Header menu link for other important links
X

The sustainable conversion of floral waste into natural snake repellent and docking studies for antiophidic activity

 

 

 

Published in Elseviers
2023
Volume: 1
   
Issue: 2
Pages: 5 - 19
Abstract

Abstract

Snakes play an important role as predators, prey, ecosystem regulators and in advancing the human economy and pharmaceutical industries by producing venom-based medications such as anti-serums and anti-venoms. On the other hand, snakebites are responsible for over 120,000 annual fatalities; due to snakebites people lose their lives and suffer from diseases such as snake envenoming, epilepsy, and symptoms such as punctures, swelling, haemorrhage, bruising, blistering, and inflammation. Moreover, there are several challenges associated with different interventions for managing snakebites. Therefore, finding a natural way of repelling snakes without harming them will save lives and decrease the disease's symptoms. Usually, snakes are exacerbated by noxious odours and shrill sounds. There are various strategies to repel snakes, including chemical, natural, and electronic repellents being the most prevalent. Chemical snake repellents such as mothballs, sulphur powder, and cayenne pepper act as a barrier; natural snake repellents produce a pungent and foul smell, while electronic repellents generate high-frequency ultrasonic waves to repel snakes. On the other hand, anti-serums are available commercially to prevent the adverse effects of snakebite, which are species-specific, expensive, have inadequate pharmacology and impaired interaction with the immune system. Similarly, there are monovalent or polyvalent anti-serums used for the production of anti-venom depending on the snake species and the number of snakebites occurred in that area, e.g., Soro antibotropicocrotalico contains specific antibodies for Pit vipers and rattlesnakes, and Antielapidico targets coral snakes. The purpose of this review is to investigate natural, effective, and inexpensive snake-repellent from Vellore Institute of Technology (VIT) floral waste, which can be mixed with natural products such as vinegar, citronella, cinnamon, garlic, cedar, and clove and allowed for bacterial degradation which will lead to the release of several gases during floral waste degradation, including ammonia, sulphur, manganese, selenium, and gallic acid due to bacterial growth like Proteus, Bacillus, Streptococcus, etc. We assumed to convert these gases into liquid form using Linde's technique which may repel snakes. Further, molecular docking studies were performed on snake venom toxins (Phospholipase A2 (PDB-1MG6), Cytotoxin II (PDB-1CB9), α-Dendrotoxins (PDB-1DTX), Neurotoxin from cobra venom (PDB-1CTX) and Cardiotoxin III (PDB-2CRS). Phytocompounds of Vellore degraded floral waste from GC-MS analysis (Tetracosane, 12, Oleanen-3-yl Acetate, (3-Alpha), Eicosane-7-Hexyl, Octadecane,3-Ethyl-5(2-Ethyl Butyl), Nonadecane,4-Methyl, Hexatriacontane and Nonacosane) were used as a ligand to determine their binding affinity with venom proteins and may be assumed to be used as an antidote for snakebite. Finally, we analysed that 12-oleanen-3yl acetate,3-α (CID-45044112) a triterpenoid showing a maximum binding affinity with all snake venom proteins (−13.8k/cal) with Phospholipase A2 (PLA2), Cardiotoxin-II (−8.2k/cal), Dendrotoxin (−12.1 k/cal), Cardiotoxin-III (−8.2 kcal/mol) and alpha-Neurotoxin (−11.0 kcal/mol), which may have potential to counteract the adverse effects caused by snakebites, however, in-vitro and in-vivo studies still challenging tasks for our further analysis. Overall, we propose an innovative method for the sustainable conversion of floral waste into snake repellent, as well as molecular docking studies were performed with phytocompounds and snake venom proteins for antiophidic activity, which can be experimentally investigated further to confirm its use as anti-venom for snakebites.

About the journal
JournalToxicon
PublisherElseviers
ISSNPrint ISSN: 0041-010
Open AccessYes