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The thermodiffusive behavior of a Lennard-Jones binary mixture has been studied by using nonequi-
librium molecular dynamics. In particular, the dependence of the Soret coefficient, ST , on the temper-
ature and composition has been investigated, exploring a wide range of temperatures from 1000 K
to the condensation temperature of the mixture. In a previous paper the dependence of ST on the
temperature and the composition was studied for Lennard-Jones binary mixtures presenting mix-
ing/demixing (consolute) phase transition, and the results allowed the formulation of a very sim-
ple expression with the computed values of ST in the one phase region outside the critical region
closely fitted by the function [T − Tc (x1)]−1, with Tc (x1) the demixing temperature of the mixture
under study. The results of the present work show that the same expression of ST can be found
for the one phase region outside the evaporation/condensation region but now with Tc representing
the condensation temperature of the mixture under study. © 2011 American Institute of Physics.
[doi:10.1063/1.3561672]

I. INTRODUCTION

Thermodiffusion, also known as Soret effect,1, 2 is the
phenomenon in which a mass flux in a mixture is induced
by a temperature gradient. It is a nonequilibrium effect which
describes the coupling between a temperature gradient and an
induced resulting mass flux, which adds up to the Fickian flux,
in a multicomponent system. The presence of a constant tem-
perature gradient induces the development of a concentration
gradient, whose amplitude at the steady state is controlled by
the Soret coefficient, ST = DT /D (D and DT are the Fickian
and the thermal diffusion coefficients, respectively).

Assuming fluxes and gradients in the z-direction, in a bi-
nary mixture at the steady state one has3

ST =
DT

D
= −

1

x1(1 − x1)

(

∂x1

∂z

) (

∂T

∂z

)−1

, (1)

where x1 is the molar fraction for the species 1 (commonly
chosen as the heavier species). Positive values of ST indicate
that species 1 tends to accumulate in the “cold” region.

The complete description of the relevant properties of the
thermodiffusion process is out of the scope of the present
work, and the reader is referred to recent reviews4, 5 and to
two papers of our group6, 7 for more details. A study previ-
ously published by our group7 is of particular interest for the
present work and the main results there obtained are therefore
here briefly recalled. In Ref. 7 the dependence of ST on the
temperature has been investigated by varying the value of the
term ǫ12 of the Lennard-Jones (LJ) interaction potential of a
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binary mixture of Argon and Krypton. The study was carried
out by using nonequilibrium molecular dynamics, where the
temperature gradients were generated following the method
proposed by Müller-Plathe.3, 8 In summary, in this method the
energy flux is generated by exchanging in the simulation box,
for each species, the velocity vectors of the hottest particle
in the “cold” region with the coldest one in the “hot” region.
This leads to an energy transfer from the cold region to the
hot one if the coldest particles of the hot region has less ki-
netic energy than the hottest one of the cold region (due to
the broad form of the Maxwell–Boltzmann distribution this
hypothesis is normally satisfied). As a consequence of this ar-
tificial energy flux, a temperature gradient develops between
the hot and the cold regions, until a steady state is reached,
in which the energy flux due to the temperature difference
compensates the artificial flux. The velocity exchange is done
every Nexch simulation time steps, where Nexch is chosen (in
a trial and error strategy) so that the temperature gradient is
as small as possible with the constraint to show a clear (and
numerically stable) concentration gradient. This method has
been implemented in our laboratory into the commercial code
M.Dynamix,9 and is adopted also in the present study (see
also Refs. 6 and 7 for the details of the implementations of
this algorithm in our calculations). The key result obtained in
Ref. 7 is that the Soret coefficient diverges at the demixing
temperature of the mixture following the simple relation ST

= [T − Tc]−1, where Tc is the demixing temperature (depend-
ing on the composition of the mixture). The divergence of ST

when T approached Tc is well known. Indeed, by consider-
ing the critical temperature, Tc, as a reference, one can iden-
tify two regions. In the first region (called critical domain,
usually few Kelvin, or less, around Tc) the divergence of the
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correlation length of the fluctuations leads to universal scaling
laws for the critical behavior of the transport coefficients.10

While DT does not show a critical behavior, D presents the
characteristic asymptotic (Ising-like) critical slowing down11

approaching Tc, leading to an asymptotic divergence of
the Soret coefficient like (T − Tc)−0.67 (see for instance
Refs. 12 and 13). The second region, situated outside the crit-
ical region, is characterized by the fact that the relevance of
the fluctuations becomes vanishing, the correlation length is
smaller than the characteristic length scale and the behavior
is not universal, showing a marked dependence on the na-
ture of the interacting details (classical mean field, or van
der Waals, regime). In 2004 Enge and Köhler13 indicated, for
the classical mean field regime, the scaling ST ≃ ε−1, where
ε = (T − Tc) /Tc. This result is obtained starting from the
long wavelength limit of the collective diffusion coefficient,
considering the thermal activated nature of the background
part (the one surviving in the classical mean field regime) of
D and DT and supposing that both the background contri-
bution of the Onsager coefficient (αb) and DT have a simi-
lar activation energy kBTa . The (T − Tc)−1 behavior has been
experimentally confirmed11, 13 for a polymer blend for large
values of ε. It is important to note that this result indicates a
scaling behavior and not the absolute amplitude of the effect.
The importance of the simple relation found in Ref. 7 comes
from the fact that it is a complete equation (and not just a
power-low scaling relation), that it is valid over a broad range
of temperature (of the order of many hundreds of kelvin), and,
obviously, from its simplicity (depending only on one prop-
erty of the mixture).

The aim of this work is to further proceed in this research
project, by presenting a study concerning the evaluation of the
dependence of ST on the temperature in the case of a binary
LJ mixture in a range of temperatures ending on the line of
evaporation/condensation critical points (liquid–vapor equi-
librium).

While the P–T phase diagram of a single component sys-
tem shows a single critical point, the critical behavior of a bi-
nary mixture is, by far, much more complex. In fact, the phase
diagram region of a binary mixture in which critical phenom-
ena are occurring is characterized by four critical points and
by transition lines joining such points. There are two critical
points, say CP1 and CP2, corresponding to the critical points
of the pure components and two critical points, say CEP1 and
CEP2, corresponding, respectively, to the critical end points
of the liquid–vapor and the liquid–liquid critical lines. If, for
example, the points CP1 and CEP1 are linked by a liquid–
vapor critical line, the points CP2 and CEP2 will be linked
by a critical line along which two different critical transitions
are observed. By starting from the CP2 point, the critical line
first describes a liquid–vapor critical transition which is then
followed by a liquid–liquid critical transition (this last part of
the critical lines is known as the critical consolute line). Fi-
nally, the points CEP1 and CEP2 are linked by a critical line
which indicates the three-phase equilibrium (coexistence of
two liquid phases and a vapor phase). Clearly, in the P–T rep-
resentation of the thermodynamic phase diagram, the multi-
phases coexistence is just represented by transition lines. The
description of critical phenomena of binary mixtures in the

TABLE I. Lennard-Jones parameters for Argon and Krypton (from Ref. 3).

Atom(type) m (amu) σ (Å) ε (kJ/mol)

Kr(1) 83.80 3.633 1.39
Ar(2) 39.95 3.405 1.00

P–T phase diagram is well illustrated in literature.14–16 In the
present work, the line starting from the critical point CP2 is
followed (liquid–vapor equilibrium) until a point in which the
critical line starts to describe a vapor–vapor equilibrium (be-
fore ending in the critical point CEP2). This second part of the
critical line has been the subject of the analysis performed in
Ref. 7.

The rest of the paper is organized as follows: in Sec. II
the computational details of the simulations are described, in
Sec. III the results of the present study are reported, and in
Sec. IV some conclusive remarks are given.

II. COMPUTATIONAL DETAILS

All simulations have been performed with 1500 atoms
interacting through Lennard-Jones potentials, defined as

U n
i j

(

ri j

)

= 4ǫi j

[

(

σi j

ri j

)12

−
(

σi j

ri j

)6
]

. (2)

In this equation σi j is the distance at which the potential
changes sign, εi j is the depth of the potential, and ri j is the
distance between particles i and j .

The parameters of the like interactions, σ11, ε11, σ22, and
ε22, are reported in Table I for the sake of completeness, and
they refer to those of Krypton (species 1) and Argon (species
2).3 The interaction potential between unlike species is com-
puted using the Lorentz–Berthelot mixing rule

σ12 = (σ1 + σ2)/2,

ǫ12 =
√

ε11ε22. (3)

The results of the calculations are here reported follow-
ing the law of the corresponding states (only approximate for
multicomponent systems), which enables, for a given trans-
port property, to uncouple the thermodynamics state contri-
bution from the molecular parameter.17 For a mixture of LJ
spheres, the reduced thermodynamics variables are

T ∗ =
kB T

εx

, ρ∗ =
Nσ 3

x

V
, andP∗ =

Pσ 3
x

εx

, (4)

where kB is the Boltzmann constant, N is the number of par-
ticles, V is the volume, and P is the pressure. The parameters
εx and σx are computed following the van der Waals one fluid
approximation18

σ 3
x =

2
∑

i=1

2
∑

j=1

xi x jσ
3
i j , (5)

εxσ
3
x =

2
∑

i=1

2
∑

j=1

xi x jεi jσ
3
i j . (6)
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The simulation box is an orthorhombic periodic cell
of size L∗ × L∗ × 3L∗, where L∗ = L/σx is the reduced
length, chosen equal to 8.51. Such cell has been divided
into Ns = 12 slabs of equal thickness, orthogonal to the z-
direction. Slab 0 is defined as the “cold” slab and slab N/2
as the “hot” slab. Because of the symmetry of the sim-
ulation box, average values of temperature and composi-
tion are calculated between slab (Ns/2) − i and (Ns/2) + i ,
with i = 1, 5, having excluded the first (0) and central (6)
slabs because of the unphysical effects they can present due
to the particle exchange procedure. The time step �t is 1
fs and the chosen cutoff distance, r∗

c = 4.23, corresponds
to an energy truncation, Ec of the order of 10−4 kJ/mol.
Standard long range correction to the Lennard-Jones po-
tential is also considered in the calculations. Simulations
have been performed in the canonical ensemble (NVT),
with temperature control by means of the Nose–Hoover
thermostat.19, 20

The nonequilibrium molecular dynamics (NEMD) sim-
ulation, on which statistic information is collected, is al-
ways performed after two runs. The first one is an equi-
librium molecular dynamics (EMD) simulation 2×106 time
steps long and the second one is a NEMD simulation, other
2×106 time steps long. In this way we are sure that the sys-
tem in the final NEMD simulation is at the steady state. This
assumption has been verified by analyzing the behavior of the
time evolution of the total energy and of the temperature and
composition profiles, which is expected to be constant dur-
ing the final NEMD simulation. In the final NEMD calcula-
tion, data are collected over a simulation 14×106 time steps
long.

The temperature used in the EMD simulation represents
the temperature around which the temperature gradient de-
velops, that is, a sort of average temperature in the NEMD
steps. This temperature is indicated in the following with T ∗

eq.
NEMD simulations have been performed at a series of values
of T ∗

eq, with the aim to cover a wide range of temperatures
(from about 60 to 1000 K) and to have the Soret coefficient
as a function of the temperature. The value of Nexch depends
on T ∗

eq: it is equal to 1200 for T ∗
eq = 0.837 (120 K), to 700 for

T ∗
eq =1.744 and 1.953 (250 and 280 K, respectively), and to

500 for T ∗
eq =2.791, 4.186, and 5.581 (400, 600, and 800 K,

respectively).
A detailed description of the procedure for the calculation

of the Soret coefficient from the concentration and tempera-
ture profiles is given in Refs. 6 and 7. In summary, starting
from the analytic fitting of the temperature and of the com-
position on a set of z∗ values (corresponding to the center of
each slab of the simulation box), Eq. (1) allows the definition
of S∗

T = ST εx/kB for each value of z∗
i (the center of slab i)

through the analytic derivatives with respect to z∗ of T ∗(z∗)
and x1(z∗). One can thus obtain S∗

T for each couple T ∗ (

z∗
i

)

and x1
(

z∗
i

)

in the ranges T ∗
max–T ∗

min and xmax
1 −xmin

1 , where
T ∗

max and T ∗
min (xmax

1 and xmin
1 ) are the maximum and mini-

mum temperature (molar fraction) found in the various slabs.
It can be demonstrated that, if S∗

T has the form (T ∗ − T̃ ∗)−1

(that actually found in the simulations described in details in
Ref. 7 and hereafter) and the temperature profile is lin-
ear in z (as always found in our simulations), then the
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FIG. 1. Temperature (dotted line and ∗ symbols) and composition profiles
(full line and + symbols) for the equimolar mixture of Argon and Krypton
at T ∗

eq = 0.837. The fitting parameter of x1(z∗) = 1/(a + bz∗) are a = 2.378
and b = −0.0485 [root mean square of the residuals (RMS) = 0.0004] while
for the temperature, T ∗(z∗) = c + dz∗, c =0.990, and d = −0.0204 [RMS
= 0.0019].

concentration profile assumes the form

x1(z∗) =
1

a − bz∗ . (7)

This expression has been used to fit the x1 values computed
in the NEMD simulations.

It is worth noticing that Eq. (1) is valid in the frame of the
linear nonequilibrium thermodynamics, where it is postulated
that the fluxes depend linearly on the generalized forces.21

However, from the integration of this equation one obtains
that x1(z) is not a linear function of z even if ST is constant
and T (z) is a linear function of z. Therefore, there is no reason
to expect a linear composition profile in the NEMD simula-
tions. This aspect is discussed in Ref. 6 to which the reader is
referred for more details.

III. NEMD RESULTS

In the range of temperatures explored in our simulations,
the concentration profiles are always well fitted with the func-
tion reported in Eq. (7), as shown, for instance, in Fig. 1 for
the case of the NEMD simulation of the equimolar LJ mixture
at T ∗

eq = 0.837.
A series of NEMD simulations has been performed with

x1 = 0.1, 0.5, and 0.9, and, for each one of these composi-
tions, a wide range of temperatures T ∗

eq has been spanned, thus
obtaining the dependence of S∗

T on T ∗.
In the range of temperatures explored and for each mix-

ture considered, S∗
T always has positive values, it increases

as the temperature is lowered, and finally it diverges, follow-
ing a behavior that is well described by the fitting function
S∗

T = 1/(T ∗ − T̃ ∗).
In order to better understand the physical meaning of the

temperature T̃ ∗ at which the Soret coefficient diverges, equi-
librium molecular dynamics simulations have been performed
on a wide range of temperature around T̃ ∗.

The phase stability of the mixture has been investi-
gated in terms of the infinite wavelength limit k → 0 of the
Bhatia–Thornton, BT, structure factors SCC (k), SN N (k), and
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FIG. 2. Soret coefficient, S∗
T (full line and + symbols), and inverse of the

structure factor, S−1
N N (dotted line and ∗ symbols), vs T ∗ for an equimolar

mixture of Lennard-Jones particles.

SNC (k),22 which, in the form derived from the Ornstein–
Zernike equations for a binary mixture, can be written as23, 24

SCC (k)=1+ nx1x2[h̃11(k) + h̃22(k)−2h̃12(k)],

SN N (k)=1+ n[x2
1 h̃11(k) + x2

2 h̃22(k)+2x1x2h̃12(k)],

SNC (k)=nx1x2[x1h̃11(k) − x2h̃22(k)+(x2 − x1)h̃12(k)], (8)

where n is the total number density, h̃αβ(k) is the Fourier
transform of the correlation function hαβ(r ) = gαβ(r ) − 1,
and gαβ(r ) is the radial distribution function.

By knowing that the BT structure factors express the cor-
relations of the total number density and composition fluctu-
ations, a thermodynamic stability matrix can be constructed,
and the precise combination of fluctuations which diverge at
k = 0 can be determined.15, 25 For the investigated systems
here presented, the incoming divergences in the BT structure
factors, SN N , correspond to a pure evaporation–condensation
(E/C) phase transition.

At this point it must be stressed that the vapor–liquid
phase transition represents an important property which is
very sensitive to the intermolecular interactions. In order to

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

S
T*

S
N

N
(0

)–
1

T*
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FIG. 4. Soret coefficient, S∗
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N N (dotted line and ∗ symbols), vs T ∗ for the LJ mixture

with x1 = 0.9.

correctly calculate the E/C phase transition for a Ar/Kr mix-
ture, with x1 varying from 0 to 1, the Lennard-Jones poten-
tials are not adequate26 and correct calculations should em-
ploy accurate two-body potentials. Moreover, contributions
from three-body dispersion interactions resulting from third-
order multipole terms should be also considered, given that
vapor–liquid equilibria are affected by these terms.27–30 For
these reasons the calculated E/C transition temperatures here
reported are not in strict agreement with the experimental val-
ues for actual Ar/Kr mixtures. In addition, it is worth noticing
that the strategy here adopted is not well suited for the ac-
curate calculation of phase transitions, which are better de-
scribed in the grand canonical ensemble. Nevertheless, the
aim here is only to have an indication of a possible phase
transition with an estimation of the temperature at which it
happens and not to precisely compute it.

The calculated values of the inverse of the structure fac-
tor, SN N (0)−1, at various T ∗ have been fitted by the function
c/(T ∗ − T ∗

c )b, where T ∗
c , b, and c are fitting parameters. As

already found in the case of a mixing/demixing phase transi-
tion of LJ binary mixtures,7 the divergence of both the struc-
ture factor and the Soret coefficient happens at temperatures
very close to each other. Such behavior is clearly shown in
Figs. 2–4 for the mixtures corresponding to x1 = 0.5, 0.1, and
0.9, respectively, where both S∗

T and SN N (0)−1 are plotted as
function of the reduced temperature.

A series of EMD simulations on a wide range of tem-
peratures has been also performed for systems corresponding
to pure species, and the divergences of their structure factors
have been compared with those of the mixtures with x1 = 0.1
and 0.9, respectively. From the simulation results we find that
the mixture with x1 = 0.1 presents a phase transition E/C at
T ∗ = 0.56 (70 K), which can be compared with a value of
0.63 (75 K) obtained for x2 = 1. Similarly, the LJ mixture
with x1 = 0.9 presents a E/C phase transition at T ∗ = 0.33
(53 K), which can be compared with the value of 0.36 (58 K)
of the pure species with x1 = 1.

The plots of SN N (0)−1 versus T ∗, corresponding to the
pure species, are shown in Fig. 5. Moreover, the values of
T̃ ∗ and T ∗

c at different mixture compositions are indicated in
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Tables II and III, respectively. From these results we can con-
clude that S∗

T and SN N diverge to the same temperature, and
this allows us to express the Soret coefficient as

S∗
T

(

T ∗) =
1

T ∗ − T ∗
c

, (9)

where T ∗
c is the boiling temperature of the mixture.

This dependence of S∗
T on T ∗ confirms the key re-

sult of our previous study on LJ mixtures presenting mix-
ing/demixing phase transitions. Indeed, Eq. (9) was also
found in Ref. 7, with the only difference that T ∗

c is there the
mixing/demixing temperature. As already noted in Ref. 7, we
want to stress that

� only one characteristic property of the mixture (the
critical temperature associated to a phase transition) is
involved in a very simple relation, with a clear connec-
tion with the expression ST = T −1 valid for ideal gas
mixtures;

� Eq. (9) is not simply a power-law scaling relation, as
those discussed in Ref. 7 for the cases of mixtures
close to the critical temperature12, 31 and in the clas-
sical mean field regime,13 but a complete equation that
allows the calculation of the Soret coefficient once Tc

is known;
� Eq. (9) is valid over a broad range of temperatures (of

the order of many hundreds of K).

The two latter aspects does not hold for instance for the scal-
ing rule12, 31 connecting ST with the critical temperature, Tc,

TABLE II. Dependence of the Soret coefficient on the temperature at dif-
ferent values of x1. Values of the fitting parameter T̃ for the various values
of x1. The analytic fitting function is S∗

T = 1/(T ∗ − T̃ ∗). RMS is root mean
square of the residuals.

x1 T̃ ∗ RMS

0.1 0.5641 ± 0.0068 0.12
0.5 0.4186 ± 0.0059 0.09
0.9 0.3564 ± 0.0014 0.05

TABLE III. Dependence of the inverse of the structure factor, S−1
N N (0) on

the temperature at different values of x1. Values of the fitting parameter Tc

for the various values of x1. The analytic fitting function is S−1
N N (0) = c/(T ∗

− T ∗
c )b . RMS is root mean square of the residuals.

x1 T ∗
c RMS

0.0 0.6259 ± 0.0056 0.06
0.1 0.5621 ± 0.0012 0.06
0.5 0.4185 ± 0.0067 0.04
0.9 0.3304 ± 0.0179 0.03
1.0 0.3460 ± 0.0206 0.04

that is only valid in a close interval around Tc (inside the crit-
ical domain).

IV. CONCLUSIONS

The thermodiffusion process in a Lennard-Jones binary
mixture has been investigated for three different mixture
compositions. In particular, besides the equimolar mixture,
mixtures rich in each one of the two components (x1 = 0.1
and 0.9) have also been considered. The Soret coefficient has
been calculated, by means of NEMD simulations, on a wide
range of temperatures up to the condensation point of the
system, whose value has been determined from the analysis
of the phase stability of the system. This investigation has
been done calculating the dependence of the structure factor,
SN N (0), on the temperature, and finding for which value of
the temperature it diverges. The comparison between the di-
vergence of the structure factor and of the Soret coefficient
has allowed to identify the divergence of ST with the evapo-
ration/condensation phase transition. The interpolation of the
results of the NEMD simulations has led to a very simple rela-
tionship, S∗

T =
[

T ∗ − T ∗
c

]

, between the Soret coefficient and
the condensation temperature of the mixture. Besides its sim-
plicity and wide applicability (it is valid over a large interval
of temperature and for different mixture compositions), this
relationship is of particular interest given that a similar ex-
pression for ST has been found in a previous study7 on LJ
mixture presenting mixing/demixing (consolute) phase transi-
tion (Tc being in this case the mixing/demixing temperature).

In the opinion of the authors, these two studies on model
systems (spherical particles interacting through LJ potentials)
should stimulate the application of the presented methodol-
ogy to other interaction potentials in order to gain a deeper
thermodynamic understanding of the dependence of ST on the
critical phenomena from a general point of view. Work in this
direction is in progress.
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