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Abstract. The temperature distribution and distortion of fluid flow inside the closed cavities, square and
triangle, are studied for different boundary conditions. Two different conditions of thermal boundary conditions
are used for studying square cavities: (i) Left wall is hot, right wall is cold, top and bottom walls are adiabatic.
(ii) Left and right walls are cold, top wall is adiabatic, bottom wall is hot. For triangular enclosure, the boundary
conditions are (i) the vertical wall is insulated, bottom wall is hot. (ii) The vertical wall is hot, the bottom wall
insulated and the inclined walls are kept cold in both conditions. The velocity of the flow is observed by means of
stream function and the temperature distribution is displayed in the form of contours. The study is carried out in
ANSYS software. The mathematical procedure for solving the nonlinear system of partial differential equations
by penalty finite element method involving bi-quadratic elements is also discussed in detail.

Keywords: Penalty finite element analysis / ANSYS / closed cavities / temperature distribution /
fluid distortion

1 Introduction

The temperature distribution and distortion of fluid flow
inside the square and triangular cavities are mathemati-
cally formulated by means of finite elements and studied
with the help of ANSYS. The cross section of a flow in
rectangular and triangular ducts results in a square and
triangular cavity. In the current study, behavior of the
temperature and velocity of fluid flowing inside the closed
cavities with different boundary conditions is considered.
The literature explains a vivid usage of the natural
convection flow within the closed entities because of its
practical relevance in various applications, such as heat
exchangers [1] and [2], room heating and ventilation
design [3–5], melting [6], etc., Different shapes of cavities,
circle [7], trapezoid [8], square [9] and [10], triangle [11–13]
has been grabbing the attention of researchers since
decades. The non-dimensional governing equations of the
2D flow problem is formulated with the penalty finite
element method. Detailed solution procedure to obtain a
finite element equation from a nonlinear system of partial
differential equations is discussed. The studies of fluid flow
inside the square and triangular enclosures is performed
with ANSYS, a renowned, trustworthy and widely used

tool by researchers. Two occurrences in square cavities
and two from triangular structure are studied varying the
temperature boundary condition. Thermal boundary
condition is varied throughout the study, but the velocity
of the fluid at the solid boundary will be zero. Study 1:
Square cavity, Case 1: Left wall is hot, right wall is cold
and the top and the bottom walls are adiabatic and. Case
2: Left and right walls are maintained cold, top wall is
adiabatic and the bottom wall is heated. Study 2:
Triangular enclosures, Case 1: The vertical wall is
insulated, bottom wall heated up and the inclined wall
is kept cold. Case 2: The vertical wall is hot, the bottom
wall insulated and the inclined wall is kept cold. The
governing equations, mathematical formulation and the
study in ANSYS can be observed in the article.

2 Mathematical formulation

2.1 Governing equations and solution procedure

The nonlinear system of partial differential equations,
involving, Navier-Stokes and energy balance equation
governs the fluid flow and the temperature distribution.
The density due to temperature variation is calculated
using Boussineq approximation. All the physical quantities
are constant but for density. Equations (1)–(4) are the* e-mail: meetmercy@outlook.com
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non-dimensional form of the governing equations.
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respectively)
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, (Pr Prandtl number)
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n
, (Ra Rayleigh number).

The penalty finite element method [14] aids the
formulation of governing differential equations, introduc-
ing the penalty parameter (g). To eliminate pressure P in
equations (2) and (3), equation (5) containing the
relationship between the penalty parameter (g) and the
incompressibility is substituted. Generally, g=107, for
reliable solutions.

P ¼ �g
∂U

∂X
þ
∂V

∂Y

� �

ð5Þ

Hence equations (2) and (3) becomes,
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The square and the triangular cavities considered for
the study is discretized into biquadratic elements. Figure 1,
depicts the discretization of the domains andmapping from
X–Y plane to s–t plane.

Galerkin finite element method is employed in solving
the system of governing differential equations (6), (7) and (4).
The thermal and the velocity components are expanded
through basis set given in equation (8).
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Equation (8) expands the governing equations.
A weighted function (Ni) is multiplied and integrated
over the domain, resulting in the nonlinear residual partial
differential equations.

See equation (9) and (10) below.
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Equations (9)–(11) are the nonlinear residues, from
which the finite element equation should be formed.

Grouping the the co- efficient of
X
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Fig. 1. Mapping of X–Y coordinates to s–t local coordinates.
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Grouping the co-efficient of
X
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Rewriting the governing equations, with the above
substitutions, in matrix form
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It is evident that every node (i) has 3 degrees of
freedom, resulting in 27 unknowns for one biquadratic
element. The local nodal numbering with global nodal
numbers yields the element connectivity which will support
in 2D assembly.

2.2 Jacobian transformation

The integrand is a function of the global coordinates X and
Y. Figure 1 shows the co-ordinate transformation for the
discretized elements from the X � Y plane to the s� t
plane.
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The integrand contains not only functions but also
derivatives with respect to the global coordinates ðxj; yjÞ.
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The functions Nj can be expressed in terms of the local
coordinates s and t. The following matrix notation,
equation (25), involving the relation between the deriva-
tives of Nj with respect to the global and local coordinates,

is attained by implementing the chain rule of partial
differentiation.
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The matrix [J] is called the Jacobian matrix of the
transformation.
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Equation (28) requires that the Jacobian matrix [J]
should be nonsingular. Thus, given the global coordinates
(xj, yj) of element nodes and the interpolation functions, Nj
used for geometry [15], the Jacobian matrix can be
evaluated using equation (27).

dX dY ¼ jJjds dt ð29Þ

Consequently, solving equation (21) for every node in
the domain provides the thermal and velocity components.
The commonly used numerical integration methods for the
definite integrals can be classified into two groups: (i)
Newton-Cotes formulae that employ values of the inte-
grand at equally spaced points and (ii) Gaussian quadra-
ture formula that employs unequally spaced points.

2.3 Stream function

The stream function is used to display the fluid flow and is
acquired from velocity components U and V. The
relationships between stream function, c and velocity
components for 2D flows are
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∂c

∂Y
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It yields the governing equation for stream function
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Expanding the stream function c using the basis set
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and the relation for U, V from the Galerkin finite element
method yields in the linear residual equations.
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The no-slip condition is imposed at all boundaries
as mentioned earlier and there is no cross flow too, hence
c = 0 at the nodes of the walls. The bi-quadratic basis
function is used to evaluate the integrals in equation (33)
andc’s are obtained by solving the same. Stream functions
(c’s) thus obtained might be positive or negative. The
positive and negative signs of c denotes anti-clockwise and
clockwise circulation respectively.

3 Studies of fluid flow inside closed cavities
using ANSYS

How heat moves from point A to B, precisely explains heat
transfer. Three ways in which the heat transfers, is as
follows. Conduction, heat transfer by molecular contact;
Convection, result of density differences and Radiation
happening by wave motion. This article concentrates only
on natural convection, driving force is the natural gravity
as always. Fluid flow inside closed triangular and square
cavities is calculated employing ANSYS, Workbench 2020
R1. Geometry is built in the Design Modeler. Many flow
problems solved in engineering practice involve complex
geometries; Here the simple 2D geometry is meshed with
quadrilateral elements. This simulation is limited to steady
state. The free convection dealing with the gravity is added
in y-direction. Enable heat transfer by checking energy in
the model. The energy dialogue box favors the input of
parameters related to energy or heat transfer. The fluid
taken for this study is air,Pr=0.71. In all the cases laminar
nature of the fluid is sustained. The solid within which the
flow takes place is aluminum. In the cell zone conditions,
the operating conditions are set. Boundary conditions for
square and the triangular cavities are detailed in their
respective sections. Post initialization, the calculations are
carried out. Temperature distribution and flow distortion
are visualized as contours and are substantiated with the
existing literature.

3.1 Square cavity

The square cavity, cross section of a rectangular duct, is
built with 1m all sides. The fluid with Pr = 0.71 and

Ra=105 is taken for studying the flow with varying
thermal boundary conditions. The fluid in contact with the
walls are at rest. Quadrilateral elements are involved in
the meshing. The heat inputs are given on the walls, hence,
the edges are meshed with bias factor 5.0. For a square
cavity with the left wall, DA, experiencing the heat source,
right wall, BC, cold and the top wall, CD, and the bottom
wall, AB, are adiabatic, Figures 2 and 3 explains the
temperature distribution and velocity respectively. From
the contour it is evident that the temperature reduces from
the left wall to right. The stream function clearly states
that the clockwise flow is laminar. The results obtained are
aligned with Singh et al. [10]. In other circumstance of
square cavity taken for study, walls DA and BC are
maintained cold, wall CD is adiabatic and the wall AB is
alone heated up. There is a temperature flow from the
bottom to the top, the temperature descends as it moves
upward, can be seen in Figure 4. The laminar flow for this
case, displayed in Figure 5, is unique consisting of clockwise
and anticlockwise flows. This pattern is observed to be in
relevance with Basak et al. [9].

3.2 Triangular enclosure

The base and the height of the right angled triangle is 1m.
The quadrilateral elements are used for meshing the
triangular enclosure. Bias factor 5.0 is applied for the edges
while meshing to get a thick mesh considering the thermal
inputs in the boundary. Two different sets of boundary
condition are taken for study. In both situations the
inclined wall is kept cold. In the triangular entity, the
velocity boundary condition is restricted to no slip
condition on all sides. The triangle with fluid parameters
Pr = 0.71 and Ra = 710, and the boundary conditions on

Fig. 2. Temperature contour of the square cavity with boundary
condition on the walls, AB and CD, ∂u

∂n
¼ 0, DA, u=1, BC, u=0,

Pr = 0.71, Ra = 105.
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wall AB, bottomwall has the heat source, wall BC, inclined
wall is cold and the wall CA, is adiabatic. A clear picture of
the anticlockwise laminar flow can be seen in Figure 7. The
temperature distribution is observed in Figure 6; the heat
reduces from the base as it moves upwards. This can be
related to [12] and the similarity is perceived. The other

situation dealing with the triangle, wall AB insulated, BC
cold and CA hot with Pr = 0.71 and Ra=103. Figure 8
briefs the temperature increase, as it moves to the vertical
wall. Figure 9 delineates the flow of stream function with its
laminar nature maintained and the flow is clockwise as in
[13] makes the contour look promising as it is identical with
those in the literature.

Fig. 4. Temperature contour of the square cavity with boundary
condition on the walls, AB, u=1, CD ∂u

∂n
¼ 0, DA and BC, u=0,

Pr = 0.71, Ra = 105.

Fig. 5. Stream function contour of the square cavity with
boundary condition on the walls, AB, u=1, CD ∂u

∂n
¼ 0, DA and

BC, u=0, Pr = 0.71, Ra = 105.

Fig. 6. Temperature contour of the triangular cavity with
boundary condition on the walls, AB, u=1, CA, ∂u

∂n
¼ 0, BC, u=0,

Pr = 0.71, Ra = 710.

Fig. 3. Stream function contour of the square cavity with
boundary condition on the walls, AB and CD, ∂u

∂n
¼ 0, DA, u=1,

BC, u=0, Pr = 0.71, Ra = 105.
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4 Conclusion

The temperature distribution and distortion of fluid flow
inside the square and triangular cavities, for different
boundary conditions are analyzed with ANSYS. Fluids in

the present study for specific boundary conditions is
observed to be laminar. Absence of variation with
temperature spreading and fluid alteration is observed
from the contours of the closed cavities, Figures 2–9 and the
result agrees well with [9,10,12,13]. In future, the closed
form solution of the current work will be pondered using a
programming language in a numerical environment with
penalty finite element method involving bi-quadratic
elements. Upcoming studies in the same category can be
done by varying a set of Rayleigh number and Prandtl
number. When making it time dependent, the flow inside
the full length of the pipe can be investigated. Keeping the
flow laminar throughout, at various boundary conditions
will support practical real time problems like injection
molding processes [16].
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