Header menu link for other important links
X
Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties
Ragupathi C, Vijaya J.J,
Published in Elsevier BV
2014
Volume: 184
   
Issue: 1
Pages: 18 - 25
Abstract
Microwave combustion method (MCM) is a direct method to synthesize NiAl2O4 nanoparticles and for the first time we report the using of Sesame (Sesame indicum L.) plant extract in the present study. Solutions of metal nitrates and plant extract as a gelling agent are subsequently combusted using microwave. The structure and morphology of NiAl2O4 nanoparticles are investigated by X-ray diffraction (XRD), Fourier transforms infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, Brunauer-Emmett- Teller (BET) analysis and vibrating sample magnetometer (VSM). XRD pattern confirmed the formation of cubic phase NiAl2O4. The formation of NiAl2O4 is also confirmed by FT-IR. The formation of NiAl2O4 nanoparticles is confirmed by HR-SEM and HR-TEM. Furthermore, the microwave combustion leads to the formation of fine particles with uniform morphology. The magnetic properties of the synthesized NiAl2O4 nano and microstructures were investigated by vibrating sample magnetometer (VSM) and their hysteresis loops were obtained at room temperature. Further, NiAl2O4 prepared by MCM using Sesame (S. indicum L.) plant extract is tested for the catalytic activity toward the oxidation of benzyl alcohol. © 2014 Elsevier B.V.
About the journal
JournalData powered by TypesetMaterials Science and Engineering: B
PublisherData powered by TypesetElsevier BV
ISSN0921-5107
Open Access0