Header menu link for other important links
X
Structural Stability as a Probe for Molecular Evolution of Homologous Albumins Studied by Spectroscopy and Bioinformatics
E. Ahmad, , R.H. Khan
Published in
2011
PMID: 21748244
Volume: 61
   
Issue: 2
Pages: 313 - 325
Abstract
Equilibrium unfolding by guanidinium hydrochloride (GuHCl) and urea as well as evolutionary trends of two homologous albumins, pig serum albumin (PSA) and rabbit serum albumin (RSA), has been studied with circular dichroism, tryptophanyl fluorescence and bioinformatics. GuHCl cannot distinguish the contribution of electrostatic interactions to the proteins which were otherwise effectively monitored by urea. Higher differences in free energy changes due to urea than GuHCl show electrostatic interactions among charged amino acids are possibly responsible for higher structural stability of RSA in comparison to PSA. From the sequence of HSA and RSA, deletion of arginine at position 117 and the presence of one extra tryptophan at position 135 may possess some clue for lesser stability of PSA. Here, for comparison, chemical unfolding data of HSA and BSA had been taken into consideration. We found that thermodynamically RSA and PSA are closer to HSA and BSA, respectively, in accordance with their sequence homologies. Taxonomically, rabbit belongs to lagomorph which is closer to hominids than ungulates. Hence, on the basis of these thermodynamic data of protein denaturation of different species we can use this new approach to analyze the phylogenetic relationship among the major clades of eutherian mammals to obtain their evolutionary trends. © 2011 Springer Science+Business Media, LLC.
About the journal
JournalCell Biochemistry and Biophysics
ISSN10859195