
speech dominant or noise dominant. We employed this 
mask in our work to segregate speech signal from noise 
signal which are mixed artificially.

Recently Support Vector Machines (SVM) has 
proven to be an effective and novel method for speaker 
recognition9. SVM perform a non-linear mapping from 
an input space to a support vector feature space then linear 
classification techniques are applied in potentially high-
dimensional space. The basic working of this method 
is by using latent factors, the MAP adapted means of a 
GMM are modeled to describe variation. A key feature of 
this approach is to use the GMM super vector consisting 
of the stacked means of the mixture components. Super 
vectors can be used to characterize the speaker and 
channel using Eigen voices and Eigen channels methods 
respectively. This representation of a speech utterance 
using a single vector effectively replaces the conventional 
computationally demanding data to model type of 

identification with the training speaker model.
The rest of the paper is organized as follows. The 

components of the GMM-SVM based SID system is 
described in Section 2. Section 3 describes the auditory 
feature extraction methods and mask estimation. Section 
4 discusses the GMM super vectors. SID experiments and 
evaluations are presented in Section 5.

2.  System Overview

The block diagram of the GMM-SVM based speaker 
recognition is shown in Figure 1. Feature space of 
speech utterances are trained using GMM and UBM is 
constructed for all speakers in the training data. SVM 
model is constructed for the super vectors obtained from 
adapting the features of the enrollment data with the 
UBM. The super vectors of the test utterances are then 
classified using the SVM model created earlier.

3. Feature Extraction Methods

3.1 GFCC Feature Extraction
The Gammatone Frequency Cepstral Coefficients9,10 are 
extracted by using a 64 channel Gammatone filter bank 
with central frequencies ranging from 50 Hz to 8000 Hz 
equally spaced on Equivalent Rectangular Bandwidth 
(ERB) scale, the Gammatone filter bank basically is 
a series of band pass filters described by an impulse 
response. The rectified outputs are decimated into time 
frames of 10 ms (100 Hz along the time dimensions). The 
loudness of the decimated outputs is then compressed by 
a cubic root operation. The resultant matrix represents 
T-F decomposition of the input and referred as GF feature 

Figure 1.    GMM-SVM based speaker Identification system.
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components which are correlated with each other. In 
order to de-correlate and reduce the dimensionality, we 
apply Discrete Cosine Transform (DCT) to get GFCC.

3.2 MHEC Feature Extraction
Mean Hilbert Envelope Coefficients extraction3 is done by 
pre-emphasizing the speech of sample frequency Fs(8000 
Hz) signal with a high-pass filter and passed through a 24 
channel Gammatone filter banks with central frequencies 
ranging from 300 Hz to 3400 Hz are equally spaced in 
ERB scale. Next, to find the temporal envelope, we apply 
Hilbert transform to each channel of the filter responses. 
Consider S(t, i) being the response from the filter bank 
and the analytical signal formed Sa(t, i) from transform is:

( ), ( , ) '( , )aS t i S t i i S t i= + * 			  	 (1)

Where S'(t, i) the Hilbert is transform of S(t, i) and î is 
the imaginary unit. Now the envelope can be obtained as:

E(t, i) = (S(t, i))2 +  (S'(t, i))2			   (2)

Where E(t, i) is the Hilbert Envelope of S(t, i). The 
enveloped signal is then smoothed to suppress the 
redundant high-frequency components using a low-pass 
filter with a cut-off frequency fc = 20 Hz.

Es(t, i) = (1-μ) E(t, i)) +   μ * Es(t-1, i)		  (3)

Where μ is the smoothing factor and it is related to 
cut-off frequency as:
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A Hamming Window is applied to each decomposed 
frames of smoothed Hilbert envelope having 25 ms 
duration with a skip rate of 10 ms in order to minimize 
the discontinuity around the edges.

The mean envelope amplitude for a frame p can be 
obtained from the following equation:
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Here w(t) is the Hamming window and N is the frame 
size in samples. S(p, i) represents short term spectral nature 

of the speech signal. To suppress the dynamic range of the 
spectral attributes, natural logarithm is applied and DCT 
is then applied to convert spectral parameters to cepstral 
feature and the overlapping vectors are decorrelated. 
Thus formed feature is called Mean Hilbert Envelope 
Coefficients. To capture the dynamic pattern of the 
speech we append the first and second temporal cepstral 
derivatives of the first 12 coefficients of the static feature 
resulting in 36-dimensional feature.

3.3 Mask Estimation
The important goal of Computational Auditory Scene 
Analysis (CASA) is Ideal Binary Mask11 (IBM), where each 
element corresponds to a T-F unit in the Cochleagram12, a 
cochleagram is a T-F representation of a signal as show in 
Figure 2. With such a representation, a binary T-F mask 
delivers the vital information about whether a specific T-F 
unit is speech-dominant or noise. IBM defined as follows:
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IBM t f
otherwise
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IBM(t, f) is indexed by time t and frequency f.  
SNR(t, f). refers to the local SNR value of the IBM and LC  
denotes the threshold for SNR(t, f) called local criterion.

Figure 2.    T-F representation of cochleagram (top) and 
spectrogram (bottom) on a clean speech signal12.

4.  GMM Super vectors

Consider a Gaussian Mixture Model-Universal 
Background Model (GMM-UBM).
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Where N() is a Gaussian, λi, mi, Σi are the mixture 
weights, mean and covariance of the Gaussians 
respectively.

Given a sample utterance of a speaker, and GMM 
UBM4, the GMM supervector13 is generated by adapting 
the extracted acoustic feature from the input sample 
with GMM UBM model by mean using MAP adaption 
algorithm. The adapted mean vectors are stacked into one 
another to produce the super vector and it is a mapping 
between an utterance and a high and fixed dimensional 
vector.

5.  Experimental Setup

The speaker recognition experiments are conducted 
with the TIMIT phone labelled database corpus14, which 
consists of 6300 sentences, ten from each of 630 speakers 
from eight dialectical regions of the United States. Each 
speaker has 10 utterances and we chose 9 for training 
and 1 for testing. The implementation is carried out with 
Matlab R2015a.

The GFCC feature vectors are extracted for the training 
speech utterances ,we use only the first 22 GFCC vectors 
from the 64- dimensional extracted output, as these lower 
order coefficients depicts nearly all the GF components 
found before applying DCT in the extraction process. 
These coefficients are found for each of the speakers 
in the corpus for training and GMM-UBM model4is 
constructed with 32 Gaussian mixtures. We adapt the 
extracted features of each speaker with GMM-UBM by 
mean using MAP adaptation with relevance factor of 16 
and corresponding super vectors are found. Now these 
super vectors along with the labels for each speaker in the 
data set are fed into multi-class SVM to create a model. 
Lib-SVM is used for this purpose15.

The test utterances of randomly selected 10 speakers 
from the database are mixed with babble noise, street 
noise, car noise, airport noise and exhibition noise as 
interfering signals from the Noizeusdatabase16 to study 
the performance of the SID system under different types 
of noisy conditions. Individual noise is mixed with test 
utterances at various SNR levels from -10 dB to 5 dB at 5 
dB intervals and from 10 dB to 30 dB at 10 dB intervals.

Given the mixed target and interference signals, the 
IBM is constructed with LC set at 0 dB to indicate the 
source is stronger, and them asked signal extracted from 
IBM contains the properties of the near-original speech 
signal. GFCC feature is then extracted for this signal 
and adapted with the GMM UBM by mean; super vector 
for this test signal is found then classified with the SVM 
model generated earlier.

For a meaningful comparison, we extract RASTA- 
MFCCs as acoustic features from speech signals for 
recognition purpose. Unlike conventional MFCC 
extraction1,17 processes, the speech signal is first pre-
emphasized using RASTA filtering7, to suppress any 
constant or slowly varying components in the sample 
and windowed using Hamming window. Followed 
by windowing, Fast Fourier Transform (FFT) and 
logarithmic 26-channel Mel-Scale filter bank is applied 
for each windowed frame correspondingly. Finally, DCT 
is applied to the outputs and first 13-dimensional cepstral 
features excluding the 0th coefficient is extracted.

The detailed analysis of the differences between 
RASTA-MFCC, GFCC and MHEC can be seen in Table 
1. The noticeable difference is that the frequency scale 
employed in these individual features. MHECs and 
GFCCs are equally spaced on ERB scale while the RASTA-
MFCCs on a Mel-Scale. In addition, the Non-linear 
rectification methods engaged in MHECs and RASTA-
MFCCs is logarithmic operation, which transforms 
convolution between exciting source and filter as an 
additive term to the spectral domain unlike in GFCCs that 
uses Cubic root operation. Besides these other differences 
like Pre-emphasis and Number of frequency bands used 
are described in Table 1.

Table 1.    Differences between RASTA-MFCC, GFCC 
and MHEC
Category GFCC MHEC RASTA-

MFCC
Pre-emphasis No Yes Yes
No. of Frequency 
bands

64 24 26

Frequency Scale ERB ERB Mel-Scale
Non-Linear Recti-
fication

Cubic root Logarithmic Logarithmic

The same setup is carried out for 36-dimensional 
MHEC and 13-dimensional RASTA-MFCC features for 
recognition and their accuracy is compared.
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As it can be seen from Table 2 it is observed that on an 
average MHEC and GFCC feature based SID performance 
under various noisy conditions outperforms the SID 
based on MFCC feature. The performance gain over 
MFCC by GFCC is smaller as compared to performance 
gain achieved by MHECs, reflecting its robustness under 
various noisy conditions. From the Figure 3 it is evident 
that the performance of MHEC yields better performance 
results as compared to RASTA-MFCC and GFCC.

Figure 3.    SID accuracy (%) comparison for different 
features under street noise.

Table 2.    SID performance (%) based on RASTA-MFCC, GFCC and MHEC features for 
various noisy conditions
Babble Noise -10 dB -5 dB 0 dB 5 dB 10 dB 20 dB 30 dB Average
RASTA-MFCC 23.06 25.65 72.34 69.14 89.53 94.20 96.50 67.20
GFCC 23.50 28.87 70.12 73.52 92.61 98.00 98.16 69.25
MHEC 25.73 27.52 75.04 86.53 94.34 98.38 99.00 72.36

Street  Noise -10 dB -5 dB 0 dB 5 dB 10 dB 20 dB 30 dB Average
RASTA-MFCC 23.51 35.07 70.92 81.53 91.53 93.95 95.76 70.32
GFCC 26.12 32.26 64.95 73.03 90.62 95.73 96.72 68.49
MHEC 26.34 45.37 71.45 83.74 90.87 96.59 98.57 73.27

Car Noise -10 dB -5 dB 0 dB 5 dB 10 dB 20 dB 30 dB Average
RASTA-MFCC 26.86 50.05 68.07 70.45 75.62 81.52 97.13 67.10
GFCC 30.35 50.23 68.15 74.03 85.87 90.39 96.13 70.73
MHEC 35.02 56.35 70.52 79.10 88.64 91.32 94.27 73.60

Airport Noise -10 dB -5 dB 0 dB 5 dB 10 dB 20 dB 30 dB Average
RASTA-MFCC 11.15 37.52 50.42 70.75 80.06 90.13 96.94 62.42
GFCC 11.31 42.03 58.62 74.05 82.31 92.15 98.06 65.50
MHEC 27.92 45.54 70.36 80.47 84.45 95.56 97.90 71.74

Exhibition Noise -10 dB -5 dB 0 dB 5 dB 10dB 20dB 30dB Average
RASTA-MFCC 22.36 37.06 72.63 81.53 82.33 91.17 95.35 68.91
GFCC 24.32 37.12 70.16 79.14 84.12 85.41 96.83 68.16
MHEC 26.64 40.64 71.36 86.26 90.33 94.39 97.02 72.37
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6.  Conclusion

In this work, the GMM-SVM based SID performances for 
three acoustic features namely RASTA-MFCC, GFCC, and 
MHEC in different noisy conditions at various SNR levels 
are examined and compared with each other. Segregation 
of added noise from the target speech through IBM is 
investigated and from the acquired results it is apparent 
that SID performance carried out with MHECs betters the 
performance of other two competitive acoustic features.

7.  Acknowledgement

I would like to dedicate this work to my High-School 
teachers Mr. Sasanka Sekhar Dash, Mr. Gurucharan 
Singh Makhija, Mrs. Sundari. I would like to thank Mr. R. 
Venkatesan for his valuable ideas and support.

8.  References
1.	 Dave N. Feature extraction methods LPC, PLP and MFCC 

in speech recognition. International Journal for Advance 
Research in Engineering and Technology. 2013; 1(6):1-4.

2.	 Shao Y, Wang DL. Robust speaker identification using au-
ditory features and computational auditory scene analysis. 
IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP); 2008. p. 1589-92.

3.	 Sadjadi SO, Hansen JHL. Mean Hilbert Envelope Coeffi-
cients (MHEC) for robust speaker and language identifica-
tion. Speech Communication. 2015; 72:138-48.

4.	 Reynolds DA, Rose RC. Robust text-independent speak-
er identification using Gaussian mixture speaker models. 
IEEE Transactions on Speech and Audio Processing. 1995; 
3(1):72-83.

5.	 Gauvain J-L, Lee C-H. Maximum a posteriori estimation 
for multivariate Gaussian mixture observations of Markov 

chains. IEEE Transactions on Speech and Audio Process-
ing. 1994; 2(2):291-8. 

6.	 Sadaoki F. Cepstral analysis technique for automatic speak-
er verification. IEEE Transactions on Acoustics, Speech and 
Signal Processing. 1981; 29(2):254-72.

7.	 Hynek H, Morgan N. RASTA processing of speech. IEEE 
Transactions on Speech and Audio Processing. 1994; 
2(4):578-89.

8.	 Moore BCJ. An introduction to the psychology of hearing. 
Academic San Diego. 1997; 313:159-67.

9.	 Shao Y, Jin Z, Wang DL, Srinivasan S. An auditory-based 
feature for robust speech recognition. IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP); 2009. p. 4625-8.

10.	 Zhao X, Wang Y, Wang DL. Robust speaker identification 
in noisy and reverberant conditions. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing. 2014; 
22(4):836-45.

11.	 Wang, DL. On ideal binary mask as the computational goal 
of auditory scene analysis. Speech Separation by Humans 
and Machines. US: Springer; 2005. p. 181-97. 

12.	 Zhao X, Shao Y, Wang DL. CASA-based robust speaker 
identification. IEEE Transactions on Audio, Speech and 
Language Processing. 2012; 20(5):1608-16.

13.	 Campbell WM, Sturim DE, Reynolds DA, Solomonoff A. 
SVM based speaker verification using a GMM super vector 
kernel and NAP variability compensation. IEEE Proceed-
ings of International Conference on Acoustics, Speech and 
Signal Processing (ICASSP); 2006. p. I-I. 

14.	 Garofolo J, et al. TIMIT acoustic-phonetic continuous 
speech corpus LDC93S1. Philadelphia: Linguistic Data 
Consortium; 1993.

15.	 Chang C-C, Lin C-J. LIBSVM: A library for support vector 
machines. ACM TIST. 2011; 2(3):27.

16.	 Loizou PC. Subjective evaluation and comparison of speech 
enhancement algorithms. Speech Commun. 2007; 49:588-
601.

17.	 Kari B, Muthulakshmi S. Real time implementation of 
speaker recognition system with MFCC and neural net-
works on FPGA. Indian Journal of Science and Technology. 
2015; 8(19):1.


