PAPER • OPEN ACCESS

The b-chromatic number of some special families of graphs

To cite this article: A Jeeva et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042113

Related content
The One Universal Graph - a free and open graph database Liang S. Ng and Corbin Champion

Type IIB flux vacua at large complex structure Tudor Dan Dimofte

- Uniquely colorable graphs M Yamuna and A Elakkiya

View the article online for updates and enhancements.

The b-chromatic number of some special families of graphs

A Jeeva, R Selvakumar and M Nalliah
Department Of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, India
E-mail: rselvakumar@vit.ac.in

Abstract

Given G, b-coloring is a proper k coloring of G in which each and every color class has at least one b-vertex that has a neighbour in other $k-l$ color classes. The largest integer k is the b-chromatic number $b(G)$ for which G having $a b$-coloring using k colors. In this paper, we constructed some family of graphs and found its b-chromatic number.

1. Introduction

All graphs we consider are simple, finite and undirected graphs. Let $G=(V, E)$ be a graph. Then the set of vertices denoted by $V(G)$ with order n and set of edges denoted by $E(G)$ with size m. A proper vertex k-coloring of G is a nonempty partition $P=\left\{V_{l}, V_{2}, \ldots, V_{k}\right\}$ produce a color class, each V_{i} is an independent set of G. The minimum integer k is the chromatic number $\chi(G)$ for which G has a k-colorable. A b-coloring is a proper k-coloring in which each and every color class V_{i} contains at least one vertex that has a neighbour in other $k-1$ color classes. A vertex which is satisfying the above property is called a b-vertex. A set of all vertices in S_{0} are b-vertices is called a b-system such that every b-vertex belongs to different color classes. The largest integer k is the b-chromatic number $b(G)$ for which G having a b-coloring using k colors. First Irving and Manlove [3] introduced the concept of b-chromatic number and also they derived the upper bound, $b(G) \leq \Delta(G)+1$. In particular, they remark that, G having a b-chromatic coloring using k colors and in G should have at least k vertices having a degree $k-1$. Effantin and Kheddouci discussed the b-chromatic number of some power graphs [2]. On b-coloring of regular graphs studied by Blidia, Maffray and Zoham [1]. The $b-$ chromatic number of some path related graphs discussed by Vaidya and Rakhimol [5] also they investigated the b-chromatic number of the degree splitting graphs of the path, shell and gear graph in [4]. In general, the corona of any two graphs G and H denoted by $G \odot H$. Vernold Vivin and Venkatachalam [7] have found the b-chromatic number of corona product of any graph G with path, cycle and complete graph also Vivin et al[6] investigated the b-chromatic number of star graph families.

2. Main Results

In the main section, we describe few particular families of graphs and obtained its b-chromatic number.

2.1. Definition

Let $H=K_{l, n-3}$ be a star graph on $n-2$ vertices and $\operatorname{let} V\left(K_{l, n-3}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-3}, c\right\}$, where c is the central vertex of H. The graph F_{1} is constructed from C_{n} by adding a copy of graph H to every vertex v_{i} of C_{n}. Clearly the order of F_{1} is $n+n(n-3)$.
The following family of graphs $\left\{F_{1}^{0}, F_{1}^{1}, F_{1}^{2}, \ldots, F_{1}^{k}\right\}$ are constructed from F_{1} such that $F_{1}^{i}, i=0,1,2, \ldots, k$ is obtained by adding i number of edges to every copy of H.
$F_{1}=F_{1}^{0}=C_{n} \odot K_{l, n-3}$
$F_{1}^{1}=C_{n} \odot\left(K_{l, n-3}+\left\{e_{1}\right\}\right)$
$F_{1}^{2}=C_{n} \odot\left(K_{l, n-3}+\left\{e_{1}, e_{2}\right\}\right)$
$F_{1}^{k}=C_{n} \odot\left(K_{l, n-3}+\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}\right), 1 \leq k \leq \frac{(n-4)(n-3)}{2}$
Let $\mathcal{F}\left(C_{n}\right)=\left\{F_{1}^{0}, F_{1}^{1}, F_{1}^{2}, \ldots, F_{1}^{k}\right\}$ be denote the family of graphs and the order of every graph in $\mathcal{F}\left(C_{n}\right)$ is $n+n(n-3)$.

2.2. Theorem

For any graph of $\mathscr{F}\left(C_{n}\right)$, the b-chromatic number is n.
Proof
Let $F_{1} \in \mathscr{F}\left(C_{n}\right)$ and let $V\left(F_{1}\right)=\left\{v_{i}, u_{i}^{j}, l \leq i \leq n, l \leq j \leq n-3\right\}$. The order of F_{1} is $n+n(n-3)$. Suppose we assume the b-chromatic number of F_{1} is greater than or equal to n that is $b\left(F_{1}\right) \geq n$. Therefore, we have the existence of a b - system S_{0} such that $\left|S_{0}\right| \geq n+1$. This means that, in F_{1} having b-system S_{0} and that b-system contains $n+1$ vertices of degree at least n. But here F_{1} having only n vertices of degree $n-1$ and the remaining vertices are of degree at most $n-3$, which contradicts our assumption and hence $b\left(F_{1}\right) \leq n$.
Now we define the following mapping $C: V\left(F_{1}\right) \rightarrow\{1,2,3, \ldots, n\}$ to vertices as follows.

$$
\begin{aligned}
& C\left(v_{i}\right)=i \quad l \leq i \leq n, \\
& C\left(u_{i}^{j}\right)=\left\{\begin{array}{cc}
i+j+1 & i=1,2, l \leq j \leq n-3 \\
i+j+1 & 3 \leq i \leq n-1, l \leq j \leq n-(i+1) \\
j & 3 \leq i \leq n-1, l \leq j \leq i-2 \\
j & i=n, 2 \leq j \leq i-2
\end{array}\right.
\end{aligned}
$$

Thus we get a proper b-coloring of C . Therefore $b\left(F_{1}\right) \geq n$ and hence $b\left(F_{1}\right)=n$.

2.3. Definition

Let $H=K_{l, 2}$ be a star graph with 3 vertices and let $V\left(K_{l, 2}\right)=\left\{u_{1}, u_{2}, c\right\}$, where c is the central vertex of H. The graph F_{2} is constructed from $\overline{C_{n}}$ by adding a copy of graph H to every vertex v_{i} of $\overline{C_{n}}$. Clearly the order of F_{2} is $n+2 n=3 n$.

The following family of graphs $\left\{F_{2}^{0}, F_{2}^{1}\right\}$ are constructed from F_{2} such that $F_{2}^{i}, i=0,1,2 \ldots, k$ is obtained by adding i number of edges to every copy of H.

$$
\begin{aligned}
& F_{2}=F_{2}^{0}=\overline{C_{n}} \odot K_{l, 2} \\
& F_{2}^{1}=\overline{C_{n}} \odot\left(K_{l, 2}+\left\{e_{1}\right\}\right)
\end{aligned}
$$

Let $\mathcal{F}\left(\overline{C_{n}}\right)=\left\{F_{2}^{0}, F_{2}^{1}\right\}$ be denote the family of graphs and the order of every graph in $\mathcal{F}\left(\overline{C_{n}}\right)$ is $3 n$.

2.4. Theorem

For any graph of $\mathcal{F}\left(\overline{C_{n}}\right), n \geq 5$ the b - chromatic number is n.
Proof
Let $F_{2} \in \mathcal{F}\left(\overline{C_{n}}\right), n \geq 5$ and let $V\left(F_{2}\right)=\left\{v_{i}, u_{i}^{j}, l \leq i \leq n, j=1,2\right\}$. The order of F_{2} is $3 n$. Suppose we assume the b-chromatic number of F_{2} is greater than or equal to n that is $b\left(F_{2}\right) \geq n$. Therefore, we have the existence of a b-system S_{0} such that $\left|S_{0}\right| \geq n+l$. This means that, in F_{2} having b-system S_{0} and that b-system contains $n+l$ vertices of degree at least n. But here F_{2} having only n vertices of degree $n-1$ and the remaining vertices are of degree at most 2 , which contradicts our assumption and hence $b\left(F_{2}\right) \leq n$.
Now we define the following mapping $C: V\left(F_{2}\right) \rightarrow\{1,2,3, \ldots, n\}$ to vertices as follows.

$$
\begin{aligned}
C\left(v_{i}\right) & =i \\
C\left(u_{i}^{1}\right) & = \begin{cases}n & i=1 \\
i-1 & i \geq 2\end{cases} \\
C\left(u_{i}^{2}\right) & = \begin{cases}i+1 & l \leq i \leq n-1 \\
1 & i=n\end{cases}
\end{aligned}
$$

Thus we get a proper b-coloring of C . Therefore $b\left(F_{2}\right) \geq n$ and hence $b\left(F_{2}\right)=n$.

2.5. Definition

Let $H_{1}=K_{l, m-1}, H_{2}=K_{l, n-l}$ and let $V\left(K_{l, m-l}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m-1}, c\right\}, V\left(K_{l, n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, c^{\prime}\right\}$ where c, c^{\prime} are central vertex of H_{1} and H_{2}. Let $K_{m, n}, m<n$ be a complete bipartite graph with bipartitions V_{1} and V_{2}.The graph F_{3} is constructed from $K_{m, n}, m<n$ by adding $m_{\text {copy }}$ of graph H_{1} to every vertex $v_{i} \in V_{1}\left(K_{m, n}\right)$ and n copy of graph H_{2} to every vertex of $v_{i} \in V_{2}\left(K_{m, n}\right)$. Clearly the order of F_{3} is $(m+n)+m(m-l)+n(n-l)$
The following family of graphs $\left\{F_{3}^{0}, F_{3}^{1}, F_{3}^{2}, \ldots, F_{3}^{k}\right\}$ is constructed from F_{3} such that $F_{3}^{i}, i=0,1,2, \ldots, k$ is obtained by adding i number of edges to every copy of H_{1} and H_{2}.

$$
\begin{aligned}
& F_{3}=F_{3}^{0}=K_{m, n} \odot\left(H_{1,} H_{2}\right) \\
& F_{3}^{1}=K_{m, n} \odot\left(H_{1}+\left\{e_{1}\right\}, H_{2}+\left\{e_{1}\right\}\right) \\
& F_{3}^{2}=K_{m, n} \odot\left(H_{1}+\left\{e_{1}, e_{2}\right\}, H_{2}+\left\{e_{1}, e_{2}\right\}\right)
\end{aligned}
$$

$F_{3}^{k}=K_{m, n} \odot\left(H_{1}+\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}, H_{2}+\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}\right), 1 \leq k \leq \frac{(m-1)(m-2)}{2}, 1 \leq l \leq \frac{(n-1)(n-2)}{2}$
Let $\mathscr{F}\left(K_{m, n}\right)=\left\{F_{3}^{0}, F_{3}^{1}, F_{3}^{2}, \ldots, F_{3}^{k}\right\}$ be denote the family of graphs and the order of every graph in $\mathscr{F}\left(K_{m, n}\right)$ is $(m+n)+m(m-1)+n(n-1)$.

2.6. Theorem

For any graph of $\mathscr{F}\left(K_{m, n}\right)$, the b - chromatic number is $m+n$.
Proof
Let $F_{3} \in \mathscr{F}\left(K_{m, n}\right)$ and let $V\left(F_{3}\right)=\left\{V_{1} \cup V_{2} \cup V_{3}\right\}$ where $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, V_{2}=\left\{v_{m+1}, v_{m+2}, \ldots, v_{m+n}\right\}$
and $\quad V_{3}=\left\{\begin{array}{l}u_{i}^{j}, \quad l \leq i \leq m, 1 \leq j \leq m-1 \\ v_{i}^{j}, \\ m+1 \leq i \leq m+n, l \leq j \leq n-1\end{array}\right\}$. The order of F_{3} is $(m+n)+m(m-1)+n(n-1)$.
Suppose we assume the b-chromatic number of F_{3} is greater than or equal to $m+n$ that is $b\left(F_{2}\right) \geq m+n$. Therefore, we have the existence of a b-system S_{0} such that $\left|S_{0}\right| \geq m+n+1$. This means that, in F_{3} having b-system S_{0} and that b-system contains $m+n+1$ vertices of degree at least $m+n$. But here F_{3} having only $m+n$ vertices of degree $m+n-1$ and the remaining vertices are of degree at most $m-1$ in H_{1} and $n-1$ in H_{2}, which contradicts our assumption and hence $b\left(F_{3}\right) \leq m+n$.
Now we define the following mapping $C: V\left(F_{3}\right) \rightarrow\{1,2,3, \ldots,(m+n)\}$ to vertices as follows,

$$
\begin{aligned}
C\left(v_{i}\right) & =i \quad l \leq i \leq m+n \\
C\left(u_{i}^{j}\right) & =\left\{\begin{array}{lll}
m & i=j & l \leq i \leq m \\
j & i \neq j & l \leq j \leq m-1
\end{array}\right. \\
C\left(v_{m+i}^{j}\right) & =\left\{\begin{array}{lll}
m+n & i=j & l \leq i \leq n \\
m+j & i \neq j & l \leq j \leq n-l
\end{array}\right.
\end{aligned}
$$

Thus we get a proper b-coloring of C. Therefore $b\left(F_{3}\right) \geq m+n$ and hence $b\left(F_{3}\right)=m+n$.

2.7. Definition

Let $H=K_{l, n-4}$ be a star graph on $n-3$ vertices and $V\left(K_{l, n-4}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-4}, c\right\}$ where c is the central vertex of H. Let $W_{n}, n \geq 4$ be the wheel graph with $V\left(W_{n}\right)=\left\{v_{1}, v_{2}, v_{3} \ldots, v_{n}\right\}, v_{1}$ is central vertex. The graph F_{4} is constructed from W_{n} by adding a copy of graph H to every vertex $v_{i}(2 \leq i \leq n)$ of W_{n} . Clearly the order of F_{4} is $n+(n-1)(n-4)$.
The following family of graphs $\left\{F_{4}^{0}, F_{4}^{1}, F_{4}^{2}, \ldots, F_{4}^{k}\right\}$ is constructed from F_{4} such that $F_{4}^{i}, i=0,1,2, \ldots, k$ is obtained by adding i number of edges to every copy of H.

$$
\begin{aligned}
& F_{4}=F_{4}^{0}=W_{n} \odot K_{l, n-4} \\
& F_{4}^{1}=W_{n} \odot\left(K_{l, n-4}+\left\{e_{l}\right\}\right) \\
& F_{4}^{2}=W_{n} \odot\left(K_{l, n-4}+\left\{e_{1}, e_{2}\right\}\right)
\end{aligned}
$$

$F_{4}^{k}=C_{n} \odot\left(K_{l, n-4}+\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}\right), l \leq k \leq \frac{(n-4)(n-5)}{2}$
Let $\mathcal{F}\left(W_{n}\right)=\left\{F_{4}^{0}, F_{4}^{1}, F_{4}^{2}, \ldots, F_{4}^{k}\right\}$ be denote the family of graphs and the order of every graph in $\mathcal{F}\left(W_{n}\right)$ is $n+(n-1)(n-4)$.

2.8. Theorem

For any graph of $F_{4} \in \mathscr{F}\left(W_{n}\right)$, the b-chromatic number is n.

Proof

Let $\quad F_{4} \in \mathcal{F}\left(W_{n}\right) \quad$ and \quad let $\quad V\left(F_{4}\right)=\left\{v_{1} \cup v_{i} \cup u_{i}^{j}, 2 \leq i \leq n, l \leq j \leq n-4\right\}$.The order of $\quad F_{4}$ is $n+(n-1)(n-4)$. Suppose we assume the b-chromatic number of F_{4} is greater than or equal to n that is $b\left(F_{4}\right) \geq n$. Therefore, we have the existence of a b-system S_{0} such that $\left|S_{0}\right| \geq n+1$. This means that, in F_{4} having b-system S_{0} and that b-system contains $n+l$ vertices of degree at least n. But here F_{4} having only n vertices of degree $n-1$ and the remaining vertices are of degree at most $n-4$, which contradicts our assumption and hence $b\left(F_{4}\right) \leq n$.
Now we define the following mapping $C: V\left(F_{4}\right) \rightarrow\{1,2,3, \ldots, n\}$ to vertices as follows,

$$
\begin{aligned}
& C\left(v_{i}\right)=1 \quad i=1 \\
& C\left(v_{i}\right)=i \quad 2 \leq i \leq n \\
& C\left(u_{i}^{j}\right)= \begin{cases}i+j+1 & i=2,3,1 \leq j \leq n-3 \\
i+j+1 & 4 \leq i \leq n-1,1 \leq j \leq n-(i+1) \\
j & 4 \leq i \leq n-1,2 \leq j \leq i-2 \\
j & i=n, \quad 3 \leq j \leq i-2\end{cases}
\end{aligned}
$$

Thus we get a proper b-coloring of C. Therefore $b\left(F_{4}\right) \geq n$ and hence $b\left(F_{4}\right)=n$

3. Conclusion

In this paper, we defined some particular family of graphs such as $\mathcal{F}\left(C_{n}\right), \mathcal{F}\left(\overline{C_{n}}\right), \mathcal{F}\left(K_{m, n}\right) \quad \mathcal{F}\left(W_{n}\right)$ and obtained its b-chromatic number. The b-chromatic numbers of central, middle and total graphs of above family of graphs are still open.

References

[1] Blidia M, Maffray F and Zoham Z 2009 Discrete App. Math. 157 1787-1793
[2] Effantin B and Kheddouci H 2003 Discrete Math. Theo. Comp. Sci. 6(1) 45-54
[3] Irving R W and Manlove D F 1999 Discrete App. Math. 91(1) 127-141
[4] Vaidya S K and Rakhimol V Issac 2014 Malaya J. math. 2(3) 249-253
[5] Vaidya S K and Rakhimol V Issac 2014 Int. J. Math. Sci. Comp. 4(1) 7-12
[6] Venkatachalam M and Vernold Vivin J 2010 Le Mathematiche 65(1) 119-125
[7] Vernold Vivin J and Venkatachalam M 2012 Utilitas Math 88 299-307

