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Abstract We use the visibility algorithm to construct the time series networks ob-

tained from the time series of different dynamical regimes of the logistic map. We

define the simplicial characterisers of networks which can analyse the simplicial

structure at both the global and local levels. These characterisers are used to analyse

the TS networks obtained in different dynamical regimes of the logisitic map. It is

seen that the simplicial characterisers are able to distinguish between distinct dy-

namical regimes. We also apply the simplicial characterisers to time series networks

constructed from fMRI data, where the preliminary results indicate that the charac-

terisers are able to differentiate between distinct TS networks.

1 Introduction

The analysis of time series of evolving dynamical systems is a well established area

of research. There are numerous well developed techniques for the analysis of such

time series. These include Fourier transforms, power spectra, dimensions and en-

tropies, Lyapunov exponents etc. These characterisers provide valuable insights into

the dynamical behaviours of the evolving systems. In recent years, new techniques

have emerged for the analysis of time series. These consist of mapping the time

series to networks, using a variety of algorithms such as the visibility algorithms, re-

currence times, identification of cycles or correlations, etc. See [1] for a brief review.

Since networks are also a well established paradigm in the study of complex systems,

there are well established metrics for their analysis. These include path lengths, clus-

tering co-efficients, degree distributions etc. Here, we introduce a series of network

characterisers which go beyond these usual characterisers, and provide new insights
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into the dynamical behaviour of systems. The characterisers are based on the meth-

ods of algebraic topology. We demonstrate the utility of these characterisers in the

time series arising from the logistic map, and demonstrate that the characterisers can

differentiate between different dynamical regimes. We also analyse the time series

obtained from the fMRI analysis of neural data to demonstrate the general applica-

bility of the method.

2 The Visibility Graph

The visibility algorithm for converting a time series into an equivalent network, was

proposed by Lacasa and Lucque [2]. We note that there are other methods for con-

verting the time series graphs into networks, such as recurrence algorithms etc. These

are summarised in [1]. We use the visibility algorithm here on account of its intu-

itive nature. The visibility algorithm is implemented by connecting two points (yi, ti)
and (yj, tj) by a straight line, provided no other intermediate point, (yr, tr) lies above

the line, i.e. (yi, ti) and (yj, tj) should be ‘visible’ to each other, with no other inter-

mediate point obstructing the line of visibility in between (see Fig. 1). For this, all

intermediate points should satisfy the condition

(a)

(b)

Fig. 1 Portion of logistic map time series with visibility connections for (a) period 16 (𝜇 = 3.566),

and (b) edge of chaos (𝜇 = 3.56995). Number of points shown is 32
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Fig. 2 Corresponding

TS-networks for (a) period

16 (𝜇 = 3.566), and (b) edge

of chaos (𝜇 = 3.56995).

Number of nodes is 96

(b)(a)

yj > yr +
yj − yi
tj − ti

(tj − tr) (1)

It has been demonstrated that the visibility algorithm is capable of capturing se-

ries correlations (such as periodicity, fractality and chaoticity) and has been used in

diverse contexts from geophysics [3] to finance [4]. The graphs so generated have

been analysed using the usual characterisers, such as degree distributions, cluster-

ing co-efficients, average path lengths and Hurst exponents. Our aim is to analyse

these graphs using new simplicial characterisers, which go beyond the usual net-

work analysis.

The specific time series that we use is the time series generated from the logis-

tic map xn+1 = 𝜇xn(1 − xn), with the parameter 𝜇 lying in the interval [0, 4] and

xn ∈ [0, 1]. These time series are shown for the values 𝜇 = 3.566 (period 16) and

𝜇 = 3.56995 (edge of chaos) in Fig. 1a and b. The corresponding time series net-

works are also shown in Fig. 2a and b. We note that the network representation at the

periodic value 𝜇 = 3.566 shows the underlying periodicity in the repetition of the

connection pattern, whereas the 𝜇 = 3.56995 (edge of chaos) shows a much more

irregular behaviour. Similar network representations have been obtained in [2], but

have not been analysed further quantitatively. Here, we analyse the TS graphs ob-

tained in Fig. 2a and b using the methods of algebraic topology. The relevant simpli-

cial characterisers are defined in the next section.

3 The Definitions of the Simplicial Characterisers

The simplicial characterisers defined here can be used to analyse any graph or net-

work. Here, by a graph or network, is defined to be a collection of nodes interacting

via interconnected edges or links. We define a clique to be a maximal complete sub-

graph, i.e. the nodes of a clique are not part of a larger complete sub-graph. Using the

adjacency matrix of a the network, the Bron-Kerbosch algorithm [5] is used to iden-

tify the cliques. The cliques are regarded as the simplicial complexes of the graph.

A simplex with q + 1 nodes or vertices, is a q dimensional simplex. If two sim-

plices have q + 1 nodes in common, they share a q face. A collection of simplices,

i.e. the nodes and the shared faces form a simplicial complex. We are interested
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in the q−connectedness of the simplex, as well as in the dimension of the simpli-

cial complex, i.e. the dimension of the largest simplex in the complex. If we can

find a sequence of simplices such that each successive pair share a q face, then

all the simplices in this sequence are said to be q−connected. Simplices which are

q−connected, are also connected at all lower levels.

We define six simplicial characterisers, both global and local. Three of these quan-

tities are well known, and defined in most algebraic topology texts [6], and three are

new and have been recently defined in the context of social and traffic networks

[7, 8].

1. The first structure vector 𝐐 = Q0,Q1,…Qqmax: The q−th component of the vec-

tor is the number of q− connected components at the q th level. This is a measure

of the connectivity of the clique complex at various levels.

2. The next quantity is an auxiliary vector, which is denoted by ̃𝐟 and has the num-

ber of q− dimensional simplices as its q−th component. This vector has been

observed to behave as a response function, in the analysis of traffic [8].

3. The second structure vector: 𝐍𝐬 = n0, n1,… , nqmax. This vector has the number

of simplices of dimension q and higher, as its q− th component. This vector is

thus related to the auxilary vector ̃𝐟 , in the sense that its components are a running

sum of the components of ̃𝐟 .
4. The third structure vector ̂𝐐: This is constructed out of the components of the

first two structure vectors. Its q−th component is defined as ̂Qq =
(
1 − Qq

nq

)
.

5. The topological dimension of a node i dimQi
:

The topological dimension of node i of the simplicial complex, is given by

dimQi =
qmax∑
q=0

Qi
q, (2)

where qmax is the dimension of the simplicial complex, and Qi
k is the number of

different simplices of dimension k in which the node i participates.

6. The topological entropy 𝐒: This is defined by the equation

SQ(q) = −
∑

i piq log p
i
q

logNq
. (3)

were, piq = Qi
q∕
∑

i Qi
q is defined to be the probability that a given node i par-

ticipates in a q-simplex, and Nq = 𝛴i

(
1 − 𝛿Qi

q,0

)
is the number of nodes that

participate in at least one q-simplex.

We note that there are six quantities, five of which are global, except for the fifth

quantity, viz. the topological dimension of a node i dimQi
, which is a local quantity,

which turns out to be of maximum utility in identifying different dynamical regimes.
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The three structure vectors 𝐐, 𝐍𝐬,
̂𝐐 are well known and have been defined earlier

for simplicial analysis [6]. The remaining quantities were first defined in the context

of social and traffic networks [7, 8]. We now apply these quantities to the analysis

of the logistic map time series.

4 The Simplicial Analysis of the Logistic Map Time Series

We obtain the time series of the logistic map at the parameter values 𝜇 = 3.566
(period 16) and 𝜇 = 3.56995 (edge of chaos) and construct the equivalent networks

and characterise them using the simplicial characterisers. The resulting values for

the six topological characterisers are listed in Tables 1, 2, and 3, for a 10, 000 node

network for a single initial condition.

The first interesting fact is the number of levels in the network. We note that

the network contains simplices at the q = 0, q = 1 and q = 2 levels. We note that

Table 1 Structure vectors 𝐐, 𝐍𝐬 and ̂𝐐 for the TS networks of the logistic map at parameter values

of 𝜇 = 3.566 (period 16) and 𝜇 = 3.56995 (edge of chaos). The time series considered is of length

10000

𝜇 = 3.566 (period 16) 𝜇 = 3.56995 (edge of chaos)

q-level 𝐐 𝐍𝐬
̂𝐐 𝐐 𝐍𝐬

̂𝐐
0 1 9372 0.99989 1 9981 0.99990

1 628 9372 0.93299 19 9981 0.99810

2 9371 9371 0 9980 9980 0

Table 2 Structure vector ̃𝐟 and entropy 𝐒 for the TS networks of the logistic map at parameter

values of 𝜇 = 3.566 (period 16) and 𝜇 = 3.56995 (edge of chaos). The time series considered is of

length 10000

𝜇 = 3.566 (period 16) 𝜇 = 3.56995 (edge of chaos)

q-level ̃𝐟 𝐒 ̃𝐟 𝐒
0 0 0 0 0

1 1 1 1 1

2 9371 0.96864 9980 0.96210

Table 3 Maximum value of the topological dimension of all nodes in the TS network of the logistic

map at parameter values of 𝜇 = 3.566 (period 16) and 𝜇 = 3.56995 (edge of chaos). The time series

considered is of length 10000

𝜇 max(dim Qi
)

3.566 (period 16) 8

3.56995 (edge of chaos) 23
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there are no isolated points, for either parameter value. At the q = 1 level, the pe-

riod 16 network of 2000 nodes contains 128 1−connected components, whereas

the network at the edge of chaos contains 13 components at this level. At the

q = 2 level, the period 16 has 1871 2−connected components, whereas the edge

of chaos network has 1987 connected components at this level. Thus the edge

of chaos network has more components which are connected at the higher level.

The f vector which counts the number of q− dimensional simplices at the q−th

level, also shows more simplices at the q = 2 level for the edge of chaos network

(1987) than the period 16 network (1871). Thus, the network at the edge of chaos

is more connected than the period 16 network. This behaviour is also reflected

in the entropies where the edge of chaos network has a lower entropy (0.9545)

than the period-16 network (0.9620). However, the quantity which picks up the

difference between the two networks most sharply is the max(dimQi
) which is

the maximum value of the topological dimension of all the nodes in the network.

For the period-16 network, this is dimQi = 8 whereas the edge of chaos network

has dimQi = 19, a significantly higher value. Thus the most connected node par-

ticipates in a much higher number of simplices. We therefore conclude that the

higher the chaoticity of the dynamical states, the more interconnected are their net-

works. There is thus a direct and quantifiable connection between the correlations

in the dynamical state, and the simplicial structure at all levels. The table shows

the same set of quantities for a 10, 000 node network using the horizontal visibility

algorithm [9], and we note that the same trend is followed.

We note that simplicial analysis is capable of detecting the nature of the dynamical

state in other systems as well.

5 Simplicial Analysis of fMRI Data

In order to demonstrate the potential of simplicial analysis, we demonstrate its ap-

plication to fMRI (Functional Magnetic Resonance Imaging) data. The data is taken

from two regions of imaging (ROI), the left angular gyrus, and the left calcarine

sulcus. The first region is associated with complex language functions (i.e. reading,

writing and interpretation of what is written), and the second region is where the pri-

mary visual cortex is concentrated. There are two subjects, one adult and one child,

each of whom is carrying out a reading task. The importance of the two regions of

imaging for the reading task is obvious.

Each subject is carrying out a reading task from a screen in two distinct languages,

English and Hindi, with Hindi being the subjects’ native language. The time series

recorded has 480 points recorded as follows: the subject reads words in the given

language (20 data points), followed by a rest period (20 data points), then non-words

in the language (e.g. ‘cart’ and ‘rarn’, for English) (20 data points) followed by an-

other rest. Three repeats of each sequence are carried out, for each language, English,

followed by Hindi. The network is constructed using the horizontal visibility algo-

rithm.



The Simplicial Characterisation of TS Networks: Theory and Applications 295

Table 4 Values of simplicial characterisers max(dim Q
i
) and 𝐒 for the fMRI data. EW = English

word tasks, ER = English rest tasks, ENW = English nonword tasks, HW = Hindi word tasks, HR

= Hindi rest tasks, and HNW = Hindi nonword tasks

Sub-task max(dim Qi
) S(0) S(1) S(2)

a: ROI left angular gyrus for adult

EW 7 0 0.9784957361 0.9515456317

ER 9 0 1 0.9654711418

ENW 7 0 0.9881090916 0.9622363428

HW 10 0 0 0.9608581361

HR 8 0 0.9788379142 0.9639586918

HNW 8 0 0.9788379142 0.9615663021

b: ROI left calcarine sulcus for adult

EW 8 0 0.9775626836 0.9548140045

ER 11 0 0.9848586618 0.9602719488

ENW 6 0 0.9784957361 0.9677737123

HW 8 0 0.9697238999 0.9595191482

HR 9 0 0.9697238999 0.9651100304

HNW 6 0 0.9739760316 0.9618112835

c: ROI left angular gyrus for child

EW 6 0 0.9695703502 0.9619605169

ER 12 0 0.9671320181 0.96011217

ENW 8 0 0.9823368126 0.9479697481

HW 8 0 0.9784957361 0.9532572532

HR 8 0 0.9823368126 0.9593979771

HNW 8 0 0.9767405285 0.9550307474

d: ROI left calcarine sulcus for child

EW 8 0 0.9796133098 0.9647246463

ER 9 0 0.9795697645 0.9608848295

ENW 8 0 0.9795697645 0.9642018687

HW 10 0 0.9823368126 0.9561739848

HR 8 0 0.9766874637 0.9643463718

HNW 7 0 0.9796133098 0.9585418732

The values of the simplicial characterisers max(dim Q
i
) and 𝐒 are shown in

Table 4a–d. It is clear that the data shows detailed variations between the two ROIs,

the two languages for each subject, and also between subjects of different ages. While

the analysis is too preliminary for definite conclusions, it is clear that this method of

analysis is capable of yielding insights which are not accessible by other methods.
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6 Conclusions

To summarise, we propose the simplicial characterisers of TS networks. These char-

acterisers are capable of analysing the TS networks at each level of simplicial struc-

ture and hence can provide a detailed analysis of the correlations in the underlying

time series data. We demonstrate the utility of these characterisers in the context

of the well known logistic map, where the dynamical regimes are very well under-

stood. The simplicial characterisers turn out to be capable of distinguishing between

the dynamical regimes, and also provide insights into the detailed structure of the TS

networks. We also demonstrate the application of these characterisers to fMRI data.

Here, the analysis is preliminary and no definite conclusions can be drawn. How-

ever, the fact that the characterisers are capable of distinguishing between different

regimes, and subjects of different ages, demonstrates the potential of the method. We

hope these characterisers will turn out to be useful in diverse application contexts.
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