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KEYWORDS Abstract The present paper deals with the influence of thermophoretic particle deposition on the
MHD: MHD mixed convective heat and mass transfer flow in a vertical channel in the presence of radiative
Homotopy analysis method:; heat flux with thermal-diffusion and diffusion-thermo effects. The resulting nonlinear coupled equa-
Thermophoretic deposition; tions are solved under appropriate boundary conditions using the homotopy analysis method. The
Soret number; influence of involved parameters on heat and mass transfer characteristics of the fluid flow is pre-
Dufour number sented graphically. It is noted that fluid velocity is an increasing function of radiation parameter,

Dufour number, Buoyancy ratio parameter and mixed convection parameter whereas the magnetic

parameter, thermophoresis constant, Soret number and Schimidt number lead to suppress the

velocity. The fluid temperature increases with increasing radiation parameter and Dufour number.

The convergence of homotopy analysis method (HAM) solutions is discussed and a good agreement

is found between the analytical and the numerical solution.
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ject of many investigations due to its important applications in
industrial and engineering processes such as cooling of elec-

P tronic equipment, heat exchangers, chemical processing equip-
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Nomenclature
B buoyancy ratio parameter
By transverse magnetic field
C concentration of the fluid
Cy,C, wall concentrations
cp specific heat at constant pressure
Cy concentration susceptibility
D, Dufour number
D, coefficient of mass diffusivity
g Gravitational force
G, Grashof number
Gp mixed convection parameter
K thermal conductivity
k non-dimensional thermophoretic coefficient which

depends on Knudsen number
kr thermal diffusion ratio
L width of the channel
M magnetic parameter
N radiation parameter
N, non-dimensional parameter

Nu Nusselt number
P pressure

P, Prandtl number

q radiative heat flux
Re Reynolds number

S. Schmidt number

Sh Sherwood number

S, Soret number

T temperature of the fluid

T\, T, wall temperatures

T mean value of 7 and T

u fluid velocity

Uy entrance velocity

v thermophoretic deposition velocity

Vr non-dimensional thermophoretic velocity

Greek symbols

0 non-dimensional fluid temperature
¢ nondimensional fluid concentration
b coefficient of volume expansion
br coefficient of thermal expansion

u dynamic viscosity

g electrical conductivity

0 fluid density

v kinematic viscosity

o non-dimensional pressure gradient
ol mean absorption coefficient

T skin friction

channel in the presence of a transverse magnetic field is of spe-
cial technical significance because of its industrial applications
such as geothermal reservoirs, cooling of nuclear reactors,
petroleum reservoirs and so on. This type of problem arises
in electronic packages, microelectronic devices during their
operations also. Excellent reviews of the mixed convection
hydromagnetic flows in vertical channel have been presented
by many authors [1-5]. Later, Srinivas and Muthuraj [6] have
examined the problem of MHD flow in a vertical wavy porous
space in the presence of a temperature-dependent heat source
with slip-flow boundary condition. They have also examined
the effects of chemical reaction and space porosity on MHD
mixed convective peristaltic flow in a vertical asymmetric chan-
nel [7]. Fully developed mixed convection flow in a vertical
channel filled with nanofluids was discussed analytically by
Xu and Pop [8]. Rashidi et al. [9] have analyzed the effects
of partial slip and thermal-diffusion and diffusion-thermo on
Steady MHD Convective Flow due to a Rotating Disk.
Thermophoresis is a phenomenon observed in mixtures of
mobile particles where the different particle types exhibit dif-
ferent responses to the force of a temperature gradient. The
term thermophoresis most often applies to acrosol mixtures,
but it may commonly refer to the phenomenon in all phases
of matter. This thermophoresis process has gained importance
for many engineering applications and is utilized in air-clean-
ing devices to remove submicron- and micron-sized particles
from gas streams ([10-21]). In view of these applications, a
theoretical analysis for thermophoretic transport of small par-
ticles through a fully developed laminar, mixed convection
flow in a parallel vertical channel was presented by Grosan
et al. (see Ref. [16] and several references therein). Later, ther-
mophoretic transport in the steady fully developed mixed

convection flow in a parallel-plate vertical channel with differ-
entially heated isothermal walls was studied by Magyari [17].
Mahdy and Hady [18] have analyzed the effects of thermoph-
oretic particle deposition on the free convective flow over a
vertical flat plate embedded in a non-Newtonian fluid-
saturated porous medium in the presence of a magnetic field.
The effect of surface mass transfer on MHD mixed convection
flow past a heated vertical flat permeable surface in the pres-
ence of thermophoresis, radiative heat flux and heat source/
sink using similarity transformation was studied by Singh
et al. [19]. Free convection thermophoretic hydromagnetic flow
over a radiate isothermal inclined plate with heat source/sink
effect using shooting method were presented by Noor et al.
[20]. More recently, Guha and Samanta [21] have investigated
the effects of thermophoresis and transverse magnetic field on
aerosol particle transport and deposition onto a horizontal
plate in the presence of a natural convective flow. To the best
of our knowledge, no attempt has been made to analyze the
influences of thermophoresis deposition, thermal-diffusion
and diffusion-thermo on hydromagnetic flow in a vertical
channel with asymmetric wall temperatures. Motivated by pre-
vious studies, a mathematical model is to be present to under-
stand the combined effects of thermophoresis deposition,
thermal-diffusion and diffusion-thermo on MHD flow in a ver-
tical channel with heat and mass transfer. Such problems are
important in flow analysis for the understanding of flow, heat
and mass transfer characteristics. Analytic solutions for the
velocity, heat and mass transfer components are obtained
using a powerful, easy to use technique, namely the homotopy
analysis method (HAM). It is worth mentioning that the HAM
is a promising tool for solving non-linear problems ([22-35]).
Heat and mass transfer characteristics of the fluid flow for
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various values of the pertinent parameters have been reported
graphically. This paper is organized as follows: The problem is
formulated in Section 2. Section 3 comprises the solutions of
the problem. Convergence and residual error analysis of
HAM solution are presented in Section 4. Results and discus-
sion are given in Section 5. Section 6 contains final remarks.

2. Formulation of the problem

The geometry under consideration illustrated in Fig. 1, which
consists of two infinite vertical channel walls maintained at
constant temperatures and concentrations 7T, 7, (T, > T})
and C,, C, (Cy > C)) respectively. A fluid rises in the channel
driven by buoyancy forces. We consider the fluids to be an
incompressible viscous fluid and the flow is steady, laminar
and fully developed. A uniform magnetic field is applied nor-
mal to the flow direction. The governing equations for this
problem are based on the balance laws of mass, linear momen-
tum, energy and concentration modified to account for the
presence of the magnetic field. These can be written as (Ref.

(16])

d'u ,  dP
==+ pglBr(T = T1) + f.(C = C1)] — o Byu = —= (1)
dy dx
K &T 1 dq¢ D,KrdC )
oG, d  pCydy " GG d
D,K; &T
Dmd27€ 71 T d > = d(CvT) (3)
dy” T dy dy
The boundary conditions of the problem are,
u=0, T=T,, C=C at y=-L (4)
u=0, T=T,, C=C, at y=1L (5)

Further, v is the thermophoretic deposition velocity in the
y-direction and we assume that vy has the form:
v dT

vr=—k— — 6
T T dy (6)
where u is the velocity component, P is the pressure, p is the
dynamic viscosity, p is the density, By is the transverse mag-
netic field, ¢ is the coefficient of electric conductivity, D,, is
the coefficient of mass diffusivity, 7 is the dimensional temper-
ature, C is the dimensional concentration, C, is the specific

—>)'
—
— » By
—
G c,
y=-L T y=L
Figure 1  Flow Geometry of the problem.

heat, T, and T, are the wall temperatures, 7 is the mean value
of Ty and T, K is the thermal conductivity of the fluid, k7 is
the thermal diffusion ratio, C; and C, are the wall concentra-
tions. We define the non-dimensional variables as,

,*72 u*‘fl OfT_Tl (biC C]
A A N R —
Lvy L* dP dq )
Vy=—T == & 4T, - T 7
T y ¥ ulUy dx’ dy (T ) ()

Substituting Eq. (7) into the Egs. (1)-(6), we get (dropping
asterisks)

du \
F—l——g[@—l—Bqﬁ]—Mzu:oc (8)
2 2
d—§+DPd¢+N9—0 9)
dy dy*
&P >, dP0 do do
2
(N, +0) 0 + S.S.(N, +0) d}2+kS (N,+0)d o
a0 do
Sk(N+0)d Sk( ) (p+B) = (10)
With the boundary conditions
u=0, 0=0,0=0 aty=-1 (11)
u=0, 0=1, ¢=1 at y=1 (12)

The non-dimensional thermophoretic velocity V7 can be
expressed as

k do
Vi=———— 13
"7 N +o0dy (13)
where N, = " and f; = -~ are the non-dimensional con-
stants, G, = ’W% is the Grashof number, Re = % is the

Reynolds number, G = 9 is the mixed convection parameter,

_ B(C=C1)
T pr(T-Th)
Hartmann

B2 .

T5L s the
pv
viscosity,

is the Buoyancy ratio parameter, M> =

number, v:iﬁ is the kinematic

D, = %’gﬁ% C: is the Dufour number, P, = “C” is the Prandtl
14

number, N = T " is the radiation parameter, f;—? =403(T, - T)
is the radiative heat flux, o is the mean absorption coefficient,

N _ Duky(>-T1)
S, = = is the Schmidt number, S, = CCy)

number, Vr is the non-dimensional thermophoretic velocity,
k is the non-dimensional thermophoretic coefficient which
depends on the Knudsen number (K, > 1).

is the Soret

3. Solution of the problem

For complete description of the homotopy analysis method
(HAM) the reader is referred to [22,23]. We choose the initial
guesses and the auxiliary linear operators for the problem
stated above in the following forms:

1+y

1+
() =0 () =—> s

$o(y) =75 (14)

Li(u) =u" Ly(0)=0" Li(¢) =¢" (15)
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with
L (cly + CQ) = 0, Lz(C3y + C4) =0& Lg(C5y + C(,) =0.
where ¢;(i = 1,2,3,4,5,6) are constants and prime denotes the

derivative with respect to y.

3.1. Zeroth-order approximation

Let o €[0,1] be an embedding parameter and /i be the
auxiliary non-zero parameter. We construct the following
zero-order deformation equations.

(1= p)Li[a(y, ) — uo(y)] = phNi[i(y, ), 0(y, ), (v, 0)]
ﬁ(_lv @) = 07 A(lv @) =0

(16)
(1= p)La[0(y, 0) — 00(»)] = phNa[0(y, ), D(, )] (17
é( l,p) = Ové(LEO) =1
(1= L0 0) = b0 = NS B0
qﬁ(—l,p) = 0,(]5(1,{)) =1
where,

Ny [a(y, ), 000, ), (v, 0)] = %}V;p) +Gr[0(y, 0) + B(1, )]
M

iy, p) —o (19)
VN *0(r,0) Fo0.0) v
Na[0(y, p), d(y, p)] = 92 +DuPrT2+N9(y7p)
(20)
N[00, 0. 0)] = 4+ 0. 0)) L)
+S,,S((N,+é(y,ga))zazz(;;’ p)
+kS(-(N,+@(}"»p))&y)a¢(a}; £)
+ S(‘k(N,—O—@(y,go))azéa(y; ©) Stk(aé(ayyip)> ]
x(0n9)+81) (1)
For p =0and p = 1, we have
w(y,0) = uo(y) a(y,1) = u(y) (22)
0(y,0) =0o(y) 0O(y,1) =0(y) (23)
$(1,0) = ¢o(») Sy, 1) = p(») (24)

when ¢ increases from 0 to 1, then a(y,p), 0y, o), ¢(r, )
vary from initial guess uy(y), 0o(y), ¢o(») to the approximate
analytical solution u(y), 0(y), ¢(»). X X

By Taylor’s theorem the series i(y, p), 0y, ), ¢(»,
be expressed as a power series of p as follows,

p) can

2O, )=

u(y,p) =uo(y Rl

=0

10700, 9)

000, 0) = 00(») + Y 0,(0)", 0,(») =
; m! Oy

=0

(26)

19", 9)
ml  Op"

(;Ab(y7 KJ) = d)O(y) + id)in(y)pm? d)m(y) =

=0

(27)

In which 7 is chosen in such a way that these series are conver-
gent at p = 1, therefore we have from Egs. (25)-(27),

— o)+ S 0) 00) = 0606) + 3 0n(0),
0) = 9o0) + > 9, (0) (28)

3.2. The m-th order deformation equations

Differentiating the zeroth-order approximation Egs. (16)—(18)
m-times with respect to g and then dividing them by m! and
finally setting o =0, we obtain the following m-th order
deformation equations:

Ll [um(y) = AmUm—1 (y)] = han(y) (29)
Lo[0,0(7) = 21 (0)] = hR, () (30)
L3[$,(3) = n Pt ()] = hRG,(9) (31)
together with conditions
Up(=1)=0 u,(1)=0 (32)
0,(=1) =0 0,(1)=0 (33)
where,
Rf;(y) = u;:zfl + GR(G””*I + Bd)mfl) - Mzumfl - O‘(l - Xm)
(35)
R ( ) 0::1 1 +DllP ¢m 1 +N9V'7*1 (36)
Rd) )= N2¢n1 I+Z¢m 1 AZHA@A 1+2N, iem e
m— m—1
+ 5.5, | N6, 1+Z9m | AZW’A 1+2N129A . }
m—1
+kS. N’Zem A +Z¢m ! AZG/ 3 1}
3 =0
m—1 m—1 m—1
+kS, le¢m 1-0; +Z¢m 1 AZO/ Z(/’m 1 AZO O |:|
=0 =0
e [N/e::, +§eke::,,,,k} —ksip [@; 0 ]
k=0 0
(37)
where,
_[0; for m=1 (38)
Tom = 1; for m#l
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Figure 2 h-curves for velocity, temperature and concentration for different order of approximations.

The physical quantities of interest in this problem are the
skin friction, the Nusselt number and Sherwood number,

which are defined as
0
- (d—) ; and
dy y==l1

T= (@) ;7 Nu=
dy y==l1

Sh=— <@) respectively.
dy y=%I

4. Convergence and the residual error of HAM solution

The analytic expressions given in Eq. (28) contain the
auxiliary parameter 4. The convergence and rate of approx-
imation for the HAM solution depends on the value of
auxiliary parameter ‘h’ strongly. To see the range of

(39) admissible values of % the h-curves are plotted in Fig. 2.

Table 1 The square residual error and the average square residual error for the optimal /4 at different order of HAM approximations.
(S, =0.5,5.=05k=01,B=0.5P,=071,M=2,D,=0.1,Gg = 1).

Optimal & 5th order
Jo—y Eldy Joey B3y i\ By A

—0.45 N=0 2.96254x 1074 2.95283 % 10~ 3.49079 x 1077 9.886 x 107>
—0.43 M =2 1.15042 x 1073 2.55995x 102 6.88199 x 1073 1.12106 x 102
—0.42 S, = 0.78 1.17056 x 1073 2.96293 x 1072 1.93553 x 102 1.67184 x 102
—0.41 K=03 1.43806 x 103 3.6207 x 102 3.28695 x 1072 2.16428 x 102
—0.43 D, =05 1.46737 x 1073 4.06148 x 1072 1.00291 x 102 1.73704 x 102

10th order

1 1 1

Sy Eldy Jie 1 Bxdy Sy E3dy Ay
—0.45 N=0 5.48811% 1077 3.62745x 107! 7.05032 % 1078 2.0645% 1077
—0.43 M=2 425106 % 1073 1.42923 x 103 2.56242 % 1073 1.34472 x 103
—0.42 S, =0.78 4.65224x 107 1.90276 x 103 8.37047 x 1073 3.43992 x 1073
—0.41 K=03 5.83831x 1073 2.00292 x 1073 2.60088 x 102 9.35669 x 1073
—0.43 D, =05 9.85295x 1073 3.71009 x 103 2.99627 x 1073 2.2683x 1073

15th order

51 -1 1

Jo—_y Eidy Joe_1 E3dy Jo—_y Exdy A,
—0.45 N=0 1.14565 % 10~° 1.59454 x 1012 1.32751 x 1078 4.80744 x 10~°
—0.43 M=2 2.49462 % 10~¢ 8.2153x 107° 2.76652x 1073 9.50388 x 10~*
—0.42 S, =0.78 3.19418 x 10~° 1.24807 x 10~* 8.66284 x 1073 2.93028 x 1073
—0.41 K =03 4.02765% 10~° 1.34729 x 10~* 2.65164x 102 8.88506 x 1073
—0.43 D, =05 9.12656 x 10~° 3.2609 x 10~* 3.34668 x 1073 1.2273 %1073
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Figure 3  Velocity distribution (S, = 0.5,0=1,P, =0.71,4, =05,N,=1,M =25, =05,k=0.1,N=1,B=0.5,D, = 0.1).

According to Fig. 2, the convergence ranges of #/(0), 6'(0),
¢'(0) are variable for different values of parameters. In
addition to the convergence, the accuracy of HAM solu-
tions is calculated through the residual error of Egs. (8)—
(10) in the following way:

E —@+9[6+B¢}7M2 - (40)
1= dy2 R(, u o
&0 ¢
E,=—+D,P,— + N# 41
: dy2 dy2 (41)

& &0 do d
Es = (N, +0)° d—‘f +S.8.(N, + 0) yERs kS.(N, + 0) dé
y 'y

dy dy

) 2
+ | Sk(N, + 0) j—yf — Sck (@) (6 +B) (42)

dy

where E|, E, and Ej correspond to the residual error at mth
order for u, 0 and ¢, respectively. The average square residual
error 4,, at mth order is as follows:

1 3 y=1
Ay == Exd 43
3; / dy (43)

y=—1

It is clear that Eq. (43) is a function of / alone and an
optimal choice of the convergence control parameter is cho-
sen in such a way that the averaged square residual error is
minimum. Furthermore, the validity for the choice of the
optimal value of % is confirmed because there is a good agree-
ment between the analytical and the numerical solutions (See
Fig. 9). The numerical solution is obtained by NDSolve
scheme of Mathematica. Table 1 shows the square residual
error and the average square residual error at 5th, 10th and
15th order of HAM approximation for different set of
parameter values with optimal 4. We note that this optimal
value of /& which is obtained after the minimization of the
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Figure 4 Temperature distribution (S, =0.5,Gp=1,M=2,0=1,P,=0.71,, =05N,=1,N=1,B=0.5,D,=0.1,5.=0.5,
k=0.1).

10F
08 }
(a)
0.6
¢
04} e
‘ﬂ‘ //'
0.2 y -
——" N=0,05,1,1.5
00 L L i i o .0k L L .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Y y
10F
0.8t (d)
0.6 |
¢
04}
é" F
02| ‘ . //-" ]
o b= 8,70,051,15 |
-1.0 -05 0.0 0.5 1.0
y

Figure 5 Concentration distribution (S, =0.5,Gg=1,M =2, 2a=1,P,=0.71,, =05N,=1,B=0.5,5.=05,D,=0.1,N=1,
k=0.5).

02f
0.0f

- -02f
—04f

—06}

Figure 6 Skin friction distribution (S, =0.5Gr=1,M=2,0=1,P,=0.71,,=05N,=1,B=0.5,D,=0.1,k=05N=1)
@...0,=0,---D,=0.5 —D,=1,—D,=15and (b)...S,=0.5,-—-—-S. =078, — S, =1,—S. =2.

average residual error belongs to the region of convergence solutions. We find that the 15th order HAM solutions are
found by A-curves. We observe from this table that increasing good approximations for understanding the physics of the
order of HAM approximation leads to more accurate considered problem.
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5. Results and discussions

In this section, the influences of different involved parameters
on the flow, heat and mass transfer characteristics have been
shown graphically. The graphs are drawn by taking the value
of the auxiliary parameter ‘4, at which the average residual
error is minimum. The results presented in Fig. 3 indicate
the behavior of M, k, N, D,, B, Gg, S. and S, on the velocity
of the fluid. The variation of the magnetic parameter (M) is
shown in Fig. 3a. This figure indicates that by increasing
‘M, velocity decreases in the right half of the channel but
the reverse trend can be noticed in the left half of the channel.
Moreover, magnitude of the velocity is a decreasing function
of M. The physical explanation for the above trends is, when
the transverse magnetic field is applied in a fluid introduces a
damping effect on the velocity field by creating a drag force.
This resistive force causes the velocity to decrease with an
increase in the magnetic field parameter (as noted in Ref.
[21]). Fig. 3b elucidates the effect of non-dimensional ther-
mophoretic coefficient on u. Obviously the velocity is a
decreasing function of ‘k’ (as noted in Ref. [18]). The influence
of the radiation parameter ‘N’ is sketched in Fig. 3c. It shows
that the velocity of the fluid enhances significantly which may
be due to the temperature variation in the fluid. Similar effect
can be noticed if the parameter ‘N’ is replaced by ‘D,’, which is
shown in Fig. 3d. Fig. 3e elucidates the effect of buoyancy
parameter ‘B’ on the velocity ‘u’. It is observed that increasing
‘B’ enhances the velocity field because of increase in the buoy-
ancy ratio that tends to increase the buoyancy-induced flow.
Fig. 3f has been plotted to illustrate the variations of mixed
convection parameter (Gg) on main velocity u. It is found that

the effect of increasing Gy is to increase the velocity as
expected. An increasing Gy physically means an increase of
the buoyancy force, which supports the flow. Further, It is
apparent from Fig. 3g that the velocity is a decreasing function
of S.. Similar effect could be noticed with increasing S,, which
is shown in Fig. 3h.

Fig. 4 is plotted to illustrate the variations of N and D, on
the temperature distribution. Fig. 4a elucidates the effects of N
on 6. It is found that increasing N leads to increase the fluid
temperature. Fig. 4b gives the behavior of D, on 6. It is noted
that D, has similar results when compared with Fig. 4a. But
the change in Fig. 4b is smaller when compared with Fig. 4a.
Fig. 5 is made to see the variation of ¢ versus y with different
values of N, S., k and S,. Similar observations are gathered
from these figures, which shows that increasing these values
suppresses the concentration of the fluid. It is important to
note that, ¢ is monotonically decreasing function of y in the
left half of the channel (See Ref. [16]). Fig. 6 is plotted for skin
friction against the radiation parameter. From Fig. 6a, we
observe that the skin friction is increased with an increase of
‘N’ at y = —1 while it decreases at the other wall. The effect
of D, on 7 is same on both the walls. The influence of S. on
7 is sketched in Fig. 6b. It depicts that the opposite result to
that of Fig. 6a if D, is replaced by S,.. To see the behavior of
Nusselt number distribution for different values of D, and
S., we have prepared Fig. 7. The influence of both the param-
eters on Nu is just opposite to that of Fig. 6a, which is shown
in 7a&7b. The reverse effect can be observed with increasing
these parameters on Sherwood distribution which is shown
in Fig. 8. Proper choice of the parameters and making the
boundary conditions similar to [16] for u, we note that HAM

2 y=1 w‘
.‘uu-»‘-"‘il‘ -
Nu Of ooeeeee (b)
o "‘-""’-'vr,..__.
y:_l 4_._——-:'_.‘7.
L ) ) )
0.0 0.5 1.0 15 2.0

Figure 7 Nusselt number distribution (S, =0.5,Gp=1,M=2,0=1,P, =0.71,, =05N,=1,B=0.5,D,=0.1,k=05N=1),
@..D,=0,---D,=05 —D,=1,—D,=15and (b) - S.=0.5,.-- S, =2.
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Figure 8 Sherwood number distribution (S, =0.5,Gr =1, M =2,00=1,P, =0.71,4, =0.5,N, =1,B=0.5,D, = 0.1,k =0.5,N = 1),
@..0,=0,--D0,=05—D,=1,—D,=15and (b)...S,=0.5,---5.=0.78, — S. =1, — S, =2.
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Figure 10 Velocity distribution (S, =0,Gr =100, M =0,
«=-12,D,=0,P.=0,N,=1,B=10,D,=0,S. = 100,k = 0,
N =0).

solutions show very good agreement with the solutions given
by Grosan and Pop [16] (See Fig. 10).

6. Final remarks

In this article, the effects of thermophoretic particle deposi-
tion on the MHD mixed convective heat and mass transfer
flow in a vertical channel in the presence of a magnetic field.
The resulting nonlinear coupled equations are solved under
appropriate boundary conditions using the homotopy analy-
sis method. Particular attention is given to show graphically
the variations of pertinent parameter on the flow, heat and
mass transfer characteristics. It is interesting to note that
the velocity is an increasing function of N, D,, B and Gi

while it decreasing function of M, k, S, and S.. The fluid
temperature increases with increasing N and D,. The influ-
ences of N, S., k, and S, on the concentration distribution
are same and ¢ is decreasing function of y in the left half
of the channel (See Ref. [16]). Effect of radiation parameter
on Nusselt number distribution is just opposite to Sherwood
distribution at the walls. Skin friction is increased with an
increase of ‘N’ at the channel wall y = —1 whereas the
reverse effect is true at the other wall. The results of Grosan
et al. [16] can be captured as a limiting case of M, D,, P,, N
and S, — 0.
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