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Abstract

In this work we investigate t-subnorms M that have strong associated negation. Firstly, we show that such t-subnorms are 

necessarily t-norms. Following this, we investigate the inter-relationships between different algebraic and analytic properties of 

such t-subnorms, viz., Archimedeanness, conditional cancellativity, left-continuity, nilpotent elements, etc. In particular, we show 

that under this setting many of these properties are equivalent. Our investigations lead us to two open problems which are also 

presented.

 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of triangular norms and triangular subnorms has been well studied and its applications well-established. 

Many algebraic and analytical properties of these operations, viz., Archimedeanness, conditional cancellativity, left-

continuity, etc., have been studied and their inter-relationships shown (see for instance, [6]).

Yet another way of categorizing t-subnorms is as follows: Given a t-subnorm M , one can obtain its associated 

negation nM (see Definitions 2.2 and 2.4 below). Note that nM is usually not a fuzzy negation, i.e., nM(1) ≥ 0. 

However, we can broadly consider two sub-classes of t-subnorms based on whether their associated negation nM is 

strong or not.

In this work, we study the class of t-subnorms whose associated negation nM is strong. Firstly, we show that 

such t-subnorms are necessarily t-norms. Following this, we investigate some particular classes of these and study 

the inter-relationships between different algebraic and analytic properties of such t-subnorms, viz., Archimedeanness, 

conditional cancellativity, left-continuity, etc. In particular, we show that under this setting many of these properties 

are equivalent. Our investigations have led us to two open problems, which are also presented.

E-mail address: jbala@iith.ac.in.

http://dx.doi.org/10.1016/j.fss.2017.01.012

0165-0114/ 2017 Elsevier B.V. All rights reserved.



B. Jayaram / Fuzzy Sets and Systems 323 (2017) 94–102 95

2. Preliminaries

To make this short note self-contained, we present some important definitions and properties, which can be found 

in [6,1].

Definition 2.1. A fuzzy negation is a function N : [0, 1] → [0, 1] that is non-increasing and such that N(1) = 0 and 

N(0) = 1. Further, it is said to be strong or involutive, if N ◦ N = id[0,1].

Definition 2.2. A t-subnorm is a function M : [0, 1]2 → [0, 1] such that it is monotonic non-decreasing, associative, 

commutative and M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1], i.e., 1 need not be the neutral element.

Definition 2.3. Let M be a t-subnorm.

(i) If 1 is the neutral element of M , then it becomes a t-norm. We denote a t-norm by T in the sequel.

(ii) M is said to satisfy the Conditional Cancellation Law if, for any x, y, z ∈ (0, 1],

M(x,y) = M(x, z) > 0 implies y = z . (CCL)

Alternately, (CCL) implies that on the positive domain of M , i.e., on the set {(x, y) ∈ (0, 1]2 | M(x, y) > 0}, 

M is strictly increasing.

(iii) M is said to be Archimedean, if for all x, y ∈ (0, 1) there exists an n ∈N such that x
[n]
M < y.

(iv) An element x ∈ (0, 1) is a nilpotent element of M if there exists an n ∈N such that x
[n]
M = 0.

(v) A t-norm T is said to be nilpotent, if it is continuous and if each x ∈ (0, 1) is a nilpotent element of T .

Definition 2.4. Let M be any t-subnorm and x, y ∈ [0, 1].

• The R-implication IM of M is given by

IM(x, y) = sup {t ∈ [0,1] | M(x, t) ≤ y} . (1)

• The associated negation nM of M is given by

nM(x) = sup{t ∈ [0,1] | M(x, t) = 0}. (2)

A brief note on nomenclature is perhaps warranted here. Firstly, the R-implication IM will be termed a residual

implication only if the underlying t-subnorm M is left-continuous.

Secondly, while nM is clearly a non-increasing function and nM(0) = 1, note that it need not be a fuzzy negation, 

since nM(1) can be greater than 0. Hence, only in the case nM is a fuzzy negation we call nM the natural negation

of M in this work. However, many results hold even if nM(1) > 0, see for instance [3,9], and hence to preserve this 

generality in such situations we term nM as the associated negation.

For instance, the following result is true even when nM(1) > 0.

Proposition 2.5 (cf. [1], Proposition 2.3.4). Let M be any t-subnorm and nM its associated negation. Then we have 

the following:

(i) M(x, y) = 0 =⇒ y ≤ nM(x).

(ii) y < nM(x) =⇒ M(x, y) = 0.

(iii) If M is left-continuous then y = nM(x) =⇒ M(x, y) = 0, i.e., the reverse implication of (i) also holds.

Proposition 2.6. Let M be any t-subnorm with nM being a natural negation with e as its fixed point, i.e., nM(e) = e. 

Then

(i) Every x ∈ (0, e) is a nilpotent element; in fact, x
[2]
M = 0 for all x ∈ [0, e).

(ii) In addition, if M is either conditionally cancellative or left-continuous, then e is also a nilpotent element.
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Proof. (i) By definition,

nM(e) = sup{t ∈ [0,1] | M(e, t) = 0} = e,

implies that M(e, e−) = 0, from whence we get M(x, x) ≤ M(e, e−) = 0 for all x ∈ [0, e). In other words, 

x
[2]
M = 0 for all x ∈ [0, e).

(ii) Let M be conditionally cancellative. If e
[2]
M = 0 then clearly e is a nilpotent element. If not, then we have M(e, e) =

x < M(1, e) ≤ e and from (ii) above we have M(x, x) = 0. Now,

e
[4]
M = M(M(e, e),M(e, e)) = M(x,x) = 0.

If M is left-continuous, then nM(e) = max{t ∈ [0, 1] | M(e, t) = 0} = e, i.e., e ∈ {t ∈ [0, 1] | M(e, t) = 0} and 

hence M(e, e) = 0, i.e., e is also a nilpotent element. ✷

Remark 2.7.

(i) In the case nM is a strong natural negation we can show that if M is conditionally cancellative then every x ∈ (0, 1)

is also a nilpotent element, see Remark 5.9(ii).

(ii) Note that without any further assumptions, the set of nilpotent elements need not be the whole of (0, 1). For 

instance, for the nilpotent minimum t-norm

TnM(x, y) =

{

0, if x + y ≤ 1,

min(x, y), otherwise,
x, y ∈ [0,1],

which is left-continuous but not conditionally cancellative, its set of nilpotent elements is (0, .5], while its set of 

zero divisors is (0, 1).

However, Theorem 6.1 gives an equivalence condition for the whole of (0, 1) to be the set of nilpotent elements 

under a suitable condition on nM .

3. T-subnorms with strong associated negation = t-norms

There are works showing that some classes of t-subnorms M whose associated negations nM are involutive do 

become t-norms. Jenei [4], also see [5], showed it for the class of left-continuous M , while Jayaram [2] did the same 

for conditionally cancellative M . The main result of this section shows that the above results are true in general, i.e., 

any t-subnorm with a strong natural negation is a t-norm.

The following result was firstly proven by Jenei in [4]. However, we give a very simple proof of this result without 

resorting to the rotation-invariance property.

Theorem 3.1 (Jenei, [4], Theorem 3). If M is a left-continuous t-subnorm with nM being strong, then M is a t-norm.

Proof. Firstly, note that if M is a left-continuous t-subnorm, then its residual implication satisfies the exchange 

principle, i.e.,

IM(x, IM(y, z)) = IM(y, IM(x, z)).

It follows from the fact that the neutral element of M does not play any role in the proof, see, for instance the proof 

given for Theorem 2.5.7 in [1].

If nM is strong, then for every y ∈ [0, 1] there exists y′ ∈ [0, 1] such that nM(y) = y′. Now,

IM(1, y′) = IM(1, IM(y,0)) = IM(y, IM(1,0)) = IM(y,0) = y′.

Thus, for all y′ ∈ [0, 1],

IM(1, y′) = max{t |M(1, t) ≤ y′} = y′ =⇒ M(1, y′) = y′ . ✷

Theorem 3.2 (Jayaram [2], Theorem 4.4). Let M be any conditionally cancellative t-subnorm. If nM is a strong 

natural negation then M is a t-norm.
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Now, we prove the main result of this section which shows that the above results are true in general.

Theorem 3.3. Let M be any t-subnorm with nM being a strong natural negation. M is a t-norm.

Proof. Note, firstly, that since nM(x) = sup{t ∈ [0, 1] | M(x, t) = 0}, is a strong negation, we have that nM(z) =

1 ⇐⇒ z = 0 and nM(z) = 0 ⇐⇒ z = 1. Equivalently, M(1, z) = 0 ⇐⇒ z = 0.

On the contrary, let us assume that M(1, x) = x′ � x for some x ∈ (0, 1]. Since nM is strong, the following are 

true:

(i) nM(x′) > nM(x),

(ii) if p > nM(x) then M(x, p) > 0,

(iii) there exists a y ∈ (0, 1) such that nM(x′) > y > nM(x) and M(y, x) = q > 0 while M(y, x′) = 0.

Now, by associativity we have

M(y,M(x,1)) = M(y,x′) = 0

M(M(y,x),1) = M(q,1)

}

=⇒ M(q,1) = 0,

a contradiction. Thus M(1, x) = x for all x ∈ [0, 1] and hence we have the result. ✷

In the following sections, we deal with t-subnorms whose associated negations are strong, or equivalently t-norms 

whose associated negations are strong. We discuss the inter-relationships between the different algebraic and analytical 

properties for this subclass of t-norms; in particular, Archimedeanness, Conditional Cancellativity, (Left-)continuity 

and Nilpotence that are relevant to our context. We begin with listing out some established results and go on to present 

some new ones.

4. Continuity and nilpotence

Let T be a t-norm and nT a strong negation. The following result, whose proof is straight-forward, shows the 

equivalence between continuity and nilpotence:

Theorem 4.1 (Klement et al. [6]). Let T be a t-norm with nT being strong. Then the following are equivalent:

(i) T is continuous.

(ii) T is a nilpotent t-norm.

Further, we know that every nilpotent t-norm is both Archimedean and Conditionally cancellative, since every 

nilpotent t-norm is isomorphic to the Łukasiewicz t-norm and the Archimedeanness and Conditionally cancellativity 

of T are preserved under isomorphism, see [6], Examples 2.14(iv) and 2.15(v). Trivially, every nilpotent t-norm is 

also left-continuous.

5. Conditional cancellativity, left continuity and nilpotence

Recently, in Jayaram [2], the following problem of U. Höhle, given in KLEMENT et al. [7] has been solved. Further 

it was shown that it characterizes the set of all conditionally cancellative t-subnorms.

Problem 5.1 (U. Höhle, [7], Problem 11). Characterize all left-continuous t-norms T which satisfy

IT (x, T (x, y)) = max(nT (x), y), x, y ∈ [0,1] , (3)

where IT , nT are as given in (1) and (2) with M = T .

Theorem 5.2 (cf. Jayaram [2], Theorem 3.1). Let M be any t-subnorm, not necessarily left-continuous. Then the 

following are equivalent:
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Fig. 1. A t-norm and a t-subnorm that are conditionally cancellative.

(i) The pair (IM , M) satisfies (3).

(ii) M is a Conditionally Cancellative t-subnorm.

Remark 5.3. The following statements follow from Theorem 5.2 with M = T , a t-norm:

(i) If a (right) continuous T satisfies (3) along with its R-implication then T is necessarily Archimedean, see [6], 

Proposition 2.15(ii).

(ii) However, if a left-continuous T satisfies (3) along with its residual implication then T need not be Archimedean 

and hence not continuous. An example is Hajék’s t-norm or the following t-norm TOY of Ouyang et al. [11], 

Example 3.4, which is a (CCL) t-norm (and hence a t-subnorm too) that is left-continuous but not continuous at 

(0.5, 0.5) and hence is not Archimedean (see Fig. 1(a)):

TOY(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2(x − 0.5)(y − 0.5) + 0.5, if (x, y) ∈ (0.5,1]2

2y(x − 0.5), if (x, y) ∈ (0.5,1] × [0,0.5]

2x(y − 0.5), if (x, y) ∈ [0,0.5] × (0.5,1]

0, otherwise

.

Theorem 5.4 (Jenei, [4], Theorem 2). Let T be a left-continuous t-norm with nT being strong. Then the following are 

equivalent:

(i) T is a conditionally cancellative t-norm.

(ii) T is a nilpotent t-norm.

In fact, for a conditionally cancellative t-subnorm M we can give an equivalent condition for it to be left-continuous.

Theorem 5.5. Let M be a (CCL) t-subnorm. Then the following are equivalent:

(i) M(x, nM(x)) = 0, x ∈ [0, 1].

(ii) M is left-continuous.

Proof. (i) =⇒ (ii): Let M(x, nM (x)) = 0, for all x ∈ [0, 1]. On the contrary, let us assume that M is not left-

continuous. Then there exist x0 ∈ (0, 1], y0 ∈ (0, 1] and an increasing sequence (xn)n∈N, where xn ∈ [0, 1), such 

that lim
n→∞

xn = x0, but
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lim
n→∞

M(xn, y0) = M(x−
0 , y0) = z′ < z0 = M(x0, y0).

Observe that

IM(y0, z
′) = sup{t ∈ [0,1] | M(y0, t) ≤ z′} = x0, (4)

since from the monotonicity of M we have M(y0, xn) ≤ z′ for every n ∈ N and M(y0, x0) = z0 > z′. Since M is 

(CCL), we have from (3)

IM(y0, z
′) = IM(y0,M(y0, x

−
0 )) = max(n(y0), x

−
0 ).

Now, we have two cases. On the one hand, if IM(y0, z
′) = x−

0 � x0, then it is a contradiction to (4). On the other 

hand, if IM(y0, z
′) = n(y0), then this implies that n(y0) = x0 from (4) and hence

M(x0, y0) = M(n(y0), y0) = z0 = 0,

by the hypothesis and hence there does not exist any z′ < z0 and hence M is left-continuous.

(ii) =⇒ (i): Follows from Proposition 2.5(iii). ✷

In other words, Theorem 5.5 states that for a (CCL) t-subnorm M , the only points at which M may not be left-

continuous is the boundary of the zero region ZM = {(x, y) ∈ [0, 1]2|M(x, y) = 0} which does not contain the origin.

Remark 5.6. In Theorem 5.5 we do not need nM to be a negation, i.e., nM(1) ≥ 0. Consider the following t-

subnorm MPf
(cf. Example 3.15 of [6], see Fig. 1(b)),

MPf
=

⎧

⎨

⎩

0.2 +
3(x − 0.2)(y − 0.2)

4
, if (x, y) ∈ (0.2,1]2

0, otherwise

which is a left-continuous (CCL) t-subnorm but nMPf
is not a negation since nMPf

(1) = 0.2.

Theorem 5.7. Let M be a (CCL) t-subnorm whose nM is strong. Then M is left-continuous.

Proof. If possible, let M(x0, n(x0)) = p > 0 for some x0 ∈ (0, 1). Since M is (CCL), we have M(1−, x0) < x0 and 

hence by associativity we have

M(1−,M(x0, n(x0))) = M(1−,p)

M(M(1−, x0), n(x0)) = 0

from whence it follows M(1−, p) = 0, i.e., n(p) = 1, a contradiction to the fact that nM is strong. Thus p = 0 and the 

result follows from Theorem 5.5. ✷

Theorem 5.8. Let M be a t-subnorm such that nM is strong. Then the following are equivalent:

(i) M is conditionally cancellative.

(ii) M is a nilpotent t-norm.

Proof. If M satisfies (CCL) then M is left-continuous, from Theorem 5.7 and now, using Theorem 5.4 we have the 

result. ✷

Remark 5.9.

(i) The nilpotent minimum t-norm TnM is an example of a t-subnorm M whose nM is involutive and M satisfies 

(LEM) with nM but is not conditionally cancellative and hence is not a nilpotent t-norm.

(ii) In the case nM is a strong natural negation, from Theorem 5.7 we see that conditionally cancellativity implies 

left-continuity and from Theorem 5.8 that every x ∈ (0, 1) is a nilpotent element.
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6. Archimedeanness, left continuity and nilpotence

We begin with a result that shows that if nM is strong, then the Archimedeanness is equivalent to every element 

x ∈ (0, 1) being nilpotent. However, unless M is also left-continuous, M is not a nilpotent t-norm.

Theorem 6.1. Let M be any t-subnorm such that nM is not completely vanishing, i.e., there exists z ∈ (0, 1) such that 

nM(z) > 0. The following are equivalent:

(i) Every x ∈ (0, 1) is a nilpotent element.

(ii) M is Archimedean.

Proof. (i) =⇒ (ii): Follows from Proposition 2.15 (iv) in [6].

(ii) =⇒ (i): Let M be any Archimedean t-subnorm such that nM is not completely vanishing, i.e., there exists z ∈

(0, 1) such that nM(z) > 0. By Proposition 2.5(ii) we see that for any 0 < z′ < nM(z) we have M(z′, z) = 0.

For any x ∈ [0, 1), by the Archimedeanness of M , there exists an n, p ∈ N such that x
[n]
M < z′ and x

[p]

M < z from 

whence we have that

x
[n+p]

M = M
(

x
[n]
M , x

[p]

M

)

≤ M(z′, z) = 0. ✷

Corollary 6.2. Let M be any t-subnorm such that nM is a strong negation. Then the following are equivalent:

(i) Every x ∈ (0, 1) is a nilpotent element.

(ii) M is Archimedean.

The following result is due to Kolesárová [8]:

Theorem 6.3. Let T be any Archimedean t-norm. Then the following are equivalent:

(i) T is left-continuous.

(ii) T is continuous.

Corollary 6.4. A left-continuous Archimedean t-subnorm M whose nM is involutive is a nilpotent t-norm.

Proof. From Theorem 3.1 we see that M is a left-continuous t-norm. From Theorem 6.3, since M is Archimedean 

it is continuous. Also by Theorem 6.1, we have that every x ∈ (0, 1) is a nilpotent element. Thus T is nilpotent, i.e., 

isomorphic to TLK(x, y) = max (0, x + y − 1). ✷

Remark 6.5.

(i) Note that there exist left-continuous Archimedean t-subnorms M that are not continuous and hence their nM is 

not involutive. For instance, consider the t-subnorm

M(x,y) =

{

x + y − 1, if x + y > 3
2
,

0, otherwise ,
x, y ∈ [0,1].

(ii) The nilpotent minimum t-norm TnM is an example of a left-continuous t-subnorm M whose nM is involutive but 

is not Archimedean and hence is not a nilpotent t-norm.

(iii) However, it is not clear whether there exists any non-nilpotent Archimedean t-subnorm M whose nM is involu-

tive. Clearly such t-(sub)norms are not left-continuous.

Problem 1. Does there exist any non-nilpotent Archimedean t-subnorm M whose nM is involutive. In other words, is 

an Archimedean t-subnorm M whose nM is involutive necessarily left-continuous?
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Fig. 2. A summary of the results available so far when nT is strong.

7. Archimedeanness and conditional cancellativity

In general, there does not exist any inter-relationships between Archimedeanness and conditional cancellativity, 

as the following examples show.

Example 7.1.

(i) The Ouyang t-norm TOY is an example of a t-(sub)norm which is not Archimedean but is both left-continuous 

and conditionally cancellative.

(ii) The following t-norm is neither Archimedean nor left-continuous but is conditionally cancellative:

T (x, y) =

⎧

⎪

⎨

⎪

⎩

0, if xy ≤ 1
2
& max(x, y) < 1

xy, if xy > 1
2

min(x, y), otherwise

.

(iii) The following t-subnorm is Archimedean and continuous, but not conditionally cancellative:

M(x,y) = max(0,min(x + y − 1, x − a, y − a,1 − 2a)),

where a ∈ (0, 0.5). For instance, with a = 0.25 we have M(0.75, 0.75) = M(0.75, 0.8) = 0.5.

(iv) The nilpotent minimum TnM, whose nM is strong, is neither Archimedean nor conditionally cancellative, but is 

left-continuous.

(v) The Lukasiewicz t-norm TLK(x, y) = max(0, x + y − 1) is both Archimedean and conditionally cancellative. 

Further, nTLK
is strong.

In fact, in the case when nM is strong we have the following partial implication.

Lemma 7.2. Let M be any t-subnorm whose nM is strong. If M is conditionally cancellative then M is Archimedean.

Proof. From Theorem 5.8, we have that if M is conditionally cancellative then M is a nilpotent t-norm from whence 

it follows that M is Archimedean. ✷

Problem 2. Does there exist any Archimedean t-subnorm M whose nM is involutive but is not conditionally cancella-

tive? In other words, is an Archimedean t-subnorm M whose nM is involutive necessarily conditionally cancellative?

In fact, from Theorem 3.3, it can be easily seen that the above two problems are an alternate formulation of 

Problem 2.1 in [10].

8. Concluding remarks

In this work, we have shown that t-subnorms whose associated negations are strong are necessarily t-norms. Further, 

we have studied the inter-relationships between some algebraic and analytical properties of such t-(sub)norms. Fig. 2

gives a pictorial summary of the results that exist so far. Our study has also opened up two interesting open problems.
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