Header menu link for other important links
X
Synthesis of Cu-Al layered double hydroxide nanofluid and characterization of its thermal properties
, I. Sarkar, K. Haldar, S.K. Pal, S. Chakraborty
Published in Elsevier Ltd
2015
Volume: 107
   
Pages: 98 - 108
Abstract
Synthesis of pristine Cu-Al layered double hydroxide (LDH) nanofluid via one step method and study of its thermal properties are the core essence of the current work. Nitrate salts of Cu, Al and Na were mixed in a particular molar ratio at constant pH to produce desired Cu-Al LDH. Different dispersion techniques were utilized to uniformly disperse Cu-Al LDH in water to obtain Cu-Al LDH nanofluids. Broadly used characterization techniques were implemented to identify and characterize pristine Cu-Al LDH nanoparticle. These techniques were used to determine crystallite size, composition, morphology and characteristics vibration of interlayer anion present in the nanoparticle. The nanofluids were characterized for particle size, cluster size, surface tension and thermal conductivity. Particle size analysis was carried out to confirm the formation of nanofluid. Dynamic light scattering (DLS) method had been employed to measure the clustering tendency of nanofluid. Effect of nanofluid loading on thermal conductivity was studied in depth. Influence of particle size, shape and composition on thermal conductivity of nanofluid had also been selected as an essential topic of investigation. Zeta potential and visual phase separation study were carried out to measure the stability of concerned nanofluid. © 2015 Elsevier B.V.
About the journal
JournalData powered by TypesetApplied Clay Science
PublisherData powered by TypesetElsevier Ltd
ISSN01691317