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The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is
receiving increased attention because both shear wave velocity and liquefaction resistance are similarly
influenced bymany of the same factors such as void ratio, state of stress, stress history and geologic age. In this
paper, the potential of support vector machine (SVM) based classification approach has been used to assess
the liquefaction potential from actual shear wave velocity data. In this approach, an approximate
implementation of a structural risk minimization (SRM) induction principle is done, which aims at
minimizing a bound on the generalization error of a model rather thanminimizing only themean square error
over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil
based on shear wave velocity. The dataset consists the information of soil characteristics such as effective
vertical stress (σ′v0), soil type, shear wave velocity (Vs) and earthquake parameters such as peak horizontal
acceleration (amax) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for
training and remaining 56 are used for testing themodel. The study indicated that SVM can successfully model
the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the
model based on soil characteristics, the input parameters used are σ′v0, soil type, Vs, amax and M. In the other
model based on shear wave velocity alone uses Vs, amax and M as input parameters. In this paper, it has been
demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector
machine model.
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1. Introduction

Liquefaction in soil is one of the major problems in geotechnical
earthquake engineering. It is defined as the transformation of a granular
material from a solid to a liquefied state as a consequence of increased
pore-water pressure and reduced effective stress (Marcuson, 1978).
This phenomena was brought to the attention of engineers more so
after Niigata (1964) and Alaska (1964) earthquakes. Liquefaction will
cause building settlement or tipping, sand boils, ground cracks,
landslides, dam instability, highway embankment failures, or other
hazards. Such damages are generally of great concern to public safety
and are of economic significance. So the assessment of the liquefaction
potential due to an earthquake at a site is an imperative task in
earthquake geotechnical engineering. A procedure based on Standard
Penetration Test (SPT) and cyclic stress ratio (CSR) has been developed
by Seed et al. (Seed and Idriss, 1967, 1971; Seed et al., 1983, 1984)
based on the use of peak ground acceleration to asses the liquefaction
potential of soil. Although the SPT-basedmethod is in use (as a standard
method) around the world for evaluating liquefaction resistance, it has
many drawbacks (Robertson and Campanella, 1985; Skempton, 1986).
The first cone penetration test (CPT) based method for liquefaction
evaluation was developed by Robertson and Campanella (1985)
(Skempton, 1986). The CPT method has been revised and updated by
many researchers to evaluate liquefaction resistance (Seed and de Alba,
1986; Stark and Olson, 1995; Olsen, 1997; Robertson andWride, 1998).
The engineering practitioners commonly use the above two penetra-
tion based methods (SPT and CPT) for assessment of liquefaction
potential. On the other hand, shear wave velocity (Vs) may offer
engineers a third tool that is lower cost and provides more physically
meaningful measurements. The advantages of using Vs for evaluating
liquefaction potential have been described bymany researchers (Dobry
et al., 1981; Seed et al., 1983; Stokoe et al., 1988; Tokimatsu and Uchida,
1990). Based onVs, Andrus et al. (1999) and (Andrus and Stokoe (2000)
have evaluated liquefaction potential for different sites.

A number of approaches based on Vs, both probabilistic and
Artificial Neural Network (ANN) methods have been proposed. Juang
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et al. (2001) have proposed a probabilistic framework for liquefaction
potential using Vs data. Goh (2002) successfully used probabilistic
neural network (PNN) for assessing liquefaction potential from Vs

data. A major disadvantage of ANN models is that, unlike other
statistical models, they provide no information about the relative
importance of the various parameters (Park and Rilett, 1999). In ANN,
as the knowledge acquired during training is stored in an implicit
manner, it is difficult to come up with reasonable interpretation of the
overall structure of the network (Kecman, 2001). This lead to the term
“black box”, which many researchers use while referring to ANN'S
behavior. In addition, ANN has some inherent drawbacks such as slow
convergence speed, less generalizing performance, arriving at local
minimum and over-fitting problems.

This paper proposes an alternative approach based on the
support vector machine (SVM) to predict the liquefaction of soil
using shear wave velocity (Vs). SVM, originally developed by Vapnik,
is a new machine learning method based on statistical learning
theory (Vapnik, 1995). In this paper, two models have been
developed using the SVM. The first model (model I) is based on
soil characteristics, which uses the input parameters such as
effective vertical stress (σ′v0), soil type, shear wave velocity (Vs),
peak horizontal acceleration (amax) and earthquake magnitude (M).
The second model (model II) is based on shear wave velocity, which
uses Vs, amax and M as input parameters. In this paper, the Vs

database collected by Andrus and Stokoe (1997) has been used to
develop two models to predict liquefaction resistance based on the
SVM model. The dataset used in this study represents 88 sites that
liquefied and 98 sites that did not liquefy. The dataset also contains
the information about the soil type, earthquake magnitude, shear
wave velocity, etc.
2. Evaluation of liquefaction resistance

A plot between earthquake load and liquefaction resistance has
been shown in Fig. 1. A boundary has been drawn in Fig. 1 between
earthquake load and liquefaction resistance combinations that have
and have not produced liquefaction in past earthquakes based on case
histories in terms of measured in situ test parameters (Whitman,
1971). In this method, cyclic stress ratio (CSR) is used as earthquake
load and cyclic resistance ratio (CRR) is used as liquefaction resistance
of a soil. CRR is generally assessed based on field methods such as SPT,
CPT and shear wave velocity.
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Fig. 1. Boundary indicates the minimum value of liquefaction resistance parameter
required to prevent liquefaction.
The most comprehensive study of the application of field-based Vs

measurements to seismic-liquefaction assessments has been pre-
sented by Andrus and Stokoe (2000). According to Andrus and Stokoe
(2000), CRR has been calculated from the following formula:

CRR = 0:03
Vs

100

� �2
+ 0:9

1
Vslc−Vsl

− 1
Vslc

� �
ð1Þ

where

Vsl = Vs
Pa
σ ′v0

� �0:25
ð2Þ

Vsl overburden-stress correlated shear wave velocity;
Pa atmospheric pressure approximated by 100 kPa;
σ′v0 initial vertical effective stress in kPa

For sands and gravels

Vslc = 220; fine content FCð Þ≤ 5%
= 210; FC≈ 20%
= 200; FC≥ 35%:

The CSR= τav
σ′v0

, at a particular depth in a level soil deposit has been
calculated by using following formula (Seed and Idriss, 1971):

CSR =
τav
σv

= 0:65
amax

g

� �
σv

σ ′v

� �
rd ð3Þ

where τav=average equivalent uniform cyclic shear stress caused by
the earthquake and is assumed to be 0.65 of the maximum induced
stress; amax=peak horizontal ground surface acceleration; g=accel-
eration of gravity; σ ′v=initial vertical effective stress at the depth in
question; σv=total overburden stress at the same depth and
rd=shear stress reduction coefficient to adjust for the flexibility of
the soil profile and it has been estimated from the chart by Seed and
Idriss (1971).

3. Support vector machine (SVM) model

The SVM has recently emerged as an elegant pattern recognition
tool and a better alternative to ANN methods. The method has been
developed by Vapnik (1995) and is gaining popularity due to many
attractive features. The formulation is based on Structural Risk
Minimization (SRM) which has been shown to be superior to the
Empirical Risk Minimization (ERM) used in conventional neural
networks (Vapnik, 1995). This section of the paper serves an
introduction to this relatively new technique. Details of this method
can be found in Boser et al. (1992), Cortes and Vapnik (1995),
Gualtieri et al. (1999), and Vapnik (1998). A binary classification
problem is considered having a set of training vectors (D) belonging to
two separate classes (liquefaction and no-liquefaction).

D = x1; y1
� �

;::::::::::; x1; y1
� �n o

x∈ Rn
; y∈ −1;+1f g ð4Þ

where x∈Rn is an n-dimensional data vector with each sample
belonging to either of two classes labelled as y∈ {−1,+1}, and l is the
number of training data. The main aim is to find a generalized
classifier that can distinguish the two classes (−1, +1) from the set of
the training vectors mentioned above (D). For a set of data, this would
mean a linear hyperplane defined by Eq. (5) which can distinguish the
two classes:

f xð Þ = w:x + b = 0 ð5Þ
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Fig. 2. Support vectors with maximum margin.
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where, w∈Rn determines the orientation of a discriminating
hyperplane, b∈R is a bias. For the linearly separable case, a separating
hyperplane can be defined for the two classes (liquefaction and no-
liquefaction cases) as:

w:xi + b≥ 1 for yi = 1ð Þ→No liquefaction
w:xi + b≤−1 for yi = −1ð Þ→Liquefaction:

ð6Þ

The above two equation can be combined as:

yi w:xi + bð Þ≥1: ð7Þ

Sometimes, due to the noise or mixture of classes introduced
during the selection of training data, variables ξiN0, called slack
variables, are used due to the effects of misclassification. So the Eq. (7)
can be written as:

yi w:xi + bð Þ≥1� ξi: ð8Þ
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Fig. 3. Variation of testing performance (%) and the number of support vectors with capacity
The perpendicular distance from the origin to the hyperplane for

liquefaction class w.xi+b=−1 is
1 + bj j
‖w‖

. Similarly, the perpendic-

ular distance from the origin to the hyperplane for non liquefaction

cases w.xi+b=1 is
b� 1j j
‖w‖

. The margin (ρ(w,b)) between the planes
is simply:

ρ w; bð Þ = 2
‖w‖

: ð9Þ

The optimal hyperplane is located where the margin between two
classes of interest is maximized and the error is minimized. The
maximization of this margin leads to the following constrained
optimization problem

Minimize:
1
2
‖w‖

2 + C∑
l

i=1
ξi

Subjected to: yi w:xi + bð Þ≥1� ξi:

ð10Þ

The constant (called capacity factor) 0bCb∞, a parameter defines
the trade-off between the number of misclassification in the training
data and the maximization of margin. This optimization problem is
solved by Lagrangian Multipliers (Vapnik, 1998). According to the
Karush–Kuhn–Tucker (KKT) optimality condition (Fletcher, 1987),
some of the multipliers will be zero. The nonzero multipliers are
called support vectors (see Fig. 2). In conceptual terms, the support
vectors are those data points that lie closest to the optimal hyperplane
and are therefore themost difficult to classify. The value of w and b are

calculated from w = ∑
l

i=1
yiαixi and b = − 1

2w x+1 + x−1½ �, where

x+1 and x−1 are the support vectors of class labels +1(no-
liquefaction) and −1(liquefaction) respectively. The classifier can
then be constructed as:

f xð Þ = sign w:x + bð Þ ð11Þ

where sign is the signum function. It gives+1 if the element is greater
than or equal to zero and −1 if it is less than zero.

In case where linear supporting hyperplane is inappropriate,
SVM maps input data into a high dimensional feature space through
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Table 1
Different types of soil.

Soil description Soil type number(T)

Gravel and gravelly sand (FCb5–10%) 4
Clean sand (FCb5%) 3
Sand mixture to sand (FC=5–15%) 2.5
Sand mixtures: sandy silt to silty sand (FC=15–35%) 2
Silt to sand mixtures (FC=35–70%) 1.5
Silt mixtures: silty clay to clayey silt 1
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Fig. 4. Values of α for model I.
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some non-linear mapping (Boser et al., 1992). This method easily
converts a linear classification learning algorithm into a non-linear
one, by mapping the original observations into a higher-dimensional
non-linear space so that linear classification in the new space is
equivalent to non-linear classification in the original space. Kernel
function has been introduced instead of feature space(Φ(x)) to
reduce computational demand (Cortes and Vapnik, 1995; Cristianini
and Shawe-Taylor, 2000). Polynomial, radial basis functions and
certain sigmoid functions has been used as a kernel functions. To
get the Eq. (5), same procedures have been applied as in the linear
case.
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4. Methodology

The main scope of this study is to implement SVM in the
prediction of liquefaction based on Vs measurements. Two models
have been developed using SVM to predict liquefaction resistance
based on field Vs data. In model I, based on soil characteristics, the
input parameters are σ′v0, soil type, Vs, amax, and M. In the second
method, model II, only shear wave velocity has been used to
characterize the soil properties. In model II, Vs, amax, and M have
been chosen as input parameters. In this paper, binary classification is
used (only Yes /No) for liquefaction classifier. However, one can
attempt, multi-classification (Watanachaturaporn et al., 2004) to
determine three types such as liquefaction, no-liquefaction and
marginal liquefaction.

4.1. Model based on soil characteristics (model I)

Liquefaction of soils during earthquakes is dependent on both
seismic and soil parameters. So, the parameters that have been
selected as input parameters for the model based on soil character-
istics are σ′v, soil type and Vs, and two earthquake parameters such as
amax andM. The data for the soil type has been taken from the work of
Andrus and Stokoe (1997). The dataset represented 88 sites that
liquefied and 98 sites that did not liquefy (Tables 3 and 4). The data is
normalized against their maximum values (Sincero, 2003). To use
these data for classification purpose, a value of −1 is assigned to the
liquefied sites while a value of 1 is assigned to the non-liquefied sites.
So, the output of the model will be either 1 or −1.

In carrying out the formulation, the data has been divided into two
sub-sets such as

(a) A training dataset: This is required to construct the model. In
this study, 130 out of the 186 data are considered for training.
Table 3 shows the training dataset.

(b) A testing dataset: This is required to estimate the model
performance. In this study, the remaining 56 data is considered
for testing. Table 4 shows the testing dataset.

The data has been divided into training and testing datasets using
the sorting method, to maintain statistical consistency. The statistical
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Table 2
General performance of SVM for different kernels for model based on soil characteristic (model I).

Kernel C Training performance (%) Testing performance (%) Number of support vectors

Radial basis function exp
− jx−y j2

2σ2

� �
; σ is width

� �
, σ=0.08 50 100 98.21 99

Polynomial [((x.y)+1)d, d=degree], d=3 60 90 87.5 47
Bspline [B2N+1(x−y), N=degree], N=2 100 100 91.07 4
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Fig. 6. Values of α for model II.
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consistency of training and testing datasets improve the performance
of the model and helps in evaluating them better (similar to what has
been used for ANN by Shahin et al., 2000).

The application of the SVM for this problem requires the proper
selection of different design parameters. In this study, the design
parameters are selected by carrying out a parametric study. Through
this parametric study, appropriate C value and kernel were selected.
In case of SVM training, three types of kernel functions – namely,
radial basis function kernel, polynomial kernel, and bspline kernel –
have been used. The values of C as well as other kernel specific
parameters have to be set to their optimal values during the model
training process.
4.2. Model based on shear wave velocity (model II)

In the model based on soil characteristic, σ′v, soil type is used as
input parameters. Multi channel analysis of surface wave (MASW)
method or Spectral Analysis of Surface wave (SASW)methods are (for
measurement of shear wave velocity profiles in field based on Raleigh
waves) non destructive techniques and do not have a provision to get
density or % of fines. In addition to the shear wave velocity survey, one
needs to drill boreholes and collect the samples to obtain the
information on density and %fines. Thus in this study, we have
attempted to develop the model based on shear wave velocity alone
to predict the liquefaction resistance. The parameters used in this
model II are Vs along with earthquake parameters such as amax and M.
Even here, the training dataset, testing dataset, normalization
technique and different kernel functions are same as the one used
for model I.
Table 3
General performance of SVM for different kernels for model based on shear wave velocity

Kernel C Training p

Radial basis function exp
− jx−y j2

2σ2

� �
; σ is width

� �
, σ=0.1 20 93.08

Polynomial [((x.y)+1)d, d=degree], d=3 170 80
Bspline [B2N+1(x−y), N=degree], N=2 190 86.15
Both the programs (model based on soil characteristic, model I,
and only on shear wave velocity, model II) are constructed using the
MATLAB (MathWork Inc., 1999).

5. Results and discussion

The optimum “C” value has been selected by carrying out a
parametric study. A large value of C assigns higher penalties to errors
so that the SVM is trained tominimize error with lower generalization
while a small value of C assigns fewer penalties to errors; this allows
the minimization of margin with errors, thus higher generalization
ability. If C goes to infinitely large, the SVM would not allow the
occurrence of any error and result in a complex model, whereas when
C goes to zero, the result would tolerate a large amount of errors and
the model would be less complex. So it is necessary to investigate the
impact of the C value on testing performance (%) as well as the
number of support vectors. The testing performance (%) is calculated
by:

Testing performance %ð Þ = No of data predicted accurately by SVM
Total data

� �
× 100:

ð13Þ

From Fig. 3, it is clear that the C value does not affect the testing
accuracy (%) of the model with radial basis function as well as bspline
kernel in model I. Fig. 3 shows generally that the number of support
vectors is decreasing with increasing C value for each kernel for model
I. Table 1 shows training, testing performance and design C value for
each kernel type with corresponding number of support vectors. For
best model and best testing performance, less number of support
vectors is desirable. It also shows that radial basis function gives the
best performance (using design C value and corresponding number of
support vectors as shown in Table 1) for model I (based on all soil
characteristics). The radial basis function has an overall success rate of
98.21%, with no errors in training dataset and one data error in the
testing dataset. Table 1 also highlights that the polynomial kernel
produces the lowest number of support vectors.

For model II (based on shear wave velocity), Fig. 4 shows the
variation of number of support vectors and testing performance (%)
with the C value. It also shows that the number of support vector as
well as testing performance (%) does not have any trend with the
C value for different kernels (Fig. 5). The training and testing
performance of each kernel, design C value and the number of
support vector are summarized in Table 2. A testing accuracy (%) of
91.07% has been achieved with radial basis function kernel. Out of 56
testing data only five data has been incorrectly classified. For model II
(based on shear wave velocity) radial basis function gives the best
result (using design C value and corresponding number of support
(model II).

erformance (%) Testing performance (%) Number of support vectors

91.07 62

76.79 74
85.71 45



Table 4
Performance of training dataset for both models using radial basis function.

σ′v amax Soil
type

M Vs Actual
class

Predicted class

Model I Model II

62.1 0.36 4 7.7 136 −1 −1 −1
58.2 0.36 4 7.7 173 −1 −1 −1
140.8 0.32 1.5 7.7 177 1 1 1
140.8 0.32 1.5 7.7 200 1 1 1
123.5 0.32 2.5 7.7 149 −1 −1 −1
54.7 0.16 3 7.5 115 −1 −1 −1
57.8 0.12 1 6.5 105 1 1 1
50.1 0.12 1.5 7.1 98 −1 −1 −1
43.6 0.12 1 7.1 101 −1 −1 −1
101.2 0.12 1 7.1 143 1 1 −1
36 0.46 4 6.9 206 1 1 1
55.8 0.21 2 6.5 90 −1 −1 −1
38.1 0.51 2 6.5 126 −1 −1 −1
48 0.5 2 6.5 131 −1 −1 −1
46.6 0.5 2.5 6.5 164 1 1 1
120.2 0.08 2 5.9 195 1 1 1
57.8 0.27 1.5 5.9 115 −1 −1 −1
55.8 0.2 2 5.9 90 −1 −1 −1
54.8 0.3 2.5 5.9 101 −1 −1 −1
48 0.02 2 5.9 133 1 1 1
77.5 0.14 2.5 7.1 178 1 1 1
79.4 0.16 2 7.1 121 −1 −1 −1
45.6 0.36 4 6.9 122 −1 −1 −1
32.9 0.36 4 6.9 128 −1 −1 −1
32.4 0.36 4 6.9 107 −1 −1 −1
38.1 0.36 4 6.9 154 −1 −1 −1
32.7 0.3 4 6.9 105 −1 −1 −1
28.7 0.29 4 6.9 106 −1 −1 −1
53.5 0.46 4 6.9 274 1 1 1
59.2 0.06 2 6 155 1 1 1
28.7 0.42 2 7.1 116 −1 −1 −1
35.4 0.22 1.5 6.6 127 1 1 1
35.4 0.18 1.5 6.6 146 1 1 1
35.4 0.18 1.5 6.6 130 1 1 1
35.4 0.04 1.5 6.2 127 1 1 1
70 0.19 4 8.3 144 −1 −1 −1
35.4 0.18 1.5 6.2 133 1 1 1
35.4 0.05 1.5 6.2 146 1 1 1
71 0.15 3 7.1 163 −1 −1 −1
35.4 0.05 1.5 6.2 130 1 1 1
35.4 0.16 1.5 7.6 127 1 1 1
35.4 0.16 1.5 7.6 130 1 1 1
53.9 0.12 1.5 5.9 127 1 1 1
55.8 0.11 2 5.9 90 1 1 1
38.1 0.06 2 5.9 126 1 1 1
57.8 0.24 1 5.9 105 1 1 1
46.6 0.03 2.5 5.9 164 1 1 1
57.9 0.2 3 6.9 135 −1 −1 −1
53.9 0.2 1.5 6.5 124 1 1 1
38.1 0.19 2 6.5 126 1 1 1
54.8 0.2 2.5 6.5 101 1 1 1
48 0.18 2 6.5 131 1 1 1
46.6 0.18 2.5 6.5 173 1 1 1
63.5 0.14 2 7.1 130 −1 −1 −1
83 0.14 2 7.1 157 −1 −1 −1
78.6 0.14 2 7.1 148 −1 −1 −1
90.6 0.14 2 7.1 137 −1 −1 −1
82.5 0.14 2 7.1 146 −1 −1 −1
48.8 0.14 3 7.1 154 −1 −1 −1
63.9 0.15 2.5 7.1 143 −1 −1 −1
78.8 0.16 1.5 7.1 117 −1 −1 −1
79.4 0.16 2 7.1 138 −1 −1 −1
82 0.16 2 7.1 145 1 1 −1
83.3 0.16 2 7.1 133 1 1 −1
92.4 0.24 2.5 7.1 148 −1 −1 −1
85.8 0.24 3 7.1 179 −1 −1 −1
86.2 0.24 3 7.1 145 −1 −1 −1
75.2 0.27 2.5 7.1 212 1 1 1
77 0.27 2.5 7.1 204 1 1 1
60.9 0.27 2.5 7.1 116 −1 −1 −1
82.2 0.15 2.5 7.1 120 −1 −1 −1
82.2 0.15 2.5 7.1 105 −1 −1 −1
105.7 0.15 3 7.1 220 1 1 1
58.2 0.19 4 7.1 161 1 1 1

(continued on next page)

Table 4 (continued)

σ′v amax Soil
type

M Vs Actual
class

Predicted class

Model I Model II

58.2 0.19 4 7.1 173 1 1 1
140.8 0.15 1.5 7.1 195 1 1 1
123.5 0.15 2.5 7.1 131 1 1 −1
123.5 0.15 2.5 7.1 146 1 1 −1
123.5 0.15 2.5 7.1 168 1 1 1
41 0.42 2 7.1 126 1 1 −1
57.8 0.42 2 7.1 135 1 1 −1
30.5 0.42 3 7.1 126 −1 −1 −1
42.4 0.25 3 7.1 130 −1 −1 −1
87.7 0.25 3 7.1 209 −1 −1 −1
39.6 0.25 3 7.1 143 −1 −1 −1
98.8 0.5 4 6.9 197 −1 −1 −1
139.1 0.48 3 6.9 149 1 1 1
58.2 0.36 4 7.7 161 −1 −1 −1
123.5 0.32 2.5 7.7 131 −1 −1 −1
123.5 0.32 2.5 7.7 168 −1 −1 −1
73.7 0.12 1 7.1 103 −1 −1 −1
57.8 0.13 1.5 6.5 115 1 1 1
54.8 0.12 2.5 6.5 101 1 1 1
59.2 0.08 2 5.9 155 1 1 1
38.1 0.06 2 5.9 126 1 1 1
48 0.02 2 5.9 131 1 1 1
46.6 0.02 2.5 5.9 173 1 1 1
36 0.36 4 6.9 102 −1 −1 −1
33.8 0.36 4 6.9 131 −1 −1 −1
36 0.3 4 6.9 122 −1 −1 −1
27.8 0.29 4 6.9 105 −1 −1 −1
57.4 0.23 4 6.9 271 1 1 1
35.4 0.22 1.5 6.6 130 1 1 1
35.4 0.18 1.5 6.6 127 1 1 1
35.4 0.04 1.5 6.2 133 1 1 1
35.4 0.18 1.5 6.2 130 1 1 1
35.4 0.05 1.5 6.2 127 1 1 1
35.4 0.16 1.5 7.6 133 1 1 1
140.2 0.1 2.5 6.5 150 1 1 1
54.8 0.13 2.5 5.9 101 1 1 1
48 0.03 2 5.9 133 1 1 1
53.9 0.2 1.5 6.5 127 1 1 1
55.8 0.2 2 6.5 90 1 1 −1
46.6 0.18 2.5 6.5 164 1 1 1
83.7 0.14 2 7.1 157 −1 −1 −1
86.4 0.14 2 7.1 152 −1 −1 −1
84.7 0.16 1.5 7.1 143 −1 −1 −1
79.4 0.16 1.5 7.1 152 −1 −1 −1
82.4 0.24 2.5 7.1 134 −1 −1 −1
85.8 0.24 3 7.1 145 −1 −1 −1
75.2 0.27 2.5 7.1 193 1 1 1
60.9 0.27 2.5 7.1 97 −1 −1 −1
59.6 0.15 3 7.1 120 1 1 −1
140.8 0.15 1.5 7.1 177 1 1 1
140.8 0.15 1.5 7.1 199 1 1 1
48.1 0.42 2.5 7.1 145 −1 −1 −1
69.8 0.25 3 7.1 162 −1 −1 −1
59.5 0.25 3 7.1 171 −1 −1 −1
110.9 0.5 4 6.9 174 −1 −1 −1
111 0.12 3 6.9 179 1 1 1
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vectors as shown in Table 2) which produces the lowest number of
support vectors (Fig. 6). The performance of model I is slightly better
than model II. This also demonstrates that for SVM classification, the
possibility of finding optimum hyperplane to separate the classes is
higher with 5 input variables in model I than with 3 input variables in
model II. Tables 3 and 4 show the performance of both models using
radial basis function for training and testing datasets respectively.

An additional dataset (as listed in Table 5) which is not part of the
training and testing dataset (which was presented earlier)) has been
collected from the work of Andrus and Stokoe (1997). The
performance of the above two developed models has been assessed
for this dataset and the same has been reported in Table 6. For both
the models, only one data has been misclassified. The prediction has



Table 5
Performance of testing dataset for both models using radial basis function.

σ′v amax Soil
type

M Vs Actual
class

Predicted class

Model I Model II

58.2 0.36 4 7.7 154 −1 −1 −1
140.8 0.32 1.5 7.7 199 1 1 1
35.3 0.12 1 7.1 122 −1 −1 −1
53.9 0.13 1.5 6.5 127 1 1 1
123.5 0.32 2.5 7.7 158 −1 −1 −1
53.9 0.27 1.5 5.9 127 −1 −1 −1
57.8 0.36 1 5.9 105 −1 −1 −1
49.4 0.36 4 6.9 109 −1 −1 −1
38.3 0.36 4 6.9 122 −1 −1 −1
53.9 0.13 1.5 6.5 124 1 1 1
35.4 0.22 1.5 6.6 133 1 1 1
35.4 0.04 1.5 6.2 146 1 1 1
35.4 0.18 1.5 6.2 127 1 1 1
35.4 0.16 1.5 7.6 146 1 1 1
53.9 0.12 1.5 5.9 124 1 1 1
48 0.03 2 5.9 131 1 1 1
57.8 0.2 1.5 6.5 115 1 1 1
48 0.18 2 6.5 133 1 1 1
60.9 0.14 2 7.1 131 −1 −1 −1
46.6 0.02 2.5 5.9 164 1 1 1
40.5 0.36 4 6.9 94 −1 −1 −1
78.8 0.24 2.5 7.1 146 −1 −1 −1
81.7 0.24 3 7.1 176 −1 −1 −1
59.6 0.27 2.5 7.1 125 −1 −1 −1
62.1 0.19 4 7.1 136 1 1 −1
140.8 0.15 1.5 7.1 200 1 1 1
120.2 0.06 2 6 195 1 1 1
46.9 0.25 3 7.1 116 −1 −1 −1
35.4 0.04 1.5 6.2 130 1 1 1
140.8 0.32 1.5 7.7 195 1 1 1
90.1 0.12 1.5 7.1 147 −1 −1 −1
53.9 0.27 1.5 5.9 124 −1 −1 −1
46.3 0.36 4 6.9 134 −1 −1 −1
35.4 0.22 1.5 6.6 146 1 1 1
35.4 0.18 1.5 6.2 146 1 1 1
57.8 0.12 1.5 5.9 115 1 1 1
57.8 0.21 1 6.5 105 1 1 1
35.4 0.05 1.5 6.2 133 1 1 1
86.2 0.24 3 7.1 142 −1 −1 −1
49.8 0.42 2 7.1 158 1 1 −1
58.2 0.19 4 7.1 154 1 1 1
33.4 0.19 4 8.3 79 −1 −1 −1
97.7 0.16 3 7.5 163 1 1 1
46.2 0.36 4 6.9 107 −1 −1 −1
84.7 0.16 1.5 7.1 135 −1 −1 −1
46.6 0.03 2.5 5.9 173 1 1 1
44.5 0.16 3 7.5 118 1 −1 −1
48 0.5 2 6.5 133 −1 −1 −1
82 0.16 2 7.1 148 1 1 −1
123.5 0.15 2.5 7.1 158 1 1 −1
69.2 0.14 2 7.1 136 −1 −1 −1
35.4 0.18 1.5 6.6 133 1 1 1
54.4 0.15 3 7.1 153 −1 −1 −1
53.1 0.25 2.5 7.1 150 −1 −1 −1
46.6 0.5 2.5 6.5 173 1 1 1
83.1 0.24 3 7.1 157 −1 −1 −1

Table 6
Performance of additional dataseta for both models using radial basis function.

Site name σ′v amax Soil
type

M Vs Actual
class

Predicted class

Model I Model II

Larter Ranche 39 0.5 1.5 6.9 176 −1 −1 −1
Larter Ranche 38.4 0.5 1.5 6.9 153 −1 −1 1
Larter Ranche 40.5 0.5 1.5 6.9 183 −1 −1 −1
Whisky Springs 38.2 0.5 1.5 6.9 181 −1 −1 −1
Whisky Springs 31.7 0.5 1.5 6.9 210 −1 1 −1

a Ref: Andrus, R. D., and Stokoe, K. H. (1997).
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been done with radial basis function for both models. The results
presented in Table 5 highlights very clearly that SVM is good tool to
predict liquefaction resistance of soils.

6. Conclusions

The application of the support vector machine (SVM) model in
liquefaction prediction is presented in this study. This paper has
demonstrated the usefulness of the SVM to model the complex
relationship between the seismic parameters and soil parameters. The
performance of the SVM model is improved as more input variables
are provided. Model I based on soil characteristics predicts the
liquefaction potential very accurately with the available training and
testing data. The effect of C on model accuracy and number of support
vectors has been investigated and presented. The optimum values of C
and the kernel are selected based on a parametric study. Model II
(based on shear wave velocity) presented clearly that only three
parameters {Vs, amax, and M} are sufficient for predicting liquefaction
potential of a site with depth. One major advantage of the SVM is its
optimization algorithm, which provides global minima in comparison
to the presence of local minima due to the use of a non-linear
optimization problem with the neural network approach. Other
advantage with the SVM is that it uses data points (called support
vectors) closest to the hyperplane in the classification process. The
SVM models are simpler to apply than the conventional methods.
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