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a b s t r a c t

An HIV/AIDS epidemic model with treatment is investigated. The model allows for some

infected individuals to move from the symptomatic phase to the asymptomatic phase

by all sorts of treatment methods. We first establish the ODE treatment model with two

infective stages. Mathematical analyses establish that the global dynamics of the spread of

the HIV infectious disease are completely determined by the basic reproduction number

R0. If R0 ≤ 1, the disease-free equilibrium is globally stable, whereas the unique infected

equilibrium is globally asymptotically stable if R0 > 1. Then, we introduce a discrete time

delay to themodel to describe the time from the start of treatment in the symptomatic stage

until treatment effects become visible. The effect of the time delay on the stability of the

endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf

bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations

are presented to illustrate the results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

AIDS has developed into a global pandemic since the first patients were identified in 1981. It is reported that 38.6
million people currently live with HIV-1 infection, 4.1 million people have been newly infected and 2.8 million AIDS deaths
occurred in 2005 (http://www.unaids.org/epi/2005/index.asp). Viral transmission typically occurs following exposure to
cell-associated virus through: (1) contaminated blood products or syringes, (2) sexual intercourse and (3) mother to child in
utero, during birth, or through breastfeeding. An individual may advance through several infective stages before developing
full blown AIDS [1]. Virus number in the blood is a major indicator of the disease stages. Sometimes these stages are meant
to correspond to CD4+ T-cell count ranges. In a normal healthy individual’s peripheral blood, the level of CD4+ T-cells is
between 800 and 1200/mm3 and once this number reaches 200 or below in an HIV infected patient, the person is classified
as having AIDS. Without drug treatment, HIV-1 infection is nearly uniformly fatal within 5–10 years. With drug therapies,
such as HAART (highly active antiretroviral therapy), treated individuals can live longer free of HIV-related symptoms [2].
In fact, worldwide, it is estimated that between 250,000 and 350,000 deaths were averted in 2005 as a result of increased
treatment access (WHO/UNAIDS 2005).

Mathematical models have been used extensively in research into the epidemiology of HIV/AIDS to help improve our
understanding of themajor contributing factors to the pandemic. From the initialmodels ofMay andAnderson [3–5], various
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refinements have been added into modelling frameworks, and specific issues have been addressed by researchers [6–14].
In [7], S. Blower shows that incidence rates of HIVwill fall asmoreHIV-positive individuals gain access to treatment (HAART),
but the underlying assumption is that treated individuals would change their behavior and the levels of risky behavior do
not increase. In [6], M. Bachar shows that treatment without reduction of risky behavior may even increase the proportion
of infected individuals. Treatment increases the expected available time for the transmission of HIV. It has been shown
that many infected individuals – no matter whether they are treated or not – do not change their behavior despite their
knowledge of the risks. In [9,2], according to clinical symptoms or viral load and CD4 + T cell count, 2–6 stages of infection
before AIDS can be classified.

On the other hand, biological delay systems of one type or another have been considered by a number of authors, and
we refer the reader to [15,16] for a general reference. Delay can arise for various practical reasons in epidemiology. For
example, in the paper of Hethcote et al. [17], they considered model that the delay is introduced in the removed class to
account for the period of temporary immunity. Culshaw and Ruan [18] consider the time delay between infection of a CD4+
T-cell and the emission of viral particles on a cellular level to investigate the effect of the time delay on the stability of the
endemically infected equilibrium. Delay is also used to model the gestation lag, the incubation time for a infectious vector
and the time delay in loss of vaccine, etc. These delay-differential equation systems often exhibit much more complicated
dynamical behavior than those ordinary differential systems since a time delay could cause a stable equilibrium to become
unstable and cause the populations to fluctuate.

In this paper, according to clinical symptoms, we shall first establish the ODEmodelwith two infective stages before AIDS
defined in [9,2]. i.e., the asymptomatic and the symptomatic phases. By all sorts of treatmentmethods, some individualswith
the symptomatic phases can be transformed into asymptomatic individuals. By introducing discrete time delay (onset of
treatment effects) to themodel, we shall establish the delay differential equationmodel. One of our purpose is to investigate
the effect the treatment on the long term dynamics of the disease. Our results show that treatment may result in the disease
persisting or dying out, depending on parameter values. The other one is to investigate the effect of the time delay on the
stability of the endemically infected equilibrium.

The organization of this paper is as follows: In the next section, the ODE model is presented and the basic reproduction
number is obtained. In Section 3, equilibria and their stability are investigated, respectively. In Section 4, the delayed model
is presented and dynamical behaviors are investigated, respectively. The paper ends with a discussion.

2. The ODE model and the basic reproduction number

To construct themodel, we first divide the total population into a susceptible class of size S and an infectious class before
the onset of AIDS and a full-blown AIDS group of size Awhich is removed from the active population. Based on the facts that
the infectious period is very long (≥ 10 years), we further consider several stages of the infectious period. For simplicity, we
only consider two stages according to clinic stages and papers [9,2], i.e., the asymptomatic phase (I) and the symptomatic
phase ( J). Thus, we first establish the following model:

dS

dt
= µK − cβ(I + bJ)S − µS,

dI

dt
= cβ(I + bJ)S − (µ + k1)I + αJ,

dJ

dt
= k1I − (µ + k2 + α)J,

dA

dt
= k2J − (µ + d)A,

(2.1)

where, µK is the recruitment rate of the population, µ is the number of death rate constant. c is the average number of
contacts of an individual per unit of time. β and bβ are probability of disease transmission per contact by an infective in
the first stage and in the second stage, respectively. k1 and k2 are transfer rate constant from the asymptomatic phase I

to the symptomatic phase J and from the symptomatic phase to the AIDS cases, respectively. α is treatment rate from the
symptomatic phase J to the asymptomatic phase I . d is the disease-related death rate of the AIDS cases.

Since the variable A of system (2.1) does not appear in the first three equation, in the subsequent analysis, we only
consider the subsystem:

dS

dt
= µK − cβ(I + bJ)S − µS,

dI

dt
= cβ(I + bJ)S − (µ + k1)I + αJ,

dJ

dt
= k1I − (µ + k2 + α)J.

(2.2)
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It follows from system (2.2) that

(S + I + J)′ = µK − µ(S + I + J) − k2J

≤ µ[K − (S + I + J)].

Then

lim
t→∞

sup(S + I + J) ≤ K .

Thus the feasible region for system (2.2) is

Γ = {(S, I, J) : S + I + J ≤ K , S > 0, I ≥ 0, J ≥ 0}.

Let IntΓ denote the interior ofΓ . It is easy to verify that the regionΓ is a positively invariant with respect to system (2.2). In
the following, we will investigate dynamic behavior of system (2.2) on Γ . Now, we firstly investigate the basic reproduction
number of system (2.2) by the method of next generation matrix formulated in [19].

It is easy to see that system (2.2) has always a disease-free equilibrium, E0 = (K , 0, 0).
Let x = (I, J, S)T . System (2.2) can be written as

x′ = F (x) − V(x), (2.3)

where

F (x) =

(

cβS(I + bJ)
0
0

)

, V(x) =

(

(µ + k1)I − αJ
−k1I + (µ + k2 + α)J

−µK + cβS(I + bJ) + µS

)

.

The Jacobian matrices of F (x) and V(x) at the disease-free equilibrium E0 are, respectively,

DF (E0) =

(

F 0
0 0

)

, DV(E0) =

(

V 0
cβK cβbK

)

,

where,

F =

(

cβK cbβK

0 0

)

, V =

(

µ + k1 −α
−k1 µ + k2 + α

)

.

FV−1 is the next generation matrix of system (2.2). It follows that the spectral radius of matrix FV−1 is

ρ(FV−1) =
cβK(µ + k2 + α + bk1)

(µ + k1)(µ + k2) + µα
. (2.4)

According to [19, Theorem 2], the basic reproduction number of system (2.2) is

R0 =
cβK(µ + k2 + α + bk1)

(µ + k1)(µ + k2) + µα
. (2.5)

3. Equilibria and their stability

Except for a disease-free equilibrium E0 = (K , 0, 0), by straightforward computation, system (2.2) has the unique
positive equilibrium E∗(S∗, I∗, J∗) for R0 > 1, where

S∗ =
(µ + k1)(µ + k2) + αµ

cβ(µ + k2 + α + bk1)
, I∗ =

(µ + k2 + α)µK

(µ + k1)(µ + k2) + αµ

(

1 −
1

R0

)

, J∗ =
k1

µ + k2 + α
I∗.

We first investigate the local geometric properties of the equilibria of system (2.2). Linearizing system (2.2) at equilibrium
E0(K , 0, 0), we obtain the characteristic equation about E0.

(λ + µ)(λ2 + a1λ + a2) = 0, (3.1)

where

a1 = µ + k1 + µ + k2 + α − cβK ,

a2 = (µ + k1)(µ + k2) + αµ − cβK(µ + k2 + α + bk1).
(3.2)

Clearly, one root of the characteristic equation (3.1) is λ1 = −µ. The other two roots are determined by the quadratic
equation

λ2 + a1λ + a2 = 0. (3.3)
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If R0 < 1, then

(µ + k1)(µ + k2) + αµ − cβK(µ + k2 + α + bk1) > 0. (3.4)

Thus, from (3.4) we have a2 > 0. It follows from

(µ + k1)(µ + k2) + α(µ + k1) > (µ + k1)(µ + k2) + αµ > cβK(µ + k2 + α + bk1)

that (µ + k1)(µ + k2 + α) > cβK(µ + k2 + α + bk1). Therefore, we have

µ + k1 > cβK(1 + bk1/(µ + k2 + α)) > cβK .

Thus a1 > 0 and all roots of the Eq. (3.3) have negative real parts if and only if R0 < 1. So, E0 is locally asymptotically stable
for R0 < 1. If R0 = 1, one eigenvalue of (3.1) is 0 and it is simple. If R0 > 1, the characteristic equation (3.1) has positive
eigenvalue. So, E0 is thus unstable with dimW s(E0) = 2 and dimW u(E0) = 1. We first establish the following result for E0.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 of system (2.2) is locally asymptotically stable. If R0 = 1, E0 is locally

stable. If R0 > 1, E0 is a saddle point with dimW s(E0) = 2 and dimW u(E0) = 1.

Let w = µ + k1, v = µ + k2. Linearizing system (2.2) about the positive equilibrium E∗ gives the following Jacobian
matrix

∂ f

∂x
(E∗) =











−
(wv + αµ)I∗

(v + α)S∗
− µ −cβS∗ −bcβS∗

(wv + αµ)I∗

(v + α)S∗
cβS∗ − w bcβS∗ + α

0 k1 −(v + α)











, (3.5)

with cβ(I∗ + bJ∗) = (wv+αµ)I∗

(v+α)S∗ .

The second additive compound matrix ∂ f [2]/∂x(E∗) of J(E∗) is given by

∂ f [2]

∂x
(E∗) =

































−µ −
(wv + αµ)I∗

(v + α)S∗

+cβS∗ − w



 bcβS∗ + α bcβS∗

k1





−µ −
(wv + αµ)I∗

(v + α)S∗

−v − α



 −cβS∗

0
(wv + αµ)I∗

(v + α)S∗

(

cβS∗ − w
−v − α

)





























(3.6)

To demonstrate the local stability of the positive equilibrium E∗, we need the following lemma.

Lemma 3.1 ([20,21]). Let M be a 3 × 3 real matrix. If tr(M), det(M) and det(M [2]) are all negative, then all of the eigenvalues

of M have negative real part.

Theorem 3.2. The positive equilibrium E∗ of system (2.2) is locally asymptotically stable if R0 > 1.

Proof. It follows from w > cβS∗ that tr(∂ f /∂x)(E∗) = −µ − (wv+αµ)I∗

(v+α)S∗ + cβS∗ − w − v − α < 0. It follows from (3.5) that

the determinant of (∂ f /∂x)(E∗) is given by

det

(

∂ f

∂x
(E∗)

)

= −
(wv + αµ)I∗

(v + α)S∗
(v + α + k1b)cβS∗ < 0. (3.7)

Computing directly, taking the determinant of
∂ f [2]

∂x
as it appears in Eq. (3.6) gives

det

(

∂ f [2]

∂x
(E∗)

)

= −(v + α + w − cβS∗)

[

(

µ +
(wv + αµ)I∗

(v + α)S∗

)2

+

(

µ +
(wv + αµ)I∗

(v + α)S

)

(w − cβS∗)

]

− (v + α)2
(

µ +
(wv + αµ)I∗

(v + α)S∗

)

− µ(w − cβS∗)(v + α) −
(wv + αµ)I∗

(v + α)S∗

×

[

cβS∗

(

µ +
(wv + αµ)I∗

(v + α)S∗
+ w − cβS∗

)]

−
αk1(wv + αµ)I∗

(v + α)S∗
< 0. (3.8)

Noting that if R0 > 1, then w − cβS∗ > 0. Thus, det(
∂ f [2]

∂x
(E∗)) < 0. Hence, the result follows from Lemma 3.1.

This completes the proof of Theorem 3.2. �
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We are now in a position to investigate the global stability of the disease-free equilibrium E0 when R0 ≤ 1. Consider the
following Lyapunov function L = (µ + k2 + α + bk1)I + (b(µ + k1) + α)J . Thus, if R0 ≤ 1, we have

dL

dt
= (µ + k2 + α + bk1)

dI

dt
+ (b(µ + k1) + α)

dJ

dt

= [(µ + k2 + α + bk1)cβS − ((µ + k1)(µ + k2) + αµ)](I + bJ)

≤ [(µ + k2 + α + bk1)cβK − ((µ + k1)(µ + k2) + αµ)](I + bJ)

= [((µ + k1)(µ + k2) + αµ)](R0 − 1)(I + bJ)

≤ ρ((µ + k1)(µ + k2) + αµ)(R0 − 1)L

≤ 0, (3.9)

where ρ = min{ 1
µ+k2+α+bk1

, b

α+b(µ+k1)
}.

The maximal compact invariant set in {(S, I, J) ∈ Γ : dL/dt = 0} is the singleton {E0} when R0 ≤ 1. The global stability
of E0 follows from the LaSalle invariance principle [22].

From the above discussion, we have the following conclusion:

Theorem 3.3. If R0 ≤ 1, then the infection-free equilibrium E0 is globally stable in Γ . If R0 > 1, then E0 is unstable.

Next, we deal with the uniform persistence of system (2.2).

Theorem 3.4. If R0 > 1, then system (2.2) is uniformly persistent in IntΓ , i.e., there exists a constant 0 < η < 1 (independent

of initial conditions), such that any solution (S(t), I(t), J(t)) of (2.2) satisfying lim inft→+∞ S(t) > η, lim inft→+∞ I(t) > η,
and lim inft→+∞ J(t) > η.

Proof. We shall apply [23, Theorem 4.6] to show this result. To do so, we choose X = Ω, X1 = intΩ, X2 = bd(Ω). Similar
to the [11, proof of Lemma 3.5], it is easy to obtain that Y2 = {(S, 0, 0) : 0 < S ≤ K}, Ω2 =

⋃

y∈Y2
ω(y) = {E0}, and {E0} is

a isolated compact invariant set in X . Furthermore, letM = {E0}, we have M is an acyclic isolated covering of Ω2.

Now we only need to show that {E0} is a weak repeller for X1. Suppose that there exists a positive orbit (S(t), I(t), J(t))
of (2.2) such that

lim
t→+∞

S(t) = K , lim
t→+∞

I(t) = 0, lim
t→+∞

J(t) = 0.

Since R0 > 1, there exists a small enough ε > 0, such that

cβ(K − ε)(µ + k2 + α + bk1) > (µ + k1)(µ + k2) + αµ. (3.10)

From (2.2), we choose t0 > 0 large enough such that when t ≥ t0, we have

dI

dt
> [bcβ(K − ε)] J − [µ + k1 − cβ(K − ε)]I,

dJ

dt
= k1I − (µ + k2 + α)J.

(3.11)

Consider the following matrixMε defined by

Mε =

(

−[µ + k1 − cβ(K − ε)] bcβ(K − ε) + α
k1 −(µ + k2 + α)

)

.

SinceMε admits a positive off-diagonal element, the Perron–Frobenius Theorem implies that there is a positive eigenvector
v = (v1, v2) for the maximum eigenvalue λ∗ ofMε . From (3.10), we see that the maximum eigenvalue λ∗ is positive. Let us
consider the following system:

du1

dt
= [bcβ(K − ε)]u2 − [µ + k1 − cβ(K − ε)]u1,

du2

dt
= k1u1 − (µ + k2 + α)u2.

(3.12)

Let u(t) = (u1(t), u2(t)) be a solution of (3.12) through (lv1, lv2) at t = t0, where l > 0 satisfies lv1 < I(t0), lv2 < J(t0).
Since the semiflow of (3.12) is monotone and Mεv > 0, it follows that ui(t) are strictly increasing and ui(t) → +∞ as
t → +∞, contradicting the eventual boundedness of positive solutions of system (2.2). Thus, E0 is weak repeller for X1. This
completes the proof of Theorem 3.4.
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Now we investigate the global stability of the infectious steady state. To do this, we apply Theorem 4.1 of [24] to show
the system (2.2) has no periodic solutions, homoclinic loops and oriented phase polygons inside the invariant region. For its
applications, we refer the reader to [25,26].

Set

Γ1 =

{

(S, I, J) ∈ Γ : S + I +
µ + k2

µ
J > K

}

,

Γ ∗ =

{

(S, I, J) ∈ Γ : S + I +
µ + k2

µ
J = K

}

,

Γ2 =

{

(S, I, J) ∈ Γ : S + I +
µ + k2

µ
J < K

}

.

Thus, Γ1, Γ ∗, Γ2 are pairwise disjoint subject of Γ , and Γ = Γ1 ∪ Γ ∗ ∪ Γ2. Let N1 = S + I + J, (S, I, J) ∈ Γ . From system
(2.2), the equation for the total population N1 is

dN1

dt
= µK − µN1 − k2J. (3.13)

Obviously, in Γ1, Γ ∗, Γ2, we have
dN1

dt
> 0,

dN1

dt
= 0,

dN1

dt
< 0, respectively. It follows that Γ ∗ is a positively invariant set

in Γ .
Theorem 4.1 of Busenberg and van den Driessche [24] are stated as follows.
Let g(S, I, J) = {g1(S, I, J), g2(S, I, J), g3(S, I, J)} be a vector field which is piecewise smooth on Γ ∗, and which satisfies

the conditions g · f = 0 and (curl g) · (1, 1, 1) < 0 in the interior of Γ ∗, where f = (f1, f2, f3) is a Lipschitz continuous field
in the interior of Γ ∗ and

curl g := det







Ei Ej Ek
∂

∂S

∂

∂ I

∂

∂ J
g1 g2 g3






.

Then the differential equation system dS/dt = f1, dI/dt = f2, dJ/dt = f3 has no periodic solutions, homoclinic loops and
oriented phase polygons in Γ ∗.

Thus, we can state the following theorem.

Theorem 3.5. The system (2.2) has no periodic solutions, homoclinic loops and oriented phase polygons inside the invariant

region Γ ∗.

Proof. Let f1, f2 and f3 denote the right hand side of system (2.2), respectively. Now we use the relation S + I + µ+k2
µ

J = K

to rewrite them in the equivalent forms:

f1(S, I) = µK − cβ

[

I + b(K − S − I)
µ

µ + k2

]

S − µS,

f1(S, J) = µK − cβS

[

K − S −
µ + k2

µ
J + bJ

]

− µS,

f2(S, I) = cβS

[

I + b(K − S − I)
µ

µ + k2

]

− (µ + k1)I + α(K − S − I)
µ

µ + k2
,

f2(I, J) = cβ(I + bJ)

(

K − I −
µ + k2

µ
J

)

− (µ + k2)I + αJ,

f3(S, J) = k1

(

K − S −
µ + k2

µ
J

)

− (µ + k2 + α)J,

f3(I, J) = k1I − (µ + k2 + α)J.

(3.14)

Let g = (g1, g2, g3) be a vector field, where

g1 =
f3(S, J)

SJ
−

f2(S, I)

SI
= −

k1(K − S)

SJ
−

k1k2 + µ(k2 + α)

µS
−

µ(bcβS + α)(K − S − I)

(µ + k2)SI
− cβ,

g2 =
f1(S, I)

SI
−

f3(I, J)

IJ
=

µ(K − S)

SI
− cβ −

bµcβ(K − S − I)

(µ + k2)I
−

k1

J
+

µ + k2 + α

I
,

g3 =
f2(I, J)

IJ
−

f1(S, J)

SJ
= cβ

(

1

J
+

b

I

)(

K − I −
µ + k2

µ
J

)

−
k1

J
+

α

I
−

µK

SJ
+

cβK − cβS

J
+ b −

µ + k2

µ
.
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Fig. 1. Variation of S, I and J with time for the parameter values K = 120, β1 = 0.0005, b = 0.3, µ = 0.02, c = 3, k1 = 0.01, k2 = 0.02, α = 0.01 when

R0 = 6.814286.

Clearly, g · f = 0 on Γ ∗, since the alternate forms of f1, f2 and f3 are equivalent on Γ ∗. Using the normal vector

n =
(

1
K
, 1

K
,

µ+k2
µK

)

to Γ ∗, it can be shown that the expression

(curl g) · n = −
bcβ

I2
+

bcβ

I2K

(

S + I +
µ + k2

µ
J

)

−
k1

SJ2
−

µ

S2J
−

µ + k2

S2I
−

bcβ

I2
−

α

SI2
< 0, (3.15)

since S + I + µ+k2
µ

J = K . Thus, by Theorem 4.1 in [24], the system (2.2) has no periodic solutions, homoclinic loops and

oriented phase polygons inside the invariant region Γ ∗. This completes the proof. �

Theorem 3.6. If R0 > 1, then the infected equilibrium E∗ of system (2.2) is globally asymptotically stable.

Proof. Notice that Γ ∗ is positively invariant subset of Γ , it follows from Theorem 3.4 that the ω − limit set of each solution
of system (2.2) must be a single point in Γ ∗. This implies that if E0 is unstable (which occurs by Theorem 3.1), then E∗ exists
in Γ ∗ and it is globally asymptotically stable. This completes the proof. �

Remark. Numerical simulation in Fig. 1 verifies Theorem 3.6, where system goes to steady state solution for R0 > 1.

4. The model with time delay

In this section, by introducing time delay to model (2.2), we investigate the effect of the time delay on the stability of
the endemically infected equilibrium. Let τ be the time from the start of treatment in the symptomatic stage (J) until the
treatment effects become visible. Thus, we consider the following model

dS(t)

dt
= µK − cβ(I(t) + bJ(t))S(t) − µS(t),

dI(t)

dt
= cβ(I(t) + bJ(t))S(t) − (µ + k1)I(t) + αJ(t − τ),

dJ(t)

dt
= k1I(t) − (µ + k2)J(t) − αJ(t − τ),

(4.1)

with the initial values

S(0) = S0, I(0) = 0, J(θ) = J0, θ ∈ [−τ , 0].

All parameters are the same as in system (2.1) except that the constant τ represents the length of the delay in days.

System (4.1) has always the disease-free equilibrium E0(K , 0, 0) and the unique infected equilibrium E∗(S∗, I∗, J∗) as
in system (2.2) without delay. It is easily shown that E0 is globally stable for R0 ≤ 1. Moreover, since the disease-free
equilibrium E0 is unstable when τ = 0 and R0 > 1, incorporation of a delay will not change the instability. Thus, E0 is
unstable for τ > 0, R0 > 1.
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Now we mainly investigate the effect of the time delay on the stability of the endemically infected equilibrium. To do
this, the characteristic equation corresponding to the Jacobian matrix of the linearized system of (4.1) at the equilibrium E∗

is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ +
mI∗

S∗
+ µ cβS∗ bcβS∗

−
mI∗

S∗
λ + µ + k1 − cβS∗ −bcβS∗ − αe−λτ

0 k1 λ + µ + k2 + αe−λτ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.2)

with cβ(I∗ + bJ∗) = mI∗

S∗ , m = (µ+k1)(µ+k2)+αµ

µ+k2+α
.

Eq. (4.2) can be reduced to

P(λ) + Q (λ)e−λτ = 0. (4.3)

where

P(λ) = λ3 + a1λ
2 + a2λ + a3,

Q (λ) = b1λ
2 + b2λ + b3,

a1 = µ + k1 − cβS∗ + µ + mI∗/S∗ + µ + k2 > 0,

a2 = (µ + mI∗/S∗)(µ + k1) − cβµS∗ + (µ + k2)(µ + k1 − cβS∗ + µ + mI∗/S∗) − k1bcβS∗,

a3 = (µ + k2)[(µ + mI∗/S∗)(µ + k1) − cβµS∗] − k1bcβmI∗ − k1bcβS∗(µ + mI∗/S∗),

b1 = α,

b2 = α(µ + k1 − cβS∗ + µ + mI∗/S∗) − αk1,

b3 = αµ(µ + mI∗/S∗ − cβS∗).

To proceed, we consider Eq. (4.3) with τ = 0. It follows from Theorem 3.2 that all the roots of

P(λ) + Q (λ) = 0,

⇒ λ3 + (a1 + b1)λ
2 + (a2 + b2)λ + a3 + b3 = 0

(4.4)

have negative real parts. By Rouchě’s [27, Theorem 9.17.4] and the continuity in τ , the transcendental equation (4.3) has
roots with positive real parts if and only if it has purely imaginary roots. We shall determine if (4.3) has purely imaginary
roots, from which we then shall be able to find conditions for all eigenvalues to have negative real parts.

Let λ = η(τ)+ iω(τ)(ω > 0) be the eigenvalue of the characteristic equation (4.3), where η(τ) and ω(τ) depend on the
delay τ . Since the endemic equilibrium E∗ of the ODE model is stable, it follows that η(0) < 0 when τ = 0. By continuity,
if τ > 0 is sufficiently small, we still have η(τ) < 0 and E∗ is still stable. For η(τ0) = 0 for certain value τ0 > 0 (so that
λ = iω(τ0) is purely imaginary root of (4.3)), the positive equilibrium E∗ loses stability and eventually becomes unstable
when η(τ) becomes positive. In other words, if such ω(τ0) does not exist, that is, if the characteristic equation (4.3) does
not have purely imaginary roots for all delay, then the positive equilibrium E∗ is always stable. When R0 > 1 and τ > 0,
assuming λ = iω with ω > 0 and substituting in (4.3) gives

− iω3 − a1ω
2 + ia2ω + a3 + (−b1ω

2 + b2iω + b3)(cosωτ − i sinωτ) = 0. (4.5)

Separating the real and imaginary parts, we have

a1ω
2 − a3 = (b3 − b1ω

2) cosωτ + b2ω sinωτ,

ω3 − a2ω = b2ω cosωτ − (b3 − b1ω
2) sinωτ.

(4.6)

Adding up squares of both the equations, we obtain

ω6 + (a21 − 2a2 − b21)ω
4 + (a22 − b22 − 2a1a3 + 2b1b3)ω

2 + a23 − b23 = 0.

Let

u = ω2, γ1 = a21 − 2a2 − b21, γ2 = a22 − b22 − 2a1a3 + 2b1b3, γ3 = a23 − b23.

Thus, we have

G(u) = u3 + γ1u
2 + γ2u + γ3 = 0. (4.7)

It is easily shown that if γ2 > 0 and γ3 ≥ 0, then Eq. (4.7) has no positive roots. This implies that there is no ω such that iω
is an eigenvalue of the characteristic equation (4.3). By Rouchě’s Theorem, the real parts of all the eigenvalues of (4.3) are
negative for all delay τ ≥ 0.

Therefore, we have the following results
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Theorem 4.1. If R0 > 1 and γ2 > 0, γ3 ≥ 0, then the unique infected equilibrium E∗ is asymptotically stable for all delay

τ ≥ 0.

We notice that if γ3 < 0, then it follows from (4.7) that G(0) = γ3 < 0 and limu→∞ G(u) = ∞. Thus, there is at least a
positive root satisfying Eq. (4.7). So, the characteristic equation (4.3) has at least a pair of purely imaginary roots of the form
±iω0. Eliminating sinτω from (4.6), we obtain

cosωτ =
(a1ω

2 − a3)(b3 − b1ω
2) + (ω3 − a2ω)b2ω

(b3 − b1ω2)2 + (b2ω)2
. (4.8)

Therefore, τ ∗
n corresponding to ω0 is given by

τ ∗
n =

1

ω0

arccos

[

(a1ω
2
0 − a3)(b3 − b1ω

2
0) + (ω3

0 − a2ω0)b2ω0

(b3 − b1ω
2
0)

2 + (b2ω0)2

]

+
2nπ

ω0

. (4.9)

For τ = 0, it follows fromTheorem3.2 that the positive equilibrium E∗ is stablewhenR0 > 1.Hence, by Butler’s Lemma [28],
E∗ remains stable for τ < τ0 where τ0 = τ ∗

0 as n = 0.

From the above discussion, if the characteristic equation (4.3) has a pair of purely imaginary roots, then by Rouchě’s
Theorem and the continuity in τ , the transcendental equation (4.3) has roots with positive real parts. Hence E∗ lose its
stability. By Cooke and van den Driessche’s Theorem [29], the periodic solutions may happen. To do this, we verify that the
following conditions hold:

d(Reλ)

dτ

∣

∣

∣

∣

τ=τ0

> 0.

Differentiating Eq. (4.3) with respect to τ , we have

[(3λ2 + 2a1λ + a2) + e−λτ (2b1λ + b2) − τe−λτ (b1λ
2 + b2λ + b3)]

dλ

dτ
= λe−λτ (b1λ

2 + b2λ + b3).

This gives

(

dλ

dτ

)−1

=
3λ2 + 2a1λ + a2

λe−λτ (b1λ2 + b2λ + b3)
+

2b1λ + b2

λ(b1λ2 + b2λ + b3)
−

τ

λ

=
3λ2 + 2a1λ + a2

−λ(λ3 + a1λ2 + a2λ + a3)
+

2b1λ + b2

λ(b1λ2 + b2λ + b3)
−

τ

λ

=
2λ3 + a1λ − a3

−λ2(λ3 + a1λ2 + a2λ + a3)
+

b1λ
2 − b3

λ2(b1λ2 + b2λ + b3)
−

τ

λ
.

Thus

sign

{

d(Reλ)

dτ

}

λ=iω0

= sign

{

Re

(

dλ

dτ

)−1
}

λ=iω0

= sign

{

Re

[

2λ3 + a1λ − a3

−λ2(λ3 + a1λ2 + a2λ + a3)
+

b1λ
2 − b3

λ2(b1λ2 + b2λ + b3)
−

τ

λ

]}

λ=iω0

=
1

ω2
0

sign

[

(a3 + a1ω
2
0)(a1ω

2
0 − a3) + 2ω3

0(ω
3
0 − a2ω0)

(a1ω
2
0 − a3)2 + (ω3

0 − a2ω0)2
+

(b1ω
2
0 + b3)(b3 − b1ω

2
0)

(b3 − b1ω
2
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2 + (b2ω0)2
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=
1
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0

sign
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3
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2
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=
1
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0

sign

[

2ω6
0 + (a21 − 2a2 − b21)ω

4
0 + (b23 − a23)

(b3 − b1ω
2
0)

2 + (b2ω0)2

]

.

Notice that if γ1 = a21 − 2a2 − b21 > 0 and γ3 = a23 − b23 < 0, then we have

d(Reλ)

dτ

∣

∣

∣

∣

τ=τ0,ω=ω0

> 0.

This will signify that there exists at least one eigenvalue with positive real part for τ > τ0. The conditions for Hopf
bifurcation [30] are then satisfied yielding the required periodic solution at ω = ω0, τ = τ0.

From the above analyses, we can obtain the following result:
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Fig. 2. Variation of I with time for different delay where other parameter values are K = 120, β1 = 0.0005, b = 0.3, µ = 0.02, c = 3, k1 = 0.01, k2 =
0.02, α = 0.01 and R0 = 6.814286.

Fig. 3. Variation of I and J with time for delay parameter τ = 0, τ < τ ∗
n and τ > τ ∗

n where other parameter values are K = 120, β1 = 0.0003, b =
0.3, µ = 0.02, c = 3, k1 = 0.08, k2 = 0.01, α = 0.4 and R0 = 4.457455 and τ ∗

n = 4.745229 (for n = 0).

Theorem 4.2. If R0 > 1 and γ1 > 0, γ3 < 0, the infected equilibrium E∗ remains stable for τ < τ0 and unstable when τ > τ0,
a Hopf bifurcation occurs; that is, a family of periodic solutions bifurcates from E∗ as τ passes through the critical value τ0, where

τ0 = τ ∗
0 as n = 0, τ ∗

0 is defined in (4.9).

Numerical simulations also verify that Theorems 4.1 and 4.2 hold, which is demonstrated in Figs. 2 and 3, respectively.
System (4.1) is simulated for different length of delay and Fig. 2 is showing the variation of I(t) with time for delay ranging
between 0 and 40. It is clear from the plot that there is minor change in the I(t) as time progresses but there is no effect
of delays on the steady state solution for the set of parameters satisfying R0 > 1, γ2 > 0, γ3 ≥ 0. Fig. 3 is showing both
steady state and stable oscillation in the system which occurs for the delay τ < τ ∗

0 and τ > τ ∗
0 , respectively, for the set of

parameters satisfying R0 > 1, γ2 > 0, γ3 < 0. It is observed that Hopf bifurcation occurs at τ = τ ∗
0 = 4.745229 where

the stable equilibrium gives way to stable oscillations and it continues until high value of τ .

5. Discussion

In this paper, we have considered an HIV/AIDS treatment model. According to papers [9,2], the period of infection
is divided into the asymptomatic and the symptomatic phases. By all sorts of treatment methods, individuals with the
symptomatic phases can be transformed into asymptomatic individuals. The dynamics behavior of the ODE treatment
model (2.2) can be determined by its basic reproduction number R0, i.e., If R0 ≤ 1, the disease-free equilibrium is globally
stable. If R0 > 1, the disease persists and the unique endemic equilibrium is globally asymptotically stable. To explain that
treatment may result in the disease persisting or in the disease dying out, depending on parameter value, we differentiate
the expressions corresponding to R0 with respect to treatment rate α. Thus we have

sgn

(

∂R0

∂α

)

= sgn

(

cβK

µ
− R0

)

. (5.1)
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From (2.5), it follows that if all other parameters are held fixed, then limα→∞ R0 = cβK

µ
. So, for control of disease in a

population, it is generally accepted that it is desirable for R0 to be as small as possible. Particularly, it is desired, if possible,
for R0 to be less than one. By considering (5.1), it is clear that it is possible that in the absence of treatment i.e., α = 0 to

have
cβK

µ
< 1 < R0. In this case,

∂R0

∂α
< 0, and if α can be made sufficiently large, then R0 will become less than one.

This means that in some situations, it is possible that treatment can be used to make E0 stable when it would be unstable

in the absence of treatment. On the other hand, if R0 < 1 <
cβK

µ
, then by making α sufficiently large, E0 can be switched

from stable to unstable, causing the disease to persistence in the population when it otherwise would have died out. For the
treatment model (4.1) with time delay, Theorem 4.1 shows that if the parameters satisfy γ2 > 0, γ3 > 0, then the infected
equilibrium E∗ is asymptotically stable for all delay values, i.e., independent of the delay. However, if γ1 > 0, γ3 < 0 the
delay can induce oscillations in system. Biologically, this means that there is a critical value for the treatment-induced delay
τ0. which determines the stability of the infected equilibrium E∗. That is, the infected equilibrium E∗ is asymptotically stable
when antiretroviral drugs on average show positive effects in patients within less than time delay τ0. As soon as it takes
more than time delay τ0 for the patients to feel better, the infected equilibrium E∗ loses its stability.
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