
748 | ETRI Journal. 2020;42(5):748–760.wileyonlinelibrary.com/journal/etrij

1 | INTRODUCTION

MapReduce is a framework for processing huge datasets

in parallel and distributed computing environments [1]. It

adopts a centralized architecture; one node acts as a master

and all other nodes serve as workers [2]. The master node

schedules the tasks, while the workers are responsible for

performing the execution of the map and reduce tasks.

Fault tolerance is one of the most critical issues for

MapReduce [3]. During the execution of a large volume of

data, failure is a serious issue [4,5]. Some of the faults in

a workflow environment include network failures, node

crashes, memory leak, disk failures, out-of-disk space, and

task failures [6]. In a MapReduce cluster, master failures are

tolerated by setting up an effective standby master. Failed

tasks are automatically rescheduled from scratch, which sig-

nificantly increases task completion time. Suppose that the

total execution time of task i on node j is Tij. If task i encoun-

ters a failure at time t, then t ≪ Tij means that the failed job

has been redone effectively. If a failure occurred at the time

when all jobs had been done, then t ≫ Tij; that is, redoing the

failed job is computationally expensive as most of the jobs

have already been done [7]. Development of an efficient fault

tolerance mechanism in the MapReduce environment is an

active research area. Moreover, current works rely on exter-

nal storage facilities for storing the computed key-value pairs.

However, this could increase the task latency because of the

slower access time of external storage disks.

Received: 15 May 2018 | Revised: 30 August 2019 | Accepted: 13 April 2020

DOI: 10.4218/etrij.2018-0265

O R I G I N A L A R T I C L E

Task failure resilience technique for improving the performance

of MapReduce in Hadoop

Kavitha C
1

 | Anita X
2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change

Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2020 ETRI

1Department of Information and

Communication Engineering, Anna

University, Chennai, India

2Department of Computer Science and

Engineering, Jerusalem College of

Engineering, Chennai, India

Correspondence

Kavitha C, Research Scholar, Department

of Information and Communication

Engineering, Anna University, Chennai,

India.

Email: kavitha4cse@gmail.com

MapReduce is a framework that can process huge datasets in parallel and distributed

computing environments. However, a single machine failure during the runtime of

MapReduce tasks can increase completion time by 50%. MapReduce handles task

failures by restarting the failed task and re-computing all input data from scratch, re-

gardless of how much data had already been processed. To solve this issue, we need

the computed key-value pairs to persist in a storage system to avoid re-computing

them during the restarting process. In this paper, the task failure resilience (TFR)

technique is proposed, which allows the execution of a failed task to continue from

the point it was interrupted without having to redo all the work. Amazon ElastiCache

for Redis is used as a non-volatile cache for the key-value pairs. We measured the

performance of TFR by running different Hadoop benchmarking suites. TFR was

implemented using the Hadoop software framework, and the experimental results

showed significant performance improvements when compared with the perfor-

mance of the default Hadoop implementation.

K E Y W O R D S

Hadoop, in-memory, key-value pair, MapReduce, recovery, Redis cache, resilience, task failure

 | 749KAVITHA AND ANITA

In this paper, we propose the TFR technique, which al-

lows the MapReduce execution to continue from the state

where the failure has occurred by recovering the processed

bytes from the external source. The external source used

here is Amazon ElastiCache for Redis. Compared with other

in-memory data structure stores, Redis makes it very simple

to manipulate complex data structures.

The main contributions of this paper are listed as follows:

• We modified the original MapReduce workflow by im-

plementing the TFR algorithm in the standard map and

reduce code, which makes it possible to implement fault

tolerance.

• The following changes were done in the standard map and

reduce code:

a. A Hadoop application is integrated with Amazon

ElastiCache for Redis.

b. Whenever a mapper generates an intermediate key-

value pair, the pair is sent along with the metadata to an

external source.

c. During the execution of the shuffle and sort phases in

the reducer node, the generated key-value pairs are sent

to the external source. Moreover, the mapper fetches the

results of the shuffle and sort phases from the external

source and executes the reduce tasks.

d. If the execution fails, a retry attempt will skip the exe-

cution of the accomplished data recorded in the external

source.

• We evaluated the proposed Hadoop framework using the

HiBench Benchmarking Suite.

TFR is implemented using Hadoop, an Apache open-

source software framework built to support data-intensive ap-

plications running on large commodity clusters. The Hadoop

framework is designed mainly for the parallel and distributed

processing of massive data residing in a cluster of commodity

servers. To create a connection between Hadoop and Amazon

ElastiCache for Redis, TFR uses the Jedis client code, which

is a client library written in Java for Redis. TFR sends a re-

quest to the proxy server to store and retrieve data to and from

the Redis cache. The Hadoop source code was modified by

implementing TFR for the map phase and reduce phase.

The HiBench Benchmark Suite was used to analyze

the behavior and performance improvement of TFR. This

benchmark suit was used to perform a thorough comparison

between the default Hadoop implementation and our pro-

posed Hadoop application in terms of execution time. The

benchmarks used in the experiment were WordCount, Sort,

TeraSort, and PageRank. The experimental results showed

significant performance improvements with TFR when com-

pared with the performance of the default Hadoop implemen-

tation. The experimental data help in tuning the MapReduce

applications.

The rest of the paper is organized as follows. Section 2

discusses the related works. Section 3 illustrates the basic

execution flow of MapReduce. Section 4 describes the work-

ings of Amazon ElastiCache for Redis. Section 5 presents the

design and implementation of TFR. Section 6 discusses the

results of the performance evaluation. Finally, Section 7 con-

cludes this paper and describes the future work.

2 | RELATED WORKS

Many research studies have been conducted to improve the

performance of MapReduce execution in different aspects.

Some studies focused on implementing the job scheduling

algorithms to increase the execution time of MapReduce

tasks, while others focused on improving the execution of

MapReduce from task failures by utilizing any fault-toler-

ance strategy. Moreover, some studies concentrated on op-

timizing the configuration settings to improve the execution

flow of the MapReduce framework.

A resilient map task that uses checkpointing tactics was

introduced in [3] to make a small change in the original

MapReduce execution workflow and to gain a finer grained

fault tolerance. A mapper informs the master node with the

metadata of the spilled files that include the task ID, task

retry ID, input task range, host location, and task size. The

execution flow of this technique allows the reducers to shuf-

fle the spilled files of a task from different task retry attempts.

The technique used here creates a Java cache using HashMap,

which requires main memory and creates more overhead.

According to a recent study [8], a single job failure can

result in a 50% increase in total execution time. Moreover,

applications may fail for a variety of reasons that we cannot

count. To understand how an application will behave during

faults in greater detail, we need to categorize the faults by

using abstract models. These models help us to tolerate the

faults. The Byzantine fault-tolerant model in [9] provides a

fault tolerance framework to the Hadoop system. A simplistic

solution is proposed here by executing the job more than once

using the original Hadoop application. The map and reduce

task is re-executed until the fault limit + 1 output match. The

application executes the tasks many times to detect the ar-

bitrary faults. The completion time of the task execution is

sensitive to a slow-running task [10], as only one slow task

is enough to cause a serious delay in the whole job comple-

tion. Hadoop tries to detect slow-running tasks and launches

a checkpoint from them. The progress score of each task is

monitored to determine the slow-running task. The progress

score is simply the fraction of the key-value pairs for the map

tasks and the completion of the copy, sort, and reduce phases

for the reduce task.

Lin [11] proposed a library-level checkpointing approach

that uses a library to create checkpoints. A drawback of this

750 | KAVITHA AND ANITA

approach is that checkpoints cannot be created for certain

shell scripts and system calls as the system files cannot be ac-

cessed by a library. This proposed approach is implemented

in message passing interface (MPI)-based MapReduce data

computing applications.

Quiané-Ruiz and others [12] proposed the RAFTing

MapReduce, which piggybacks checkpoints on the task

progress computation. A local checkpointing algorithm that

allows a map task to store the metadata of the task progress

on a local disk has been implemented. This work tries to

create query metadata checkpointing to keep track of the

mapping between the input data and the intermediate data.

Gu and others [13] proposed the SHadoop, an optimized

version of Hadoop to improve the MapReduce performance in

Hadoop clusters. SHadoop aims at improving the internal exe-

cution time of short jobs. The authors experimentally evaluated

the scalability of SHadoop compared with that of the original

version of Hadoop by scaling the data with respect to the nodes

and by scaling the number of nodes with respect to the data.

The Hadoop++ method in [14] applies indexing on

Hadoop without changing the original source code. The par-

tition and indexing algorithm is added on top of the Hadoop

interfaces. The authors built a new distributed database

called HadoopDB, which is designed to utilize the fault-tol-

erant ability. The authors claimed that Hadoop++ runs 20

times faster than the original Hadoop. However, they failed

to incorporate the Hadoop fault tolerant strategy and, thus,

their method suffers from similar failure issues to those of

the original version of Hadoop. As each type of these fault

tolerance strategies and optimizations only pertains to a cer-

tain type of application, they lack general applicability. Our

fault tolerance strategy is a generalized approach to improve

the execution performance of MapReduce tasks.

3 | THE MAPREDUCE
FRAMEWORK

MapReduce is a programming framework based on two fun-

damental pieces of code: a map function and a reduce func-

tion. It is capable of processing an enormous amount of data

in parallel. The MapReduce model works in a master-slave

architecture. In the map step [15], the master node takes a

large problem input, divides it into smaller subproblems, and

then distributes them to worker nodes. The worker nodes ex-

ecute the tasks and handle the data movement between the

mappers and reducers.

MapReduce tasks take key-value pairs as input. Typically,

the input and output data are stored in the Hadoop Distributed

File System (HDFS). The InputFormat class in MapReduce

defines how these input files are to be split and read. It cre-

ates the InputSplit for MapReduce tasks. InputSplit is a log-

ical representation of data. The input splits are divided into

records, which are processed by the mappers. Each split has

one map task. The number of maps is handled by the number

of blocks in the input data, and the number of maps is deter-

mined by the InputFormat as follows:

Here, Split_size is based on the HDFS block size. The

default size of an HDFS block is 64 MB and can be extended

to 128 MB. In Hadoop, the user can define the Split_size and

can control it based on the Input_data_size by setting the ma-

pred.max.split.size property during job execution. Consider a

block size of 100 MB and expect 1 TB of input data; then, the

number of maps is calculated as

The performance of the data extraction task is scaled

by having many mappers running in parallel. Equation (2)

shows that there are 10 000 input splits, and it can spawn 10

000 map jobs in total for an input size of 1 TB. These 10 000

map jobs are launched in parallel to convert the input splits

into intermediate key-value pairs. Huge chunks of interme-

diate data will be produced by each of the mappers. The

stream of these intermediate data generated by each mapper

is buffered in memory and periodically stored on the local

disk of the mapper. This output record is summarized be-

fore it is passed to the reducer. There are two phases in the

reduce function: shuffle and sort. The output from the map-

pers is sorted and spawned as input to the reducers. The re-

ducer takes the outputs of the mappers by contacting every

mapper via a remote procedure call and processes them

to produce the final result, which is stored in the HDFS.

Figure 1 shows the execution flow of MapReduce, which is

a framework for pa.

The execution flow of MapReduce is explained as follows:

 1. The Hadoop job client submits the job copies and the

jar files to the HDFS. The Java MR API is the JobClient

class, which acts as an interface for the user job to in-

teract with the cluster. Hadoop splits the input data into

chunks, and the number of mappers is calculated using

(1).

 2. Each mapper takes one split at a time and is executed in

parallel.

 3. The input data are processed by these mappers, which

generate the intermediate key-value pairs.

 4. The mappers store their output in an in-memory buffer

of about 100 MB by default. When the buffer reaches a

(1)No_of_mappers=
Input_data_size

Split_size
.

1 TB = 1 000 000 MB,

(2)No_of_mappers=
1 TB

100 MB
=

1 000 000

100
=10 000 mappers.

 | 751KAVITHA AND ANITA

certain threshold limit, the contents are spilled to the local

disk of a machine on which the map task is running. Every

time a buffer reaches the spill threshold, a new spill file is

created. There are thus many spill files created as a result.

 5. If the combiner function is enabled before the map out-

puts are written to the disk, all intermediate key-value

pairs per mapper are merged into one output file.

 6. The results of the combiner function are written to the

local disk. All the output files of a map task are collected

over the network and sent to the reducer nodes.

 7. The input data to the reducer are shuffled on the reducer

node. Then, they are sorted and grouped together by key.

 8. The shuffled data are written to the local disk.

 9. The output data from the shuffle and sort phases are pro-

vided as input to the reducers.

 10. The output from the reducer nodes is written to the

HDFS.

In the Hadoop pipeline framework, when a system failure

occurs, the whole process of the above MapReduce execution

flow is computed again. Even after the system failure, these

intermediate key-value pairs are fed to another cluster of re-

ducers. When a failure occurs in a task, the corresponding

task is rescheduled to other reliable nodes, which start the

execution from scratch after the recovery. The TFR technique

is proposed to overcome this problem by eliminating the need

to restart a failed task from scratch.

4 | AMAZON ELASTICACHE FOR
REDIS

Redis is an open-source in-memory key-value store for use

as a cache. It eliminates the need to access a disk. Using

Amazon ElastiCache for Redis, we can add an in-memory

layer to the Hadoop application design. A Redis cluster

is created with six shards and 42.84 GB of memory using

the AWS Management Console. Amazon ElastiCache sup-

ports high availability using Redis replication. The key-

value pair is partitioned across six shards, and each shard

consists of one read/write primary node and two read-only

replica nodes. Each of these read replicas keeps a copy of

the key-value pair from the primary shards. A Hadoop ap-

plication writes only to the primary nodes. Read scalability

is enhanced through the read replicas and protects against

data loss.

We have enabled the automatic failover functionality

of Amazon ElastiCache on our Redis cluster. To improve

the fault tolerance, we provision the primary node and read

replicas in multiple availability zones (multi-AZ). Consider

the case of a Redis replication group with a primary node

in AZ-a and read replicas in AZ-b and AZ-c. If the pri-

mary node fails, the read replica is promoted as the primary

cluster. Amazon ElastiCache for Redis creates a new replica

in Az-a. When the entire cluster fails, all the nodes in the

failed cluster are recreated and provisioned in the same AZ

as that of the original nodes. The data in the primary node

and read replicas can be backed up if any failure occurs.

Partitioning the heavy load of key-value pairs over a

greater number of Redis nodes reduces the access bottle-

necks. Proxy-assisted partitioning is implemented, which

allows sending requests to a proxy that speaks to the Redis

instance. Redis with a cluster mode-enabled state has a con-

figuration end point that knows all the primary nodes and

the end points of the nodes in the cluster. When a Hadoop

application writes or reads the key-value pairs, Redis can de-

termine which shard the key belongs to and which end point

to use in that shard. A Redis cluster has 16,384 hash slots.

To map keys to hash slots, Redis computes the hash slot of

a key using the following formula: CRC16 (key) % 16 384,

F I G U R E 1 MapReduce execution

flow [Colour figure can be viewed at

wileyonlinelibrary.com]

Hadoop Distributed File System (HDFS) Hadoop Distributed File System (HDFS)

MAP 1

SPLIT1

MAP 2

SPLIT2

SPLIT 3

Key-value

Key-value

Key-value

Key-value

Key-value

MAP 3

Key-value

Input data

files

Output

data files

Combiner

Combiner

Combiner

Key-value

Key-value

Key-value

Key-value

Key-value

Key-value

Key-value

Key-value

Shuffle Reduce

Reducer

1

Reducer

2

In-memory circular

buffer per mapper
Local FS

1

2

3

4 6

5

7 9

8

10

752 | KAVITHA AND ANITA

where “%” is the modulus operator. Every shard in a cluster

is responsible for a subset of hash slots.

• Shard s1 = slots 0–2730

• Shard s2 = slots 2731–5461

• Shard s3 = slots 5462–8192

• Shard s4 = slots 8193–10 923

• Shard s5 = slots 10 924–13 654

• Shard s6 = slots 13 655–16 383

Redis can flush the cache in the background using the

redis-cli FLUSH command after the corresponding map-re-

duce task is completed.

5 | IMPLEMENTATION OF TFR

To resolve the above mentioned issues in Sections 1 and 2, we

designed a new MapReduce prototype system and implemented

it on the basis of the Amazon ElastiCache for Redis for a faster

recovery during the task failures. In this section, the conceptual

design of TFR is outlined. In the original version of Hadoop,

if a task execution fails, the whole task will be executed again.

This is because the MapReduce framework does not keep track

of the task progress after a task failure. The main goal of TFR

is to recover the processed bytes at a faster rate to continue the

execution from the state where the failure has occurred. In [16],

the intermediate data from the map and reduce tasks are stored

sequentially in files. To manage these intermediate files, the au-

thors implemented a distributed message management system

that aggregates the messages effectively.

A natural solution to recover the processed intermediate

data during a task failure is to save the ongoing computation

to some stable storage. Traditionally, for the storage of a mas-

sive amount of data, companies have two choices: vertical and

horizontal scaling [17]. Vertical scaling involves adding more

RAM modules and CPUs to a single large machine. Horizontal

scaling involves splitting the data into shards and storing them

over multiple machines in a distributed manner. Data storage

using cloud computing is a conceivable option for many small

to huge business organizations that use big data technology.

We need to leverage cloud computing solutions to address

big data problems. Amazon ElastiCache for Redis [18] easily

deploys a cache environment that accelerates the high-vol-

ume application workload. It caches the data and provides

data retrieval in submilliseconds. The two well-known dis-

tributed memory caching systems are Memcached and the

Redis protocol-compliant cache engine software. We cre-

ated a Hadoop application that uses Amazon ElastiCache for

Redis to recover all the processed data. It lightens the burden

associated with heavy request loads and increases the overall

performance. There are two main implementation techniques

available in the Redis ElastiCache data store [19].

• A client application needs to select the right Redis instance

to read or write the data.

• A client application should send the request to a proxy

server that can communicate using the Redis protocol. This

protocol, in turn, sends the request to the right Redis node.

TFR substitutes Amazon ElastiCache for Redis as the

in-memory key-value store for both the in-memory cir-

cular buffer of the mapper and the local file system. The

input of the map task and the output of the reduce task

reside in the HDFS. TFR utilizes Amazon ElastiCache for

Redis only for storing the intermediate key-value pairs.

TFR is fast because it requires only a few sub-millisec-

onds to collect all the saved data required. When a mapper

creates the intermediate key-value pairs, which are quite

large, TFR stores them along with their corresponding

timestamp in the Redis cache. Several changes are re-

quired to utilize TFR.

Figure 2 shows the execution flow of the TFR MapReduce

workflow.

F I G U R E 2 Proposed MapReduce

execution flow

Amazon ElastiCache

Hadoop Distributed File System (HDFS) Redis Server responsible for storing data and

Serving to the client application

Submit MR Job

Client program (jar)

Java MR API
MR job

controller and

scheduler

Input

data folders

Output

data folder

Map task Reduce task

\Map phase

Map

Reduce phase

(7) Shuffle and sort

(9) Reduce

Intermediate data

files

Redis storage API

(Jedis)
Master redis server

Node 1 Node 2 Node 3

4

3

2

1

6

Intermediate

data files

Intermediate

data files

5
8 10

 | 753KAVITHA AND ANITA

 1. A client submits a job with the Hadoop jar command and

copies the jar files to the HDFS.

 2. The Java MR API is the JobClient class, which acts as an

interface for the user job to interact with the cluster. The

class creates tasks on the basis of the file splits (blocks).

 3. It submits the task to the MR job controller, which is

the application master that assigns the job to the mappers

and reducers.

 4. The map phase is executed by reading the data from the

HDFS.

 5. Each map task generates the intermediate key-value

pairs.

 6. The results of the mapper are stored in the Redis cache

using the Jedis client API.

 7. The results of the map task are shuffled and sorted in the

reducer node by retrieving them from the Redis cache.

 8. The output data from the shuffle and sort phases are

stored in the Redis cache through the Jedis client code.

 9. These output data can be retrieved from the Redis cache

to provide as input to the reducers.

 10. The final reduced results are written to the HDFS.

We save the ongoing computation of the map and reduce

phases in the Redis cache as follows:

1. We download the Jedis client, which contains all the logic

for connecting to the nodes of Amazon ElastiCache for

Redis.

2. The MapReduce program of the Hadoop application is

modified so that it periodically updates the total processed

bytes and the timestamp to the Redis cache by making a

request to the proxy server. Read and write operations are

done through this request. Redis can handle up to a mil-

lion requests per second per cache node. Using this auto

discovery, the Hadoop application program connects to all

the nodes in the cluster without any intervention.

TFR is implemented by modifying the source code of

the original version of Hadoop. We modified the following

classes: OutputFormat, RecordWriter, Mapper, Reducer, and

Driver. All these classes were modified to enable them to re-

cover the processed data to the Redis cache and to create a

Jedis connection with Hadoop.

OutputFormat code: The OutputFormat class was mod-

ified to enable it to establish and verify the input job con-

figuration and to take a list of Redis instance nodes as a

CSV structure and a Redis hash key to write all the output.

RecordWriter: We modified this class to enable it to

write out the data to the Redis cache and to handle the

connection to the Redis server via the Jedis client. The

intermediate key-value pairs are written to the Redis in-

stance by making a request to a proxy server and pro-

vide an even distribution of all key-value pairs across all

Redis nodes. A constructor is created to store the hash

key to write to the Redis instance.

Mapper code: This class was modified to enable it to store

the generated key-value pairs along with the timestamp of the

Redis instance by making a request to the proxy server.

Reducer code: This class was modified to enable it to re-

trieve the mapper results from the right Redis instance and to

store the shuffled and sorted results to the Redis instance by

making a request to the proxy server.

Driver class: This code was modified to enable it to write

out the data to the Redis cache.

5.1 | TFR for the map phase

Algorithm 1 outlines the pseudo-code of TFR for recov-

ering the intermediate key-value pairs from the map task

failures. Each mapper is executed in parallel and stores the

output as a key-value pair (see lines 1-4). TFR skips the

storing of the intermediate data to a file system and sends

them directly to the external source. The total processed

bytes from each mapper are periodically updated in the

Redis cache using the Jedis client. We first connect to the

Redis server through the Jedis Java code. Lines 5 and 6 in

Algorithm 1 are used to obtain the Jedis connection pool.

Once the Jedis connection is established, it saves the data

to the Redis cache (see lines 7 and 8).

In this work, the total processed bytes along with the

hashKey and timestamp are stored in the Redis cache by

sending a request to a proxy server, which then sends the

request directly to the right Redis instance. Similar to the

Java hash map, the Redis hash map is a key between the

string keys and string values. The intermediate key-value

pairs from each mapper are distributed equally across all

Algorithm 1 TFR for the map phase

Input: (Key, Value)

Begin

[1]: for each m in mapper

[2]: Execute maptask (Object Key, Text Value)

[3]: /*user-defined code to run the mapper class*/

[4]: context.writeMapOutput (key1, value1);

[5]: Jedis jedis = new jedis ();

[6]: jedis. connect ();

[7]: writeMapOutput (Text key1, Text

value1):

[8]: jedis.set (hashKey, timestamp, key1.toString

(), value1.toString ());

[9]: if fail.isMapper ()

[10]: jedis.get (hashKey, timestamp, key1.toString (),

value1.toString ());

End

754 | KAVITHA AND ANITA

the Redis instance. Hence, hashKey can be used as a key to

identify the right key-value pair of a corresponding mapper.

Redis offers a timestamp facility to record the CPU statis-

tics, event logs, and times of occurrences of a particular

event. The < timestamp, key, value > triplet denotes the ob-

servation recorded at a point in time. Generally, data arrive

in an increasing timestamp order. Data are read from the

Redis cache by specifying the time window. When a failure

occurs, the execution begins from the state where the failure

has occurred. Redis saves the database needed to restore

to that state and provides a much more recent copy of the

saved data using the timestamp to continue the execution by

skipping it from the already processed bytes (see line 10 in

Algorithm 1).

5.2 | TFR for the reduce phase

Algorithm 2 outlines the pseudo-code of TFR for recovering

the processed bytes from the failed reduce task. The reduce

phase occurs after the map phase.

First, we fetch the map output bytes from the Redis cache

(see line 4 in Algorithm 2). In the shuffle and sort phases,

data from the mappers are grouped and sorted together by

key. The intermediate data from the mappers are transferred

to one or more reducers. Then, the TFR writes the shuffled

and sorted key-value pairs to the Redis cache (see lines 7 and

8). The sorted output is given as input to the reducer nodes. If

the failure occurs during the execution of the shuffle phase,

the last saved bytes of the failed shuffled task are retrieved

using the Jedis “get” method by attaching the timestamp to

retrieve the data recorded at the time of occurrence of that

event (see lines 10 and 11). Each reducer node obtains all the

values associated with the same key. The result of the reducer

is stored in the HDFS.

6 | PERFORMANCE EVALUATION

In this section, we analyze the performance of TFR.

Hadoop was used as the baseline and our prototype of TFR

was based on Hadoop 2.6.5. In this work, we used Hadoop

2.6.5 version to apply TFR on top of the original Hadoop

interfaces. TFR can be implemented in any higher version

of Hadoop to resolve the task failures efficiently. Most of

the previous studies have implemented the fault tolerance

strategy in Hadoop 1.x versions [2,9,12,13]. For a cluster

setup, we ran our experiments on a 10-node cluster, where

we dedicated one node to act as a master node and all other

nodes to run as slave nodes in a virtual environment. We

used Proxmox, which is an open-source virtual environ-

ment that is based on the Debian Linux distribution. Each

node has an Intel processor clocked at 2.40 GHz, and it is

equipped with 1.5 GB RAM and 200 GB HDDs. We de-

ployed Redis 2.8.22 on Amazon ElastiCache. The Redis

API such as the Jedis code was used as an interface between

the Hadoop application and Amazon ElastiCache for Redis

to store and retrieve data from the Hadoop application to

the Redis cache and vice versa. The capacity of the Redis

cache was 42.84 GB, and the node type was m4.xlarge (for

reference, see Table 1). We improved the performance of

the Hadoop application by performing a faster recovery of

the intermediate data from this high-throughput and low-

latency in-memory data store.

We performed a number of experiments separately to

evaluate Algorithms 1 and 2. The HiBench Benchmarking

Suite was used to assess the performance of the Hadoop

framework in terms of execution time for MapReduce using

the WordCount, Sort, TeraSort, and PageRank benchmarks.

The said benchmark suite was installed and configured in

all nodes. We ran our experiment by varying the sizes of the

datasets. Table 1 shows the benchmarking environment used

to test the performance of TFR. The experiments were de-

signed and tested to measure the following aspects:

Algorithm 2 TFR for the reduce phase

Input: (K1, V1)

Output: (K3, V3)

Begin

[1]: Execute shufflesort (Reducer reducerID,

MapOutputCollector<Key1, Value1>)

[2]: Jedis jedis = new jedis ();

[3]: jedis. connect ();

[4]: jedis.get (hashKey, timestamp, key1.toString (),

value1.toString ());

[5]: scheduleshuffle= new shuffle<Key1,

Value1>(reducerID,MapOutputCollector, hashKey,

key1, value1);

[6]: /*user-defined code to run the shuffle class*/

[7]: context.writeShuffleOutput (key2, value2);

[8]: writeshuffleOutput (Text key2, Text value2):

[9]: jedis.set (hashKey, timestamp, key2.toString (),

value2.toString ());

[10]: if fail.isShuffle_SortPhaseFailure ()

[11]: jedis.get (hashKey, timestamp, key2.toString (),

value2.toString ());

[12]: Execute reduceTask (Object Key, Text Value)

[13]: /*user-defined code for executing the reducer

class*/

[14]: context.writeReducerOutput (key3, value3);

[15]: write the reducer output to the HDFS as key-

value pairs

[16]: if fail.isreduceTask ()

[17]: jedis.get (hashKey, timestamp, key3.toString

(), value3.toString ());

End

 | 755KAVITHA AND ANITA

• The performance of TFR in terms of execution time.

• The performance of TFR in terms of throughput and latency

in recovering the data from Amazon ElastiCache for Redis.

We ran different benchmark programs several times on

Hadoop, and the measurement results were averaged. Each

experiment was repeated five times and the testbed condi-

tions were fixed to ensure the low variability and reproduc-

ibility of our results. For each data size, the WordCount,

Sort, TeraSort, and PageRank benchmarks were executed

five times. We calculated the coefficient of variation (CV)

for the execution times e based on the standard deviation

and mean,

Figure 3A shows the execution time of WordCount with

an input size ranging from 5 GB to 25 GB in both TFR and

Hadoop 2.6.5. With the increasing sizes of the datasets from

5 GB to 25 GB, the execution time significantly increased

from 150 s to 1,620 s for TFR. Table 2 summarizes the

performance improvement rate of TFR over that of Hadoop

2.6.5 on running WordCount. We quantified the measure-

ment of the dispersion of a set of execution times. A low

standard deviation value indicates that the set of execution

times measured from repeating the experiments five times

tended to be close to the mean. Figures 3B, 4B, 5B, and

6B show the standard deviation of Hadoop 2.6.5 and the

execution time of TFR for the WordCount, Sort, TeraSort,

and PageRank benchmarks. Figures 4A, 5A, and 6A show

the performance comparison results for running the Sort,

TeraSort, and PageRank benchmarks on Hadoop 2.6.5 and

TFR. Tables 3, 4, and 5 summarize the performance im-

provement rate of TFR over that of Hadoop 2.6.5 on run-

ning the Sort, TeraSort and PageRank benchmarks. From

the experiment results, we can see that the performance im-

provements varied for different benchmarks and that TFR

performed better than the original Hadoop. Figure 7 shows

the running time of the map, shuffle, and reduce phases

for the WordCount, Sort, TeraSort, and PageRank bench-

marks. The execution time of the task can be tracked by

starting the Job History Server Web UI, which contains the

information for each job such as the total run time and the

run time of each phase. MapReduce often faces failures

under various conditions. TFR is executed in a controlled

testing environment with the injection of known faults.

Errors and exceptions are added to the TFR application

logic to achieve the fault tolerance of the system. It is a

fault injection technique, where the source code of Hadoop

is modified to inject simulated faults into a system. The

error states are observed and termed as failures.

Whenever the map output file is shuffled by the reducers,

if there is not enough memory left, the file cannot be shuffled

to the memory buffer and, instead, a local disk file will be

created. If a task failure occurs, it is necessary to restart the

failing task and recompute all the input data from scratch,

which increases the overall execution time of the job. TFR

allows the execution of a restarted task to continue from the

point it was interrupted, without having to redo all the work

from scratch. As in [1], the map output buffer size is adjusted

to increase the performance of the MapReduce execution.

This feature is completely avoided in TFR because of its use

of the Amazon ElastiCache for Redis. Figure 8 shows the

performance comparison results between TFR and Hadoop

2.6.5 under both failure and non-failure conditions for the

WordCount benchmark, and these were obtained by combin-

ing Algorithms 1 and 2. We observed that the execution time

of an input job for TFR with failures was slightly higher than

that for TFR with no failures. Hadoop 2.6.5 performed badly

under failures and without failures.

In recent years, several techniques have been developed

to improve the performance of the MapReduce workflow.

Among those techniques, some are specific to a particular

type of applications such as reduce, skew, join, combiner,

group, and aggregate [20–23], which will introduce an extra

overhead and a negative impact on the computing cluster. The

MapReduce workflow in TFR runs faster under the failure

conditions because of the faster recovery of the intermediate

data. We observed that Redis storage is much faster than the

main memory and hard drives.

We examined the throughput and latency of our proposed

TFR technique in retrieving the required intermediate data

(3)Coefficient of variation CV =

Standard deviation

mean
=

�

�
,

(4)Standard deviation � =

√

√

√

√

1

n

[

n
∑

x= 1

e
x
−� 2

]

,

(5)Mean � =

1

n

n
∑

x=1

e
x
.

T A B L E 1 Hardware and software configurations

No. of Nodes 10

CPU Intel Xeon 12 cores

No. of Cores per CPU 1

No. of CPUs per node 1

Memory 16 GB

RAM DDR4

Hard drive 2 TB Seagate Barracuda

Network 2 Gigabit Ethernet NIC

Operating System Linux 5.2

JVM JDK 2.0

Hadoop Version Hadoop 2.6.5

Redis Redis 2.8.22

756 | KAVITHA AND ANITA

from the Amazon ElastiCache for Redis through the Jedis cli-

ent API. To test this, we needed the Redis benchmark utility.

Figure 9 shows the performance result of Redis on the GET/

SET operations. This performance was evaluated using the

Redis benchmarking tool [24]. The SET and GET commands

were used to store and retrieve, respectively, the intermediate

data between the Hadoop application and Amazon ElastiCache

for Redis through the Jedis client request. During the execu-

tions of the map and reduce phases, the results of the map and

shuffle tasks were written to the Redis cache.

F I G U R E 3 (A) Running times of the WordCount benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation

of Hadoop 2.6.5 and the execution time of TFR for the WordCount benchmark

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v

er
ag

e
ru

n
n

in
g

 t
im

e
in

se
co

n
d

s

5 10 15 20 25

Data size (GB)

Hadoop 2.6.5 TFR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Hadoop 2.6.5 TFR

(A) (B)

5 10 15 20 25

Data size (GB)

T A B L E 2 Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the WordCount benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 220 150 533 368 754 500 1276 1019 1900 1620

Standard deviation 2.88 2.19 2.86 2.30 3.24 2.19 3.033 2.07 2.58 2.19

CV (%) 1.311 1.45 0.53 0.62 0.429 0.43 0.23 0.20 0.136 0.13

Improvement rate (%) 31.82 30.96 33.69 20.14 14.74

F I G U R E 4 (A) Running times of the Sort benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation of

Hadoop 2.6.5 and the execution time of TFR for the Sort benchmark

0

200

400

600

800

1000

1200

1400

1600

1800

A
v

er
ag

e
ru

n
n

in
g

 t
im

e
in

se
co

n
d

s

Data size (GB)

Hadoop 2.6.5 TFR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Data size (GB)

Hadoop 2.6.5 TFR

(A) (B)

5 10 15 20 25 5 10 15 20 25

 | 757KAVITHA AND ANITA

F I G U R E 5 (A) Running times of the TeraSort benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation of

Hadoop 2.6.5 and the execution time of TFR for the TeraSort benchmark

0

200

400

600

800

1000

1200

1400

1600

1800
A

v
er

ag
e

ru
n

n
in

g
 t
im

e
in

se
co

n
d

s

Data size (GB)

Hadoop 2.6.5 TFR

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

(A) (B)

5 10 15 20 25 5 10 15 20 25

Data size (GB)

Hadoop 2.6.5 TFR

F I G U R E 6 (A) Running times of the PageRank benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation

of Hadoop 2.6.5 and the execution time of the TFR for the PageRank benchmark

(A) (B)

T A B L E 3 Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the Sort benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 140 100 300 220 500 370 927 690 1550 1200

Standard deviation 2.09 1.09 2.79 1.78 2.70 2.28 2.30 1.94 2.86 1.67

CV (%) 1.48 1.09 0.92 0.81 0.53 0.61 0.24 0.52 0.18 0.13

Improvement rate (%) 28.57 26.67 26.00 25.57 22.58

T A B L E 4 Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the TeraSort benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 155 110 350 250 600 450 1010 780 1650 1300

Standard deviation 2.60 1.64 3.08 1.78 2.77 2.28 3.03 2.44 2.77 2.38

CV (%) 1.67 1.48 0.88 0.71 0.46 0.50 0.30 0.31 0.14 0.18

Improvement rate (%) 29.03 28.57 25.00 22.77 21.21

758 | KAVITHA AND ANITA

7 | CONCLUSIONS AND FUTURE
WORK

A new task failure resiliency method has been proposed

and implemented, which performs better than the standard

Hadoop. The intermediate data from the map and shuffle

phases are backed up to an in-memory data store for error

recovery. The TFR technique is implemented on the basis

of Hadoop 2.6.5, a popular open-source implementation of

MapReduce. It was evaluated to determine the overhead and

effectiveness of all features included in it. TFR outperformed

Hadoop 2.6.5 in different scenarios including conditions with

no failures and a diverse density of failures.

In the future, we will recover the worker node failures by

scheduling the least reliable node to another healthier node and

will seek further improvements to the node failure recovering

strategy. We will also concentrate on more possible optimi-

zations to further improve the MapReduce performance and

T A B L E 5 Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the PageRank benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 250 160 540 350 850 590 1,300 970 2000 1500

Standard deviation 2.68 2.19 2.40 1.78 2.60 1.94 2.77 2.16 2.86 2.19

CV (%) 1.07 1.36 0.44 0.51 0.30 0.33 0.21 0.22 0.143 0.146

Improvement rate (%) 36 35.19 30.58 25.38 25

F I G U R E 7 Running times of the map, shuffle, and reduce phases for the (A) WordCount, (B) Sort, (C) TeraSort, and (D) PageRank

benchmarks

0 100 200 300 400 500 600 700 800

5

10

15

20

25

Average running time (s)

D
at

a
si

ze
 (

G
B

)

Reduce Shuffle Map

0 100 200 300 400 500 600

Average running time (s)

Reduce Shuffle Map

5

10

15

20

25

D
at

a
si

ze
 (

G
B

)

0 200 400 600

Average running time (s)

Reduce Shuffle Map

0 200 400 600

Average running time (s)

Reduce Shuffle Map

5

10

15

20

25

D
at

a
si

ze
 (

G
B

)

5

10

15

20

25

D
at

a
si

ze
 (

G
B

)

(A) (B)

(C)
(D)

 | 759KAVITHA AND ANITA

reduce the impact of a possible data security breach. The weak-

ness of the data security mechanism obstructs the development

and use of Hadoop. Hadoop and HDFS have no security model

against storage servers. Accordingly, to make the Hadoop plat-

form more secure for enterprises, we need to propose new secu-

rity models in the future.

ORCID

Kavitha C https://orcid.org/0000-0001-7034-2848

REFERENCES

 1. H. Jin et al., Performance under Failures of MapReduce

Applications, in Proc. IEEE/ACM Int. Symp. Cluster, Cloud

Grid Comput. (Newport Beach, CA, USA), May 2011, pp. 608–

609.

 2. H. Herodotou, Hadoop performance models. arXiv:1106.0940,

2011, 1–19.

 3. H. Wang et al., BeTL: MapReduce checkpoint tactics beneath the task

level, IEEE Trans. Services Comput. 9 (2016), no. 1, 84–95.

 4. M. Isard et al., Dryad: Distributed data parallel programs from

sequential building blocks, in Proc. ACMSIGOPS, Eur. Conf.

Comput. Syst. (Lisbon Portugal), Mar. 2007, pp. 59–72.

 5. J. Dean, Experiences with MapReduce, An abstraction for large-

scale computation, in Proc. Int. Conf. Parallel Architectures

Compilation Techn. (Seattle, WA, USA), Sept. 2006, p. 1.

 6. K. Plankensteiner et al., Fault Detection, Prevention and Recovery

in Current Grid Workflow Systems, Grid and Services Evolution,

Springer, 2009, pp. 1–13. https://doi.org/10.1007/978-0-387-

85966 -8_9.

 7. Y. Chen et al., aHDFS: An Erasure-Coded Data Archival System

for Hadoop Clusters, IEEE Trans. Parallel Distrib. Syst. 28 (2017),

no. 11, 3060–3073.

 8. Q. Zheng, Improving MapReduce Fault Tolerance in the Cloud,

in Proc. IEEE Int. Symp. Parallel Distrib. Process. (Atlanta, GA,

USA), May 2010, pp. 1–6.

 9. P. Costa et al., Byzantine Fault-Tolerant MapReduce: Faults are

not just crashes, in Proc. IEEE Int. Conf. Cloud Comput. Technol.

Sci. (Athens, Greece), 2011, 32–39.

 10. P. Hu and W. Dai, Enhancing Fault Tolerance Based on Hadoop

Cluster, Int. J. Database Theor. Appl. 7 (2014), no. 1, 37–48.

 11. J. Lin et al., Modeling and Designing Fault-Tolerance Mechanisms

for MPI-Based MapReduce Data Computing Framework, in Proc.

IEEE Int. Conf. Big Data Comput. Service Applicat. (Redwood

City, CA, USA), 2015, pp. 176–183.

 12. J.-A. Quiané-Ruiz et al., RAFTing MapReduce: Fast Recovery

on the RAFT, in Proc. IEEE Int. Conf. Data Eng. (Hannover,

Germany), Apr. 2011, pp. 589–600.

 13. R. Gu et al., SHadoop: Improving mapreduce performance by op-

timizing job execution mechanism in Hadoop Clusters, J. Parallel

Distrib. Comput. 74 (2014), no. 3, 2166–2179.

 14. J. Dittrich et al., Hadoop++: Making a yellow elephant run like

a cheetah (without it even noticing), Proc. VLDB Endowment 3

(2010), no. 1, 515–529.

 15. https://data-flair.train ing/blogs/ hadoo p-mappe r-in-mapre duce/.

 16. H. Jianfeng et al., KVBTree: A Key/Value Based Storage Structure

for Large-Scale Electric Power Data, in Proc. Int. Conf. Adv.

Cloud Big Data (Chengdu, China), Aug. 2016, pp. 133–137.

 17. M. Zaharia et al., Improving MapReduce performance in heteroge-

neous environments, in Proc. USENIX Conf. Operat. Syst. Design

Implementation (San Diego, CA, USA), Dec. 2008, pp. 29–49.

F I G U R E 8 Performance measure of

TFR and Hadoop 2.6.5 in terms of failures

0

500

1000

1500

2000

2500

5 10 20 25

A
v

er
ag

e
ru

n
n

in
g

 t
im

e
(s

)

15

Data size (GB)

TFR with no failures Hadoop 2.6.5 with no failures

TFR with failures Hadoop 2.6.5 with failures

F I G U R E 9 Performance benchmark of TFR in terms of Redis

storage

760 | KAVITHA AND ANITA

 18. AWS, What Is Amazon ElastiCache for Redis?, https://docs.aws.

amazon.com/Amazo nElas tiCac he/lates t/UserG uide/WhatIs.html.

 19. 8K Miles, Billion Messages – Art of Architecting scalable

ElastiCache Redis tier, Sept. 2014, https://8kmil es.com/blog/billi

on-messa ges-art-of-archi tecti ng-scala ble-elast icach e-Redis -tier.

 20. L. Chen et al., MRSIM: Mitigating Reducer Skew in MapReduce,

in Proc. Int. Conf. Adv. Inf. Netw. Applicat. Workshops (Taipei,

Taiwan), Mar. 2017, pp. 379–384.

 21. C. B. Walton, A. G. Dale, and R. M. Jenevein, A Taxonomy and

Performance Model of Data Skew Effects in Parallel Joins, in Proc.

Int. Conf. Very Large Data Bases (Barcelona, Spain), 1991, pp.

537–548.

 22. S. Acharya, P. B. Gibbons, and V. Poosala, Congressional samples

for approximate answering of group-by queries, ACM SIGMOD

Record. ACM 29 (2000), no. 2, 487–498.

 23. A. Shatdal and J. F. Naughton, Adaptive Parallel Aggregation

Algorithms, ACM SIGMOD Record. ACM 24 (1995), no. 2,

104–114.

 24. Redis, How fast is Redis?, https://Redis.io/topic s/bench marks.

AUTHOR BIOGRAPHIES

Kavitha C received her BE degree in

computer science and engineering

from Agni College of Technology,

Chennai, India, in 2013 and her ME

degree in computer science and engi-

neering from Saveetha Engineering

College, Chennai, India, in 2015. She

is pursuing her PhD in information

and communication engineering at Anna University,

Chennai, India. Her research interests include big data an

alytics, machine learning, and cloud computing.

Anita X received her BE degree in

computer science and engineering

from Madurai Kamaraj University,

Madurai, India, in 2003 and her ME

degree in computer science and engi-

neering from Anna University,

Chennai, India, in 2008. She has ob-

tained her PhD in the field of network

security. She is presently working as an associate profes

sor in the Department of Computer Science and

Engineering, Jerusalem College of Engineering, Chennai,

India. Her research interests include data analytics, image

processing, cloud computing, sensor networks, and net-

work security. Under her guidance, one scholar had ob-

tained a PhD and there are approximately four other re-

search scholars pursuing their PhD. She has 20 publications

in national/international journals and conferences.

