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Abstract In this paper, we present a deterministic non-linear mathematical model for the
transmission dynamics of HIV and TB co-infection and analyze it in the presence of screen-
ing and treatment. The equilibria of the model are computed and stability of these equilibria
is discussed. The basic reproduction numbers corresponding to both HIV and TB are found
and we show that the disease-free equilibrium is stable only when the basic reproduction
numbers for both the diseases are less than one. When both the reproduction numbers are
greater than one, the co-infection equilibrium point may exist. The co-infection equilibrium
is found to be locally stable whenever it exists. The TB-only and HIV-only equilibria are
locally asymptotically stable under some restriction on parameters. We present numerical
simulation results to support the analytical findings. We observe that screening with proper
counseling of HIV infectives results in a significant reduction of the number of individu-
als progressing to HIV. Additionally, the screening of TB reduces the infection prevalence
of TB disease. The results reported in this paper clearly indicate that proper screening and
counseling can check the spread of HIV and TB diseases and effective control strategies can
be formulated around ‘screening with proper counseling’.
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1 Introduction

The main objectives of mathematical modeling of infectious diseases are to identify and
study the factors that influence the spread of the disease and to predict the future dynamics
of a particular disease or combination of diseases under consideration. Furthermore, math-
ematical modeling is significantly used in formulating and evaluating strategies to control
and prevent their spread in the susceptible population. Throughout the world, more so in the
developing world, there are a number of deadly infectious diseases that are severely affect-
ing the lifespan of the human population. Acquired Immuno Deficiency Syndrome (AIDS)
is one of such deadly diseases that is a seriously life threatening condition caused by the
Human Immuno-deficiency Virus (HIV). This infection causes a progressive decrease in
the body’s natural inbuilt immunity to fight against infections. It was first reported in June
1981 and since then AIDS has become one of the history’s worst pandemics. HIV/AIDS
epidemic continues its deadly expansion across the globe with approximately 14,000 new
infections per day. Till date, there is no vaccine to protect an individual from this dreadful
virus. The HIV is transmitted predominantly via sexual contact or needle sharing. More-
over, vertical transmission is also a mode of transmission for HIV. AIDS is the last stage of
HIV infection resulting in death.

Tuberculosis (TB) is an infectious disease and in humans it is mainly caused by
Mycobacterium tuberculosis. The most important source of infection is the patient with TB
of the lung, or pulmonary TB (PTB). The two diseases (HIV and TB) differ in their modes
of transmission. TB is an airborne disease and is described as a slow disease because of its
long and variable latency period distribution and its short infectious period [1, 2]. Tubercu-
losis (TB) and Human immuno deficiency syndrome (HIV) are well-known mortality and
morbidity resulting diseases worldwide. As HIV infection causes a decrease in the immu-
nity level of individuals, so people infected with HIV are more likely to get opportunistic
infections. Amongst the HIV cases, TB is the most common opportunistic infection. These
two diseases exhibit a special bond, where each accelerates the progression of the other.
In a HIV/TB co-infected person, the immune response to TB bacilli increases HIV repli-
cation. As a result of the increase in the number of viruses in the body, there is rapid
progression of HIV infection. The viral load can increase by six–seven fold. As a result,
there is a rapid decline in the count of CD4 cells, which carry the CD4 glycoprotein and
are also called T-helper cells and the patient starts developing symptoms of various oppor-
tunistic infections. Thus the health of the patient who has dual infection deteriorates much
faster than a patient with a single infection. The mortality due to TB in AIDS cases is also
high. The risk of developing TB has been estimated to be between 21–34 times greater
in people living with HIV than among those without HIV infection. TB increases the rate
of progression from HIV to AIDS and shortens the life span of patients with HIV infec-
tion. In 2010, 1.8 million HIV infectives have died due to HIV among which 350,000
were due to TB and of the 1.1 million people who died from TB. TB represents a seri-
ous health risk and is a leading cause of morbidity and mortality among people living with
HIV [2–4].

Since currently no cure exists for the HIV disease, only prevention is effective in con-
trolling its spread amongst the population. We believe that the detection of HIV infection
and subsequent counseling can be treated as a control measure. In India, HIV counseling
and testing services started in 1997. Currently, there are numbers of Integrated Counsel-
ing and Testing Centers (ICTCs)/Prevention of Parent to Child Transmission (PPTCTs) and
Surveillance Centres under NACO (National AIDS Control Organization) that are actively
working in screening and providing counseling to HIV infectives. The government of India
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has opened many Anti-retroviral Therapy (ART) centres, to provide anti-retroviral therapy
to all the AIDS patients in the country. In addition to this several NGOs such as The Naz
Foundation (India), Desire Society and SAATHII, etc. are working to bring better awareness
and knowledge regarding HIV, AIDS and TB to the Indian population.

In recent years, mathematical modeling of HIV, TB and HIV/TB co-infections have been
reported by several researchers, [for details see 4–14]. However, most of these models do
not incorporate the effects of screening of infectives in the transmission dynamics of these
diseases. In [15, 16], the authors incorporated the effect of screening of HIV infectives
but they did not incorporate the treatment. Most of the researchers, who have incorporated
the screening of infectives, have made separate classes for aware and unaware infectives.
Hence, the extension of these models to HIV-TB co-infection is very difficult as the number
of variables in the mathematical model will increase, making analysis of the model very
complicated.

In the present paper, we consider a simple mathematical model for the dynamics of
HIV/TB co-infection by incorporating both screening and treatment of infectives. As our
approach of mathematical modeling is different, so incorporation of both the treatment and
screening does not complicate the analysis of the model. It is assumed that the screening
is associated with proper counseling. And, further we assume that the screened HIV infec-
tives are not taking part in the transmission of HIV. However, some screened HIV infectives
can contribute in the transmission of the HIV virus but in this work we ignore those indi-
viduals as if they are not screened. We consider only the adult sexually active population
in the model formulation as the majority of HIV transmissions are due to hetero-sexual
transmissions.

The remaining of this paper is organized as follows: Section 2 presents the mathematical
model, Section 3 is devoted to the analysis of the sub-models, Section 4 deals with the anal-
ysis of the full model, Section 5 presents the numerical simulations to illustrate analytical
findings and to see the effect of various parameters on the transmission dynamics of HIV
and Section 6 concludes the paper with a brief discussion.

2 The model

We formulate a deterministic HIV/AIDS-TB co-infection model to investigate the effect
of screening (with proper counseling) and treatment of infectives. The total sexually active
human population N (t) is subdivided into six sub-populations i.e., susceptible individuals
(S), active TB individuals who are capable of transmitting the disease (I1), HIV-infected
individuals (I2), individuals dully infected with HIV and TB (I3), AIDS patients (I4) and
AIDS individuals dually infected with TB (I5). Hence the total sexually active human
population N is given by:

N = S + I1 + I2 + I3 + I4 + I5.

It is assumed that the human population is recruited into the population at a constant
rate �. Susceptible individuals acquire HIV infection due to effective contact with HIV-
infected individuals at a rate λH and acquire TB infection following effective contact with
TB-infected individuals at a rate λT . The force of infection associated with TB infection,
denoted by λT is given by:

λT = βT (I1 + I3 + I5)

N
(1)
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In (1), βT is the effective contact rate for TB infection. HIV-infected individuals and AIDS
patients may acquire TB at rate βT . The force of infection associated with HIV infection is
denoted by λH and is given by:

λH = βH {(1 − α1)I2 + (1 − α2)η1I3 + (1 − α3)I4 + (1 − α4)η2I5}
N

(2)

where, βH is the effective contact rate for HIV infection.
The parameters (η1 ≥ 1 and η2 ≥ 1) are the modification parameters that correspond

to the assumption that the dually infected individuals transmit HIV infection with a higher
rate as compared to HIV-only infectives. Similarly, φ1, φ2 ≥ 1 are modification parameters
that correspond to the fact that HIV or AIDS infected individuals are more prone to acquire
TB infection than the susceptibles. It is assumed that TB patients may recover after treat-
ment at a rate γ and will enter the susceptible class. μ is the natural death rate for all the
individuals in different subgroups. Further μi for i = 1, 2, 3, 4, 5 account for the disease
related death rate in the respective class. η is considered as the rate of screening for TB
and it is assumed that the individuals who are screened of TB are keeping themselves away
from HIV infection. Here, αi for i = 1, 2, 3, 4 are the rates of screening for HIV, HIV-
TB co-infected individuals, AIDS and AIDS-TB co-infected individuals respectively. The
parameters δ1 and δ2 are the disease progression rates to AIDS by HIV treated and untreated
individuals respectively. Similarly δ3 and δ4 are the disease progression rates to AIDS-TB
dual infection by HIV-TB dually infected treated and untreated individuals respectively. The
rate of treatment for HIV is denoted by ν, under the assumption that the disease progression
rate will be slow in the individuals who are taking treatment. Combining the different rates
mentioned above τ1 is considered as the progression rate to AIDS by HIV-infected individ-
uals and τ2 is the progression rate to the AIDS-TB dually infected class by HIV-TB dually
infected individuals. Here τ1 and τ2 are given by:

τ1 = α1{δ1ν + δ2(1 − ν)} + δ2(1 − α1)

τ2 = α2{δ3ν + δ4(1 − ν)} + δ4(1 − α2).

Combining all the above mentioned facts, the mathematical model can be formulated as
follows:

dS

dt
= �− λT S − λHS − μS + γ ηI1

dI1

dt
= λT S − λH (1 − η)I1 − μI1 − μ1I1 − γ ηI1

dI2

dt
= λHS − φ1λT I2 + α2γ I3 − (μ+ μ2 + τ1)I2

dI3

dt
= λH (1 − η)I1 + φ1λT I2 − α2γ I3 − (μ+ μ3 + τ2)I3

dI4

dt
= τ1I2 − φ2λT I4 − (μ+ μ4)I4 + γ α4I5

dI5

dt
= φ2λT I4 + τ2I3 − (μ+ μ5)I5 − γ α4I5 (3)
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Here S > 0, I1 ≥ 0, I2 ≥ 0, I3 ≥ 0, I4 ≥ 0, I5 ≥ 0. Model system (3) governs the
human population, hence all the variables and parameters used in the model formulation are
non-negative. We consider a biologically-feasible region:

� =
{
(S, I1, I2, I3, I4, I5) ∈ R6+ : N ≤ �

μ

}

We adhere to the following steps to show the positive invariance of � i.e., all the solutions
of (3) that initiate in � remain in the region �:

We have N(t) = S(t)+ I1(t)+ I2(t)+ I3(t)+ I4(t)+ I5(t). The rate of change of the
total population by adding all the equations considered in (3) is:

dN

dt
= �− μN − μ1I1 − μ2I2 − μ3I3 − μ4I4 − μ5I5

Clearly, whenever N > �/μ, dN/dt < 0. Notice that dN/dt is bounded by � − μN.
By using the standard comparison theorem [17] it can be shown that, 0 ≤ N(t) ≤
�
μ
(1 − e−μt ) + N(0)e−μt . In particular, N(t) ≤ �

μ
if N(0) ≤ �

μ
. Hence, the region

� =
{
(S, I1, I2, I3, I4, I5) ∈ R6+ : N ≤ �

μ

}
is positively invariant for system (3).

It is also necessary to prove that all the variables of model (3) are non-negative so that
the solution of the system with positive initial conditions remains positive for all t > 0. The
following lemma describes this fact.

Lemma 1 If S(0) ≥ 0, Ii(0) ≥ 0 for i = 1, 2 . . . 5, the solutions S(t), I1(t), I2(t), I3(t), I4(t),
I5(t) of system (3) are positive for all t > 0.

Proof We shall prove this lemma using a contradiction by assuming that the total
population N (t) �= 0 for all t ≥ 0.

We assume that there exists a first time t1 such that:

S(t1) = 0, S′(t1) < 0, I1(t) ≥ 0, I2(t) ≥ 0, I3(t) ≥ 0, I4(t) ≥ 0, I5(t) ≥ 0, 0 ≤ t ≤ t1,

(4)
there exists a first time t2 such that:

I1(t2) = 0, I ′1(t2) < 0, S(t) ≥ 0, I2(t) ≥ 0, I3(t) ≥ 0, I4(t) ≥ 0, I5(t) ≥ 0, 0 ≤ t ≤ t2,

(5)
there exists a first time t3 such that:

I2(t3) = 0, I ′2(t3) < 0, S(t) ≥ 0, I1(t) ≥ 0, I3(t) ≥ 0, I4(t) ≥ 0, I5(t) ≥ 0, 0 ≤ t ≤ t3,

(6)
there exists a first time t4 such that:

I3(t4) = 0, I ′3(t4) < 0, S(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, I4(t) ≥ 0, I5(t) ≥ 0, 0 ≤ t ≤ t4,

(7)
there exists a first time t5 such that:

I4(t5) = 0, I ′4(t5) < 0, S(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, I3(t) ≥ 0, I5(t) ≥ 0, 0 ≤ t ≤ t5
(8)

and there exists a first time t6 such that:

I5(t6) = 0, I ′5(t6) < 0, S(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, I3(t) ≥ 0, I4(t) ≥ 0, 0 ≤ t ≤ t6.

(9)
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From (4) S′(t1) = �+ γ ηI1(t1) > 0, which is a contradiction, meaning that S(t) ≥ 0,
t ≥ 0. From (5), we get:

I ′1(t2) = λT |t=t2
S(t2) = βT [I1(t2)+ I3(t2)+ I5(t2)]

N(t2)
S(t2) ≥ 0,

which is again a contradiction, meaning that I1(t) ≥ 0, t ≥ 0.
Again from (6), we get:

I ′2(t3) = λH |t=t3
S(t3)+ α2γ I3(t3)

= (1 − α2)η1I3(t3)+ (1 − α3)I4(t3)+ (1 − α4)η2I5(t3)

N(t3)
S(t3)+ α2γ I3(t3) ≥ 0,

which is a contradiction, implying I2(t) ≥ 0, t ≥ 0.
Similarly, using the assumptions in Eqs. (7)–(9), we get the following contradictions

respectively:

I ′3(t4) = λH |t=t4
(1 − η)I1(t4)+ φ1λT |t=t4

I2(t4)

= βH {(1 − α1)I2(t4)+ (1 − α3)I4(t)+ (1 − α4)η2I5(t4)}
N(t4)

(1 − η)I1(t4)

+ φ1
βtI1(t4)+ I5(t4)

N(t4)
I2(t4) ≥ 0,

I ′4(t5) = τ1I2(t5)+ γ α4I5(t5) ≥ 0,

I ′5(t6) = φ2λT |t=t6
I4(t6)+ τ2I3(t6) = φ2βT

I1(t6)+ I3(t6)

N(t6)
I4(t6)+ τ2I3(t6) ≥ 0.

Hence we conclude that I3(t) ≥ 0, I4(t) ≥ 0, I5(t) ≥ 0, for t ≥ 0. Thus the solutions S(t),
Ii(t), i = 1, 2. . . 5 of system (3) remain positive for all t > 0.

The schematic flow diagram in Fig. 1 describes the flow of individuals from one to
another compartment with the possibility of acquiring TB, HIV or HIV/TB co-infection.

3 Analysis of the sub-models

The analysis of the full model will be followed by analyzing the dynamics of the sub-models
with TB-only and HIV-only.

3.1 TB-only model

The TB-only model is obtained by setting I2 = I3 = I4 = 0 = I5 and is given by:

dS

dt
= �− λT S − μS + γ ηI1,

dI1

dt
= λT S − μI1 − μ1I1 − γ ηI1. (10)

Here λT = βT I1
N

. The basic reproduction number for the above model is calculated as:

RT = βT

μ+ μ1 + γ η
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Fig. 1 The schematic flow diagram of HIV/TB model system (3)

The region of attraction for this sub-model is given by:

�1 =
{
(S, I1) ∈ R2+ : S + I1 = N ≤ �

μ

}
.

3.1.1 Stability of disease-free equilibrium (DFE)

Model (10) has a DFE, obtained by setting the right-hand side of the equations in the model
to zero and is given by:

ET 0 =
(
S0, I 0

1

)
=
(
�

μ
, 0

)

Theorem 1 The disease-free equilibrium ET 0 of system (10) is locally asymptotically stable
when RT < 1.

Proof To study the stability of the DEF we calculated the variational matrix at ET 0, which
gives two eigenvalues −μ,−(1 − RT )(μ+ μ1 + γ η), which are negative for RT < 1 that
ensures that the DFE ET 0 is locally asymptotically stable.

Theorem 2 If RT < 1, then the disease-free steady state ET 0 of (10) is globally
asymptotically stable in the region �1.

Proof Define the Lyapunov-LaSalle function U : {(S, I1) ∈ �1 : S > 0} → R by:

U(S, I1) = 1

2
I 2

1 .
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The time derivative of U computed along solutions of (10) is:

U ′(S, I1) =
(
βT I1S

S + I1
− (μ+ μ1 + γ η)I1

)
I1

= I 2
1

(S + I1)
{βT S − (μ+ μ1 + γ η)(S + I1)}

= (μ+ μ1 + γ η)
I 2

1

(S + I1)

{(
βT

μ+ μ1 + γ η
− 1

)
S − I1

}

= −(μ+ μ1 + γ η)
I 2

1

(S + I1)
{(1 − RT )S + I1}

Since all the model parameters are positive and variables are non-negative, it follows that
U ′(S, I1) ≤ 0 for RT ≤ 1 with U ′(S, I1) = 0 if and only if I1 = 0. Hence the largest
invariant set contained in

{
(S, I1) ∈ �1, U

′ = 0
}

is the singleton {ET 0}. Thus the global
asymptotic stability of ET 0 for RT < 1 follows from LaSalle’s invariance Principle [18].

3.1.2 Existence and stability of the endemic equilibrium point

The unique endemic equilibrium point of system (10) is given by:

E1 = (S∗, I∗1 ) =
(

�

(μ+ μ1)(RT − 1)+ μ
,

�(RT − 1)

(μ+ μ1)(RT − 1)+ μ

)
,

which exists whenever RT > 1. The local stability of this equilibrium point is summarized
in the following theorem.

Theorem 3 The TB-only endemic equilibrium E1 of system (10) is locally asymptotically
stable if RT > 1.

Proof The Jacobian of system (10) evaluated at the equilibrium point (E1) is given by:

J (E1) =

⎛
⎜⎜⎝
−μ− βT (I∗1 )

2

(S∗+I∗1 )
2 − βT (S∗)2

(S∗+I∗1 )
2 + γ η

βT (I∗1 )
2

(S∗+I∗1 )
2

βT (S∗)2

(S∗+I∗1 )
2 − (μ+ μ1 + γ η)

⎞
⎟⎟⎠

Using the steady state, we take into account the following identity:

γ η + μ1 + μ = βT S
∗

S∗ + I∗1

and the above Jacobian matrix can be rewritten as:

J (E1) =

⎛
⎜⎜⎝
−μ− βT (I∗1 )

2

(S∗+I∗1 )
2

βT S
∗I∗1

(S∗+I∗1 )
2 − (μ+ μ1)

βT (I∗1 )
2

(S∗+I∗1 )
2 − βT S

∗I∗1
(S∗+I∗1 )

2

⎞
⎟⎟⎠
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The trace of J (E1) is:

tr(J (E1)) = −
{
μ+ βT I

∗
1

(S∗ + I∗1 )

}
< 0.

Further,

det (J (E1)) = μβT S
∗I∗1

(S∗ + I∗1 )2
+ (μ+ μ1)βT I

∗
1

2

(S∗ + I∗1 )2
> 0.

Hence, the eigenvalues of the Jacobian matrix J (E1) have negative real parts. This estab-
lishes the result that the endemic equilibrium is locally asymptotically stable whenever it
exists.

The global stability of TB-only endemic equilibrium E1 is proved using the method of
Lyapunov and is stated in the following theorem.

Theorem 4 If RT > 1, then the unique TB-only endemic equilibrium E1 of (10) is globally
asymptotically stable.

Proof Define L : {(S, I1) ∈ �1 : S, I1 > 0} → R by:

L(S, I1) =
[
(S − S∗)+ (I1 + I∗1 )− (S∗ + I∗1 ) ln

(
S + I1

S∗ + I∗1

)]

+ (2μ+ μ1)(S
∗ + I∗1 )

βT

(
ln

I1

I∗1
+ I∗1

I1
− 1

)
.

Here, L is C1 on the interior of �1, E1 is the global minimum of L on �1 and
L
(
S∗, I∗1

) = 0. Computing the time derivative of the above function along the solutions of
(10), we get:

L′(S, I1) =
[
(S − S∗)+ (

I1 − I∗1
)]

S + I1

d(S + I1)

dt
+ (2μ+ μ1)

(
S∗ + I∗1

)
βT

(
I1 − I∗1

)
I 2

dI1

dt
,

=
[
(S − S∗)+ (

I1 − I∗1
)]

S + I1
(�− μ(S + I1)− μ1I1)

+ (2μ+ μ1)
(
S∗ + I∗1

)
βT

(I1 − I∗1 )
I 2

1

(
βT SI1

S + I1
− (μ+ μ1 + γ η)I1

)
,

=
[
(S − S∗)+ (

I1 − I∗1
)]

S + I1

{−μ(S − S∗)− (μ+ μ1)
(
I1 − I∗1

)}

+(2μ+ μ1)
(
S∗ + I∗1

) (I1 − I∗1
)

I1

(
S

S + I1
− S∗

S∗ + I∗1

)
.

Using,

S
S+I1

− S∗
S∗+I∗1

= I1(S−S∗)−S(I1−I∗1 )
(S+I1)(S∗+I∗1 )

L′(S, I1) = −μ
(S−S∗)2
S+I1

−
{
(μ+ μ1)+ (2μ+ μ1)

S
I1

}
(I1−I∗1 )

2

(S+I1)
.
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Clearly, L′(S, I1) < 0 always holds except at the TB-only endemic equilibrium, E1.
Also, L(S, I1) → ∞ as S → ∞ and L(S, I1) → ∞ as I1 → 0 or I1 → ∞. Therefore,
we may conclude that function L(S, I1) is a Lyapunov function for system (10) and that,
by the Lyapunov asymptotic stability theorem [19], the endemic steady state is globally
asymptotically stable in the interior of �1, when it exists and this proves Theorem 4.

The dynamics of the HIV-only model is explored below.

3.2 HIV-only model

The HIV-only model is obtained by setting I1 = I3 = 0 = I5 and is given by:

dS

dt
= �− λHS − μS,

dI2

dt
= λHS − (μ+ μ2 + τ1)I2,

dI4

dt
= τ1I2 − (μ+ μ4)I4, (11)

where λH = βH {(1−α1)I2+(1−α3)I4}
N

3.2.1 Local stability of DFE

The HIV-only model (11) has a DFE given by:

EH0 =
(
S0, I 0

2 , I
0
4

)
=
(
�

μ
, 0, 0

)
.

The linear stability of EH0 is carried out by the basic reproduction number RH . The stability
of the equilibrium is further investigated using the next generation matrix operator [22].
The F and V matrices corresponding to new infection terms and remaining transfer terms
are respectively given as follows:

F =
(
βH(1 − α1) βH (1 − α3)

0 0

)
;V =

(
(μ+ μ2 + τ1) 0

−τ1 (μ+ μ4)

)
.

From this, it follows that:

RH = ρ(FV −1) = βH {(1 − α1)(μ+ μ4)+ τ1(1 − α3)}
(μ+ μ2 + τ1)(μ+ μ4)

.

(Note that S* =N* at the DFE EH0.) The following result is established using Theorem 2
of [22].

Lemma 2 The disease-free equilibrium of model (11) given by EH0, is locally asymptoti-
cally stable if RH < 1 and unstable if RH > 1.

The local stability analysis can also be viewed by evaluating the Jacobian matrix J (EH0)

at the disease-free equilibrium point EH0. One eigenvalue of the Jacobian matrix J (EH0)
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is evaluated as -μ and the other two eigenvalues are the roots of the following quadratic
equation:

λ2+{(μ+ μ2 + τ1)+ (μ+ μ4)− (βH (1 − α1))}λ+(μ+μ2+τ1)(μ+μ4)(1−RH) = 0.

Clearly for RH < 1, the constant term as well as the coefficient of λ are positive implying
the local stability of the disease-free equilibrium point EH0. Also it is noted that one of the
eigenvalues will be zero for RH = 1.

The non-trivial equilibrium E2 = (
S∗, I∗2 , I

∗
4

)
of system (11), is given by:

S∗ = (μ+ μ2 + τ1)N
∗

βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

} ,

I∗2 = (μ+ μ4)

μ+ μ4 + τ1

⎡
⎣1 − (μ+ μ2 + τ1)

βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
⎤
⎦N∗,

I∗4 = τ1

(μ+ μ4)
I∗2 and N∗ is given by:

N∗ =
�βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
(

(μ+μ4)
μ+μ4+τ1

[
βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
− (μ+μ2 +τ1)

]
+ μ

)
(μ+ μ2 +τ1)

.

It is clear that the non-trivial equilibrium point E2 exists only when RH > 1 and this
corresponds to a unique positive equilibrium point associated with the HIV-only model.

3.2.2 Stability and bifurcation analysis for endemic equilibrium point

Let S = x1, I2 = x2 and I4 = x3, so that N = x1 + x2 + x3, and model (11) is re-written in
the form:

dx1

dt
= f1 = �− λHx1 − μx1,

dx2

dt
= f2 = λHx1 − (μ+ μ2 + τ1)x2,

dx3

dt
= f3 = τ1x2 − (μ+ μ4)x3, (12)

where, λH = βH {(1 − α1)x2 + (1 − α3)x3}
(x1 + x2 + x3)

The Jacobian of system (12), at DFE (EH0) is given by:

J (EH0) = J ∗
β =

⎛
⎝−μ −βH(1 − α1) −βH(1 − α3)

0 βH (1 − α1)− (μ+ μ2 + τ1) βH (1 − α3)

0 τ1 −(μ+ μ4)

⎞
⎠

Suppose βH is chosen as a bifurcation parameter. Solving the system for the reproduction
number given above for RH = 1, we get:

βH = β∗ = (μ+ μ2 + τ1)(μ+ μ4)

(1 − α1)(μ+ μ4)+ τ1(1 − α3)
.
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Note that the above linearized system, of transformed system (12) with βH =β*, has a zero
eigenvalue that is simple. Hence, the center manifold theory [20] can be used to analyze the
dynamics of (12) near βH =β*.

Eigenvectors of J(E0)|βH=β∗

It can be shown that the Jacobian of (12) at βH = β∗ (denoted by Jβ∗ ) has a right
eigenvector (associated with the zero eigenvalue) given by w = [w1, w2, w3]T , where:

w1 = − (β∗[(1 − α1)(μ+ μ4)+ (1 − α3)τ1])w2

μ(μ+ μ4)

w2 = w2 > 0 and w3 = τ1
μ+μ4

w2. Further, Jβ∗ has a left eigenvector v = [v1, v2, v3]
(associated with the zero eigenvalue), where:

v1 = 0, v2 = v2 > 0, v3 = β∗(1 − α3)

(μ+ μ4)
v2.

For convenience, the theorem in [21] is stated here:

Theorem 5 (Castillo-Chavez and Song) Consider the following general system of ordinary
differential equations with a parameter φ:

dx

dt
= f (x, φ), f : Rn ×R → R and C2(Rn ×R), (13)

where 0 is an equilibrium point of the system (that is, f (0,φ) ≡ 0 for all φ and assume

A1 : A = Dxf (0, 0) =
(

∂fi
∂xj

(0,0)
)

is the linearization matrix of system (13) around

the equilibrium 0 and φ evaluated at 0. Zero is a simple eigenvalue of A and other
eigenvalues of A have negative real parts;

A2 : Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to
the zero eigenvalue);

Let fk be the kth component of f and:

a =
n∑

k,j,i=1

vkwiwj
∂2fk

∂xi∂xj
(0,0), b =

n∑
k,i=1

vkwi
∂2fk

∂xi∂φ
(0,0)

The local dynamics of the system around 0 is totally determined by the signs of a and b.

i: a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there exists
a negative, locally asymptotically stable equilibrium;

ii: a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is locally
asymptotically stable and there exists a positive unstable equilibrium;

iii: a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable and a positive
unstable equilibrium appears;

iv: a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive
and locally asymptotically stable.
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Computation of a and b For system (12), the associated non-zero partial derivatives of f (at
the DFE ) are given by:

∂2f2

∂x2∂x3
= −β∗[(1 − α1)+ (1 − α3)]μ

�
,

∂2f2

∂x2
2

= −2β∗(1 − α1)μ

�
,

∂2f2

∂x2
3

= −2β∗(1 − α3)μ

�
,

∂2f2

∂x2∂β∗ = (1 − α1),
∂2f2

∂x3∂β∗ = (1 − α3).

It follows from above expressions that:

a = v2

3∑
k,j,i=1

wiwj

∂2fk

∂xi∂xj
(0, 0),

= −2v2

(
w2w3μ

�
[β∗(1 − α1)+ β∗(1 − α3)] + w2

2
β∗(1 − α1)μ

�
+ w2

3
β∗(1 − α3)μ

�

)
< 0

and

b = v2

3∑
k,i=1

wi
∂2fk

∂xi∂φ
(0, 0),

= v2

[
(1 − α1)w2 + (1 − α3)

τ1

(μ+ μ4)
w2

]
> 0.

We get a < 0 and b > 0. From (iv) of the above theorem it implies that the unique
equilibrium point of model system (12), which exists whenever RH > 1, will be locally
asymptotically stable when RH > 1 and β∗ < βH with βH close to β∗. This establishes the
following theorem.

Theorem 6 The unique endemic equilibrium E2 is locally asymptotically stable for RH > 1.

4 Analysis of the full model

The full HIV-TB co-infection model has four equilibria, namely, disease-free equilib-
rium E0, TB-only equilibrium Ê , HIV-equilibrium E∗ and endemic equilibrium point E∗∗
(associated with the existence of co-epidemics).

The TB-only equilibrium point Ê = (Ŝ, Î1, 0, 0, 0, 0) is obtained by setting I2 = I3 =
I4 = 0 = I5 and is given by:

Ê = (Ŝ, Î1, 0, 0, 0, 0) =
(

�

(μ+ μ1)(RT − 1)+ μ
,

�(RT − 1)

(μ+ μ1)(RT − 1)+ μ
, 0, 0,0, 0)

)
.

The HIV-only equilibrium point E∗ = (
S∗, 0, I∗2 , 0, I∗4 , 0

)
, is obtained by setting I1 = I3 =

0 = I5, where:

S∗ = (μ+ μ2 + τ1)N
∗

βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

} ,

I∗2 = (μ+ μ4)

μ+ μ4 + τ1

⎡
⎣1 − (μ+ μ2 + τ )

βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
⎤
⎦N∗,
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I∗4 = τ1
(μ+μ4)

I∗2 and N∗ is given by:

N∗ =
�βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
(μ+μ4)
μ+μ4+τ1

[
βH

{
(1 − α1)+ (1 − α3)

τ1
μ+μ4

}
− (μ+ μ2 + τ1)

]
+ μ(μ+ μ2 + τ1)

.

System (3) has co-existence equilibrium E∗∗ = (
S∗∗, I∗∗1 , I∗∗2 , I∗∗3 , I∗∗4 , I∗∗5

)
, where:

S∗∗ = {λH (1 − η)+ μ+ μ1 + γ η}�
(λT + λH + μ){λH (1 − η)+ μ+ μ1} + (λH + μ)γ η

,

I∗∗1 = λT �

(λT + λH + μ){λH (1 − η)+ μ+ μ1} + (λH + μ)γ η
,

I∗∗2 = λH (α2γ + μ+ μ3 + τ2)S
∗∗ + α2γ λH (1 − η)I∗∗1

(φ1λT + μ+ μ2 + τ1)(μ+ μ3 + τ2)+ (μ+ μ2 + τ1)α2γ
,

I∗∗3 = λH (1 − η)I∗∗1 + φ1λT I
∗∗
2

α2γ + μ+ μ3 + τ2
,

I∗∗4 = (μ+ μ5 + γ α4)τ1I
∗∗
2 + γ α4τ2I

∗∗
3

(μ+ μ5 + γ α4)(μ+ μ4)+ (μ+ μ5)φ2λT
,

I∗∗5 = τ2I
∗∗
3 + φ2λT I

∗∗
4

μ+ μ5 + γ α4
.

From the above expressions it is clear that all the variables S∗∗, I∗∗1 , I∗∗2 , I∗∗3 , I∗∗4 , I∗∗5
can be written in terms of λT and λH . Now using the expressions for λT and λH , the
following two equations give the system of two non-linear equations in λT and λH , which
can be solved for λT and λH :

λT
(
S∗∗ + I ∗∗1 + I ∗∗2 + I ∗∗3 + I ∗∗4 + I ∗∗5

) = βT
(
I ∗∗1 + I ∗∗3 + I ∗∗5

)
,

λH βT
(
I ∗∗1 + I ∗∗3 + I ∗∗5

) = λT βH
{
(1 − α1)I

∗∗
2 + (1 − α2)η1I

∗∗
3 + (1 − α3)I

∗∗
4 + (1 − α4)η2I

∗∗
5

}
.

Once we know λT and λH , our co-existence equilibrium E∗∗ = (S∗∗, I∗∗1 , I∗∗2 , I∗∗3 ,

I∗∗4 , I∗∗5 ), is completely known.

4.1 Local stability of disease-free equilibrium (DFE)

Model (3) has a DFE given by E0 = (S0, 0, 0, 0, 0, 0) =
(
�
μ
, 0, 0, 0, 0, 0

)
.

Using the next generation matrix method the reproduction number RHT has been
calculated for which associated F and V matrices are given as:

F =

⎛
⎜⎜⎝

βT 0 βT 0 βT
0 βH (1 − α1) βH (1 − α2)η1 βH (1 − α3) βH (1 − α4)η2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎠

V =

⎛
⎜⎜⎝

(μ+ μ1 + γ η) 0 0 0 0
0 (μ+ μ2 + τ1) −α2γ 0 0
0 0 α2γ + (μ+ μ3 + τ2) 0 0
0 −τ1 0 (μ+ μ4) −γ α4
0 0 −τ2 0 (μ+ μ5)+ γ α4

⎞
⎟⎟⎠
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Here, it is shown that the associated reproduction number RHT is given by:

RHT = max{RT ,RH }
Again using Theorem 2 in [22] the following result is established.

Lemma 3 The DFE of the full HIV-TB model (3), given by E0, is locally asymptotically
stable if RHT < 1 and unstable if RHT > 1.

4.2 Local stability of TB-only and HIV-only equilibrium points

The variational matrix corresponding to system (3) at the TB-only equilibrium point is given
by:

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26
0 0 m33 m34 m35 m36

0 0 m43 m44 m45 m46
0 0 τ1 0 m55 m56

0 0 0 τ2 m65 m66

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where

m11 = −
(
βT Î1

N̂
+ μ

)
+ βT ŜÎ1

N̂2 = −
(

βT Î
2
1

N̂2 + μ

)
,

m12 = −
(
βT Ŝ

2

N̂2

)
+ γ η,m13 = βT Î1Ŝ

N̂2 − βH (1−α1)Ŝ

N̂
,

m14 = −
(
βT Ŝ

2

N̂2

)
− βH (1−α2)η1Ŝ

N̂
, m15 = βT Î1Ŝ

N̂2 − βH (1−α3)Ŝ

N̂
,

m16 = βT Î1Ŝ

N̂2 − βH (1−α4)η2Ŝ

N̂
,

m21 = βT Î
2
1

N̂2 ,m22 = − βT Î1Ŝ

N̂2 ,

m23 = − βT ŜÎ1

N̂2 − (1−η)βH (1−α1)Î1

N̂
,m24 = βT Ŝ

2

N̂2 ,

m25 = βT ŜÎ1

N̂2 − (1−η)(1−α3)βH Î1

N̂
,m26 = βT Ŝ

2

N̂2 − βH (1−η)(1−α4)η2 Î1

N̂
,

m33 = ŜβH (1−α1)

N̂
− φ1βT Î1

N̂
− (μ+ μ2 + τ1) ,m34 = ŜβH (1−α2)η1

N̂
+ α2γ,

m35 = ŜβH (1−α3)

N̂
, m36 = ŜβH (1−α4)η2

N̂
,

m43 = (1−η)βH (1−α1)Î1

N̂
+ φ1βT Î1

N̂
, m44 = (1−η)βH (1−α2)η1 Î1

N̂
− (μ+ μ3 + τ2 + α2γ ) ,

m45 = (1−η)βH (1−α3)Î1

N̂
,m46 = (1−η)(1−α4)η2 Î1

N̂
,

m55 = −φ2βT Î1

N̂
− (μ+ μ4) ,m56 = γ α4,

m65 = φ2βT Î1

N̂
, m66 = − (μ+ μ5 + γ α4) .
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Fig. 2 S-I1 phase plane showing the stability of the disease-free equilibrium point E0 when RT =
0.8888889, RH = 0.9077159

It is easy to observe that the eigenvalues of this variational matrix are the roots of the
following polynomials:

ψ2 − (m11 +m22)ψ + (m11m22 −m12m21) = 0 and
ψ4 + a3ψ

3 + a2ψ
2 + a1ψ + a0 = 0,

where

a3 = −(m33 +m44 +m55 +m66)

a2 = m33(m44 +m55 +m66)+m55m66 −m65m56 +m44(m55 +m66)− τ2m46 −m43m13 − τ1m35

a1 = −m33 {m55m66 −m65m56 +m44(m55 +m66)− τ2m46}
−m44(m55m66 −m65m56)− τ2(m46m56 −m46m55)

+m43m13(m55 +m66)− τ2m36 − τ1m34m45 +m35(m44 +m66)τ1 − τ1m36m65,

a0 = m33 {m44(m55m66 −m65m56)− τ2(m45m56 −m46m55)}
−m43m13(m55m66 −m56m65)−m43τ2(m35m56 −m36m55)

+τ1m34(m45m66 −m46m65)+ τ1τ2m35m46

−τ1m35m44m66 + τ1m36(m44m65 − τ2m45)

It is easy to visualize that the co-efficient of ψ and the constant term in the first quadratic
equation are positive, which implies that the roots of this quadratic are either negative or
have negative real parts. Now using Routh-Hurwitz criteria, the biquadratic equation will
have roots with negative real parts provided a3 > 0 and a1a2a3 − a2

1 − a0a
2
3 > 0. Hence by

the Routh-Hurwitz criteria the equilibrium point Ê is locally asymptotically stable provided
a3 > 0 and a1a2a3 − a2

1 − a0a
2
3 > 0.

The variational matrix corresponding to system (3) at the HIV-only equilibrium point E∗
is given by:

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

n11 n12 n13 n14 n15 n16
0 n22 0 n24 0 n26

n31 n32 n33 n34 n35 n36
0 n42 0 n44 0 n46

0 n52 n53 n54 n55 n56
0 n62 0 n64 0 n66

⎞
⎟⎟⎟⎟⎟⎟⎠
,
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where

n11 = − [βH {(1 − α1)I
∗
2 + (1 − α3)I

∗
4

}+ μ
]+ βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2

n12 = S∗βT
N∗ + βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2 + γ η

n13 = −βH (1−α1)S
∗

N∗ + βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }S∗

N∗2

n14 = −βT S
∗

N∗ − βH (1−α2)η1S
∗

N∗ + βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }S∗

N∗2

n15 = βH (1−α3)S
∗

N∗ + βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }S∗

N∗2

n16 = βH (1−α4)η2S
∗

N∗ + βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }S∗

N∗2

n22 = βT S
∗

N∗ −
[
βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗ (1 − η)+ μ+ μ1 + γ η
]

n24 = βT S
∗

N∗

n26 = βT S
∗

N∗

n31 = βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }

N∗ − S∗βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }

N∗2

n32 = S∗βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }

N∗2 − φ1I
∗
2 βT
N∗

n33 = S∗βH (1−α1)
N∗ − S∗βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2 + α2γ − φ1I
∗
2 βT
N∗

n34 = S∗βH (1−α2)η1
N∗ − S∗βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2

n35 = S∗βH (1−α3)
N∗ − S∗βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2

n36 = S∗βH (1−α4)η2
N∗ − S∗βH {(1−α1)I

∗
2 +(1−α3)I

∗
4 }

N∗2 − φ1I
∗
2 βT
N∗

n42 = βH {(1−α1)I
∗
2 +(1−α3)I

∗
4 }(1−η)

N∗ + φ1I
∗
2 βT
N∗

n44 = φ1I
∗
2 βT
N∗ − (μ+ μ3 + τ2 + α2γ )

n46 = φ1I
∗
2 βT
N∗

n52 = −φ2I
∗
4 βT
N∗

n53 = τ1

n54 = −φ2I
∗
4 βT
N∗

n55 = −(μ+ μ4)

n56 = −φ2I
∗
4 βT
N∗ + γ α4
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Fig. 3 S-I2 phase plane showing the stability of the disease-free equilibrium point E0 when RT =
0.8888889, RH = 0.9077159

n62 = φ2I
∗
4 βT

N∗

n64 = φ2I
∗
4 βT

N∗ + τ2

n66 = −(μ+ μ5 + γ α4)

The eigenvalues of this variational matrix are the roots of following two cubic equations:

ψ3 + g1ψ
2 + g2ψ + g3 = 0,

ψ3 + f1ψ
2 + f2ψ + f3 = 0,

where

g1 = −(n22 + n44 + n66)

g2 = n44n66 + n22(n44 + n66)− n64n46 − n24n42

g3 = n22n64n46 + n24n42n66 − n24n62n46 − n22n44n66

f1 = −(n11 + n33 + n55)

f2 = n33n55 + n11(n33 + n55)− n13n31 − n35n53

f3 = n31n13n55 + n11n35n53 − n11n33n55 − n31n15n53.

Using Routh-Hurwitz’s criteria, this equilibrium is locally asymptotically stable provided
g1 > 0, f1 > 0, g1g2 − g3 > 0 and f1f2 − f3 > 0. Hence we conclude that when both
the reproduction numbers are greater than one then the local asymptotic stability of any
boundary equilibrium i.e., TB-only or HIV-only equilibrium point is not guaranteed. They
are locally asymptotic stable only under some restriction on the parameters.
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Fig. 4 S − I1 phase plane showing the stability of the TB-only equilibrium point Ê when RT =
1.111111, RH = 0.9077159

4.3 Bifurcation analysis of the full HIV-TB model

Consider S = x1, I1 = x2, I2 = x3, I3 = x4, I4 = x5, I5 = x6 and N = S + I1 + I2 + I3 +
I4 + I5. Model system (3) can be rewritten in the following form:

dx1
dt

= f1 = �− λT x1 − λHx1 − μx1 + γ ηx2

dx2
dt

= f2 = λT x1 − λH (1 − η)x2 − μx2 − μ1x2 − γ ηx2

dx3
dt

= f3 = λHx1 − φ1λT x3 − α2γ x4 − (μ+ μ2 + τ1)x3

dx4
dt

= f4 = λH (1 − η)x2 + φ1λT x3 − α2γ x4 − (μ+ μ3 + τ2)x4

dx5
dt

= f5 = τ1x3 − φ2λT x5 − (μ+ μ4)x5 − γ α4x6

dx6
dt

= f6 = φ2λT I4 + τ2x4 − (μ+ μ5 + γ α4)x6

(14)

To analyze the dynamics of full model (3), we compute the Jacobian of (14) at the DFF E0
denoted by J (E0).

J (E0) = J ∗
β =

⎛
⎜⎜⎜⎜⎝

−μ −βT + γ η −βH (1 − α1) K1 −βH (1 − α3) K2
0 βT − (μ+ μ1 + γ η) 0 βT 0 βT
0 0 K3 βH (1 − α2) η1 + α2γ βH (1 − α3) K4
0 0 0 −α2γ − (μ+ μ3 + τ2) 0 0
0 0 τ1 0 − (μ+ μ4) γ α4
0 0 0 τ2 0 K5

⎞
⎟⎟⎟⎟⎠

Here, K1 = −βT − βHη1(1 − α2),K2 = −βT − βH (1 − α4)η2,K3 = βH (1 − α1) −
(μ+ μ2 + τ1),K4 = βH (1 − α4)η2, K5 = −(μ+ μ5)− γ α4.

The four eigenvalues of this matrix are −[α2γ + (μ+ μ3 + τ2)],−μ, βT − (μ+ μ1 +
γ η),−(μ + μ5 + γ α4) and the other eigenvalues are the roots of the following quadratic
equation:

λ2 − (βH (1 − α)− (μ+μ2 + τ1)− (μ+μ4))λ+ (μ+μ2 + τ1)(μ+μ4)(1 −RH ) = 0,

which has a zero eigenvalue for RH = 1.
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Fig. 5 S − I2 phase plane showing the stability of the TB-only equilibrium point Ê when RT =
1.111111, RH = 0.9077159

Fig. 6 S−I1 phase plane showing the stability of the HIV-only equilibrium point E∗ when RT =
0.8888889, RH = 1.210288

Fig. 7 S − I2 phase plane showing the stability of the HIV-only equilibrium point E∗ when RT =
0.8888889, RH = 1.210288
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Fig. 8 I1 − I2 phase plane showing the stability of the co-infection equilibrium point when RT =
1.666667, RH = 1.210288

Consider the case when RH > RT i.e., RHT = RH and RHT = 1. Choose βH = β* as
the bifurcation parameter.

Eigenvectors of J ∗
β For the case when RHT = 1, it is shown that the Jacobian of

(14) at βH = β∗ has a right eigenvector and a left eigenvector given by w =
[w1, w2, w3, w4, w5, w6]T and v = [v1, v2, v3, v4, v5, v6], respectively, where,

w1 = −β∗{(1 − α1)w3 + (1 − α3)w5}
μ

,

w2 = 0 = w4 = w6,

w5 > 0,

w3 = (μ+ μ4)w5

τ1
.

J ∗
β has a left eigenvector v = [v1, v2, v3, v4, v5, v6], where,

v1 = 0 = v2, v5 = v5 > 0,

v3 = (μ+ μ4)v5

β∗(1 − α3)
,

v4 = (β∗(1 − α2)η1 + α2γ )v3 + τ2v6

α2γ + (μ+ μ3)+ τ2
,

v6 = γ α4v5 + β∗(1 − α4)η2v3

(μ+ μ5 + γ α4)
.

Computation of a and b Computing the non-zero partial derivatives associated with F at
DFE, the expressions for a and b (defined in Theorem 5) are given as:

∂2f3

∂x2
3

= −2β∗(1 − α1)μ

�
,

∂2f3

∂x3∂x5
= −β∗[(1 − α1)+ (1 − α3)]μ

�
,

∂2f3

∂x2
5

= −2β∗(1 − α3)μ

�



Mathematical Modelling of HIV/AIDS and Tuberculosis Co-infection 161

I

I

η = 0.2

η = 0.3

Time

I

I

1

1

3

3

 0

 500

 1000

 1500

 2000

0 20 40 60 80 100 120 140

Fig. 9 Variation of I1 and I3 with time, showing the effect of rate of screening of TB where all other
parameters are as stated for the co-infection equilibrium point

and

∂2f3

∂x3∂β∗ = (1 − α1),
∂2f3

∂x5∂β∗ = (1 − α3)

a = − 2v3β
∗
(
w2

3(1−α1)�

μ
+ w3w5 [(1−α1)+ (1−α3)]�

μ
+ w2

5(1−α3)�

μ

)
< 0

b = v3(w3(1 − α1)+w5(1 − α3)) > 0.
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Fig. 10 Variation of I2 and I3 with time, showing the effect of rate of screening of HIV where all other
parameters are as stated for the co-infection equilibrium point
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Fig. 11 Variation of I1 and I2 with time, showing the combined effect of rate of screening of both TB and
HIV where all other parameters are as stated for the co-infection equilibrium point

Again, we get a < 0 and b > 0. From (iv) of Theorem 5, it is clear that the unique non-
trivial equilibrium point of model system (3), which exists whenever RH > 1, will be
locally asymptotically stable when RH>RT> 1 and β∗ < βH with βH close to β∗. This
establishes the following theorem.

Theorem 7 The unique endemic equilibrium E∗∗ is locally asymptotically stable for
RH > RT > 1.

Time

β
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T
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Fig. 12 Variation of I1 and I3 with time for different βT , showing the effect of rate of transmission of TB
where all other parameters are as stated for the co-infection equilibrium point
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Fig. 13 Variation of I2 and I3 with time for different βH , showing the effect of rate of rate of transmission
of HIV where all other parameters are as stated for the co-infection equilibrium point

4.3.1 Global stability of disease-free equilibrium

Here, we list two conditions that need to be satisfied to guarantee the global asymptotic
stability of the disease-free state. Following Castillo-Chavez et al. [23], we rewrite model
system (3) as follows:

{
X′(t) = F(X, Y ),

Y ′(t) = G(X, Y ), G(X, 0) = 0.
(15)

where X = S and Y = (I1, I2, I3, I4, I5)
T with X ∈ R+ denoting the number of uninfected

individuals and Y ∈ R
5+ denoting the number of infected and co-infected individuals. The

disease-free equilibrium is denoted here by E0 = (X0, 0) =
(
�
μ
, 0, 0, 0, 0, 0

)
.

The conditions (H1) and (H2) below must be met to guarantee global asymptotic
stability.

H1: For X′(t) = F(X0, 0),X0 is globally asymptotically stable (g.a.s.),
H2: G(X,Y ) = AY − Ĝ(X,Y ), Ĝ(X, Y ) ≥ 0 for (X,Y ) ∈ D.

Here A = DYG(X0, 0) is an M-matrix (the off-diagonal elements of A are non-negative)
and D is the region where the model makes biological sense. If model system (15) satisfies
the conditions H1 and H2, then the following result stated in Theorem 8 holds.

Theorem 8 The fixed point E0 = (X0, 0) is the globally asymptotically stable equilibrium
of system (3), provided RHT < 1 and the conditions stated in H1 and H2 are satisfied.

Proof In Section 4.1 we have proved that for RHT < 1,E0 is locally asymptotically stable.
Consider

F(X, 0) = �− μS,G(X, Y ) = AY − Ĝ(X, Y ),
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where

A =

⎛
⎜⎜⎝

βT − (μ+ μ1 + γη) 0 βT 0 βT
0 βH (1 − α1)− (μ+ μ2 + τ1) βH (1 − α2) η1 + α2γ βH (1 − α3) βH (1 − α4) η2
0 0 −α2γ − (μ+ μ3 + τ2) 0 0
0 τ1 0 − (μ+ μ4) γα4
0 0 τ2 0 − (μ+ μ5)− γα4

⎞
⎟⎟⎠

Then

Ĝ(X, Y) =

⎛
⎜⎜⎜⎝

Ĝ1(X, Y)

Ĝ2(X, Y)

Ĝ3(X, Y)

Ĝ4(X, Y)

Ĝ5(X, Y)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

βT (I1 + I3 + I5)
(
1 − S

N

)+ λH (1 − η) I1

βH [(1 − α1) I2 + (1 − α2) η1I3 + (1 − α3) I4 + (1 − α4) η2I5]
(
1 − S

N

)+ λT φ1I2− (λH (1 − η) I1 + λT φ1I2)
φ2λT I4−φ2λT I4

⎞
⎟⎟⎟⎠

Notice that the matrix A is an M-Matrix since all its of-diagonal elements are non-
negative, where as to establish the result of global stability of E0, we need to prove
Ĝ(X, Y ) ≥ 0 but here Ĝ3(X,Y ) < 0 and Ĝ5(X, Y ) < 0. This implies that the DFE (E0) is
not globally stable.

5 Numerical simulation

Numerical simulations are carried out in XPP [24] to visualize the dynamics of the HIV/TB
full model (3) using various sets of parameters. Here Figs. 2 and 3 demonstrate the stability

of disease-free equilibrium E0 =
(
�
μ
, 0, 0, 0, 0, 0

)
for the set of parameters described in

Table 1. Here all the parameters are in yr−1. The basic reproduction numbers RT and RH

for this set of parameters are 0.8888 and 0.9077 respectively and E0 = (12500,0, 0, 0, 0, 0).
That means the two diseases disappear from the population. The stability of the TB-only
equilibrium point is demonstrated in Figs. 4 and 5, where the parameter βT = 0.1 and all
other parameters are the same as listed in Table 1. Here RT = 1.1111 and RH = 0.9077
and the TB-only equilibrium point is given by Ê = (9782.609,1086.957,0, 0, 0, 0). In this
case the disease-free equilibrium is unstable and HIV-only and co-infection equilibria do
not exist.

Now system (3) is again simulated by changing the parameter βH as 0.12 and keeping
all the other parameters as listed in Table 1. For this set of parameters RT = 0.8888889 and
RH = 1.210288. Here TB-only and co-infection equilibria do not exist and the disease-
free equilibrium point is unstable. Figures 6 and 7 are demonstrating the stability of the
HIV-only equilibrium point E∗, which is (7581.92,0,1167.57,0,426.81,0). When both the
reproduction numbers RT and RH are greater than one then there is a possibility of sta-
bility of co-infection equilibrium E∗∗, which is demonstrated in Fig. 8 for the parameter
values described in Table 1, except βT = 0.15, βH = 0.12. For this set of parameters
RT = 1.666667,RH = 1.210288. The TB-only equilibrium Ê , the HIV-only equilibrium
E∗ and the co-infection equilibrium E∗∗ are given by (4687.5, 3125.0, 0, 0, 0), (7581.92, 0,
1167.574, 0, 426.8125, 0) and (4067.9, 2166.5, 451.85, 223.72, 148.2, 113.17) respectively.
It is observed that whenever the co-infection equilibrium E∗ exists it is locally asymptoti-
cally stable and in this case the other equilibria become unstable. That means for RH > 1
and RT > 1, both the diseases will co-exist.

In Fig. 9, the effect of screening TB patients is shown, which shows a significant decrease
in the number of TB-infectives with an increase in rate of screening. Similarly the effect of
screening in HIV patients is also considerable as the number of HIV infectives is less with
the rise in rate of screening. This fact is demonstrated in Fig. 10. The combined effect of
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rates of screening of TB and HIV is demonstrated in Fig. 11, where both the TB and HIV
infectives decrease significantly with the increase in the rates of screening of TB and HIV.
The effects of rate of transmission of TB are demonstrated in Fig. 12, where it is observed
that with the increase in this parameter the equilibrium levels of the TB infectives and the
co-infected population increase. Similarly with the increase in the rate of transmission of
HIV, the equilibrium level of HIV infectives and the co-infected population increase, which
is demonstrated in Fig. 13.

6 Conclusion

In this paper we formulated and analyzed a mathematical model for HIV/AIDS-TB co-
infection with screening and treatment of both HIV and TB infectives. The reproduction
numbers corresponding to both TB and HIV were computed. The existence and stability
of various equilibria were also discussed. We found that the system always tends to the
disease-free equilibrium point if the basic reproduction numbers RT and RH corresponding
to TB and HIV respectively, are less than one. We have shown that the coinfection equi-
librium point is locally asymptotically stable whenever it exists. Our numerical simulation
showed that the screening of HIV infected people plays a very important role in controlling
the spread of this disease. From our presented results, it can be easily seen that the rate of
screening of TB has a positive impact on the reproduction number (RT ) corresponding to
TB, i.e., with an increase in the rate of screening of TB infectives, the reproduction number
RT decreases. Thus we concluded that with an increase in the rate of screening of TB, i.e.,
η, the number of TB-infectives decreases, which is reflected in numerical simulation too.
Also it is easy to observe that both the reproduction numbers RT and RH can be reduced
below one by increasing the rate of screening for TB and HIV, leading the disease-free equi-
librium to be stable. Also numerical simulation suggests that the rates of transmission of
both TB and HIV should be decreased, as an increase causes a rise in the number of infec-
tives at the equilibrium level. Hence, we can conclude that a strong coordination between
the national TB and AIDS control programs is required for the effective management of
HIV-TB patients.
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