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The lines of critical points of rare-gas binary mixtures are evaluated within the framework of a
statistical mechanics theory of thermodynamic stability, recently developed by Chen and
Forstmann. The phase instabilities are related to the local compositional and density order in the
fluid through a density functional expansion of the grand canonical potential. The structural inputs
are determined by using the thermodynamically self-consistent integral equation scheme known as
hypernetted chain/mean spherical approximation ~HMSA!. A good agreement is obtained with
neutron scattering data of He–Xe and Ne–Xe mixtures near the phase transition. Although the
accuracy in reproducing the experimental critical point lines is only semi-quantitative, the
qualitative behaviors are properly described. For the first time, a detailed microscopic interpretation
of the so called behavior of the ‘‘second type’’ of the critical line is given. © 1996 American

Institute of Physics. @S0021-9606~96!50927-X#

I. INTRODUCTION

The immiscibility of gases, or gas–gas equilibrium, was
predicted more than 100 years ago by van der Waals,1 and it
was experimentally confirmed, for the first time, by Krichev-
skii et al. in 1940, and by Tsiklis in 1952, who studied, re-
spectively, N2–NH3 and He–NH3 systems ~see Schneider2

and references therein!. Since then, the progress of high pres-
sure techniques made it possible to investigate the gas–gas
equilibria in a number of different binary mixtures.2,3 This
immiscibility phenomenon also became extremely important
for chemical engineering applications.4

Two main types of gas–gas critical behaviors were ob-
served, and classified according to the shape of the line of the
critical points ~CPL! in the pressure versus temperature
plane. In gas–gas equilibria, the CPL always starts from the
critical point of the less volatile component. The ‘‘first type’’
behavior is defined by a monotonous increase of the pressure
as the temperature is increased. In the ‘‘second type’’ behav-
ior, the CPL is characterized by an initial decrease of the
temperature, with a positive or negative slope, by a minimum
in the temperature value, and by a final increase of the pres-
sure as the temperature starts again to increase. The point of
the CPL corresponding to the minimum in temperature is
called double critical point ~DCP!.

These phenomena are of great interest for what concerns
the long standing problem of connecting microscopic inter-
action forces to the phase diagrams of fluids. Although it is
well established that rare gas can be successfully described
through simple models, like the Lennard-Jones potential, a
complete microscopic theory of the phase transition is still
missing.5,6 Only phenomenological theories, which have
been proposed for a long time,2,3,7 and few computer simu-
lation results8–10 are available.

Very recent progress in the statistical mechanics descrip-
tion of the stability limits of multicomponent thermodynamic
systems give the possibility of improving the understanding
of gas–gas equilibria, thus motivating this present work. We
are referring to the hierarchical reference theory of Parola
and Reatto,6 which goes beyond the mean field approxima-
tion, and to the theory based on density functional of Chen
and Forstmann.11 In both approaches one can predict the
different fluctuations which contribute to the mechanical and
material instabilities at the spinodal transition point. In this
paper we apply the Chen and Forstmann approach to recon-
struct the CPL of He–Xe and Ne–Xe mixtures at high pres-
sure. Our interest in these systems also comes from the avail-
ability of neutron scattering data12,13 on the microscopic
structure near phase transition for both mixtures. Another
source of interest is the different critical behavior shown by
the two type of mixtures: He–Xe mixtures have a CPL of the
first type, while Ne–Xe a CPL of the second type.

To locate the CPL, in both the (T ,P) and (x ,P) planes,
we used the following procedure. The fluid structure is de-
termined through the use of the Zerah and Hansen closure,14

called HMSA, by assuming a Lennard-Jones potential for the
particle–particle interaction ~at this stage, comparisons with
neutron scattering data are performed!. The solution of
HMSA, which provides all the correlation functions of inter-
est, is then used in the density functional expansion of the
grand canonical potential. By diagonalizing this expansion,
the smallest eigenvalue, which corresponds to the softest
mode, is found and the spinodal line is located. By changing
the macroscopic parameters of the investigated system, the
sketched procedure is repeated a number of times until all
the CPL is reconstructed.

We chose this localization procedure since it allows the
determination of both the particular kind of phase transition
mechanism, which is established when the stability limit is
by-passed, and the composition of the new formed phases.a!Author to whom correspondence should be addressed.
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We note that such predictions cannot be achieved by simpler
approaches, such as those based on the van der Waals
equation.7

A localization of the critical points via interpolation of
the binodal branches of the immiscibility region, which often
gives more accurate results,15 is also possible. However,
since the calculation of the binodal lines is based on the
integration of the pressure and on the internal energy along
given thermodynamic paths, is not infrequent to reach states
for which integral equations do not provide a solution, mak-
ing the method useless.

The paper is organized as follows. We first review the
thermodynamic stability conditions of multicomponent sys-
tems, and relate them to the Bhatia–Thornton structure fac-
tors. Then, it is shown how such structure factors enter in the
Chen and Forstmann expansion of the grand canonical po-
tential, and how it is possible to locate the limit of stability
from an analysis of the diverging fluctuations. In Sec. III,
applications of the HMSA to mixtures of He–Xe and Ne–Xe
are presented, and comparisons with experimentally deter-
mined structure factors are made. Section IV summarizes all
the steps of the procedure to locate the spinodal lines and the
line of critical points. Such lines are shown in Sec. V, where
detailed discussions of all predictions of the outlined work-
ing scheme are presented. Finally, Sec. VI is dedicated to the
summary and conclusions.

II. THERMODYNAMICS AND STATISTICAL
MECHANICS OF INSTABILITY

It is well known that infinitesimal local fluctuations of
thermodynamic properties are always present in equilibrium
states, and that if such fluctuations are dumped by the reac-
tion of the system itself ~Le Chatelier’s principle!, then the
equilibrium states are also stable states. When instead by
changing the thermodynamic state of the system some fluc-
tuations are amplified, the system becomes locally unstable
and phase transitions are observed which, in turn, restore a
new equilibrium stable situation ~this is also a manifestation
of the Le Chatelier’s principle!. By using the notation of
Callen,16 the conditions which express the local stability of
thermodynamic equilibrium states of a system with M com-
ponents are

u@P0 ,P1 , . . . ,P j# j j5S ]P j

]y j
D

P0 ,P1 , . . . ,P j21 ,y j11 , . . . ,yM21

.0 for all j50,1,.. . ,M . ~1!

In this expression, the quantities P j are the intensive vari-
ables of the differential form of the fundamental equation of
thermodynamics

u5u~S/N ,V/N ,N1 /N ,N2 /N , . . . ,NM /N !

5u~y0 ,y1 ,y2 , . . . ,yM21! ~2!

in which the extensive quantities have been rescaled by the
total number of particles N .

For a two-component system at constant N , the stability
conditions become
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where c
v

is the specific heat at constant volume, kT is the
isothermal compressibility, g is the molar Gibbs free energy,
and y25N1/N5x1 , is the molar fraction of component 1.

The first condition ~thermal stability! tells us that the
temperature must increase when heat is applied to the sys-
tem; the second ~mechanical stability! tells us that the pres-
sure must decrease when the system is isothermically ex-
panded; while the third ~material stability! tells us that
energy must increase when a particle is added to the system.
If one of these conditions is violated, the system looses its
stability and reacts making a phase transition, which could
be a fluid–fluid or/and a mixing–demixing transition, a
fluid–solid transition or a solid–solid transition. Here, we are
interested in studying fluid–fluid and mixing–demixing tran-
sitions which are induced by the loss of mechanical and ma-
terial stabilities.

To build a statistical mechanics theory of instability it is
necessary to ~i! link the previous expressions to fluctuations
of given microscopic quantities, and ~ii! to derive expres-
sions which allow the clear identification of the transition
mechanism. Step ~i! has been accomplished, by Kirkwood
and Buff17 and by Bhatia and Thornton.18 Recently, their
approach has been reviewed and generalized to fluid mix-
tures of any number of components by Gazzillo.19,20 Step ~ii!
has been established by Chen and Forstmann11 and by Parola
and Reatto.6

By following the work of Bhatia and Thornton,18 the
isothermal compressibility, kT , and the second derivative of
the Gibbs free energy, (]2g)/(]x1

2)T ,P , are linked to the long
wavelength limit of the correlations between the total num-
ber density and composition fluctuations through the exact
relations

SNN~k !5

1

N
^dnk

Ndn
2k
N &

→

k50

nkBTkT1D2kBT Y S ]2g

]x1
2 D

T ,P

, ~6!

SNC~k !5

1

N
^dnk

Ndn
2k
C & →

k50

2x1x2DkBT Y S ]2g

]x1
2 D

T ,P

,
~7!

SCC~k !5

1

N
^dnk

Cdn
2k
C & →

k50

~x1x2!1/2kBT Y S ]2g

]x1
2 D

T ,P

, ~8!

where the dnk
N ,C are the Fourier components of the total

number fluctuations, dnN(r), and of the compositions fluc-
tuations, dnC(r), defined as

dnN~r !5dn1~r !1dn2~r !, ~9!
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dnC~r !5~12x1!dn1~r !2x1dn2~r !. ~10!

In addition, n is the total number density and D is the dila-
tation factor given by

D5n~v12v2!52

1

n
S ]n

]x1
D

T ,P ,N

, ~11!

with v1 and v2 the partial molar volumes of the two species.
The collection of points in which stability is lost,

namely, the spinodal line, is then identified by divergences in
the k50 limit of the Bhatia–Thornton structure factors
SNN(k), SNC(k), and SCC(k).

To locate the spinodal line in the thermodynamic state
diagram, and to identify to what extent the related transition
is of the condensation/evaporation (C/E) or mixing/
demixing (M /D) type, Chen and Forstmann11 made a func-
tional expansion of the grand free energy of the system,
V(T ,V ,ma ;[na]), around the equilibrium densities na ~a
51,2!. By truncating the expansion at the second order term,
they obtained a relation between the variation of V and a
correlation matrix, M(k), whose elements are linked to the
Bhatia–Thornton structure factors and, via the Kirkwood and
Buff relations, to the stability conditions. This last link iden-
tifies M~k50! as the thermodynamic stability matrix. The
relation is

dV~M~k !!5

kBT

2V (
k

@l1~k !ud n̄1~k !u2

1l2~k !ud n̄2~k !u2# , ~12!

where the fluctuation terms d n̄1,2(k) are defined by

d n̄ i~k !5X i ,1~k !n21/2dnN~k !1X i ,2~k !

3~n/x1x2!1/2dnC~k !. ~13!

In this equation, the vector Xi(k) is the eigenvector which
diagonalize the matrix M(k), whose associated eigenvalues
l1,2(k) are given by

l1,2~k !5~M NN~k !1M CC~k !

7A~M NN~k !2M CC~k !!2
14M NC~k !!/2, ~14!

while the elements of the matrix M(k) are defined through
the Bhatia–Thornton structure factors as follows:

SNN~k !5MNN
21~k !, ~15!

SNC~k !5x1x2MNC
21~k !, ~16!

SCC~k !5~x1x2!1/2
MCC

21~k !. ~17!

At the spinodal line, one of the eigenvalues l1,2(k) goes to
zero, and the corresponding eigenvector defines the precise
combination of fluctuations, dnN and dnC @see Eq. ~13!#,
which are diverging.

The only part which is still missing in this statistical
mechanics approach to instability is a theory to evaluate the
Bhatia–Thornton structure factors. To this purpose, we
chose, from the integral equation theory, the thermodynami-

cally self-consistent hypernetted mean spherical approxima-
tion ~HMSA! scheme, originally developed by Zerah and
Hansen.14

This scheme consists of the Ornstein–Zernike equations

hab~r !5cab~r !1n(
l

xlE dr8hal~r !clb~ ur2r8u!,

~18!

which are exact relations, together with the HMSA closures

hab~r !

5211exp@2bvab
rep~r !#

3S 11

exp~ f ~r !@hab~r !2cab~r !2bvab
att ~r !# !21

f ~r !
D .

~19!

Once the repulsive, vab
rep(r), and the attractive, vab

att (r), part of
the particle–particle interaction potential are given, the
HMSA scheme is a ‘‘closed’’ set of equations which can be
numerically solved. The solution is achieved by enforcing
thermodynamic consistency, that is, the equality between the
isothermal compressibilities obtained from the fluctuation
and the virial route.14,21 The identity to be satisfied can be
written as

4pnE
0

`

drr2(
ab

xaxbcab~r !

5

]

]n F2pn2b

3 E
0

`

dr r3(
ab

xaxb

dvab~r !

dr
gab~r !G ,

~20!

and the equality of the two terms is reached by systemati-
cally changing the parameter j which appears in the mixing
function, f (r), defined as

f ~r !512exp~2jr !. ~21!

The ‘‘results’’ of the HMSA scheme are the direct cor-
relation functions cab(r) and the total correlation functions
hab(r)5gab(r)21, where gab(r) are the pair distribution
functions.

By Fourier transforming the set of hab(r) functions, the
needed Bhatia–Thornton structure factors of the two-
component system of interest are obtained from the relations

SNN~k !511n@x1
2h̃11~k !1x2

2h̃22~k !12x1x2h̃12~k !# ,
~22!

SNC~k !5nx1x2@x1h̃11~k !2x2h̃22~k !1~x22x1!h̃12~k !# ,

~23!

SCC~k !511nx1x2@ h̃11~k !1 h̃22~k !22 h̃12~k !# . ~24!

The full location of the spinodal line is, at this point,
straightforward.
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III. ONE-PHASE MICROSCOPIC STRUCTURE

Before proceeding to the full application of the localiza-
tion framework outlined in the previous section, it is impor-
tant to check if the proposed integral equation scheme,
namely, the HMSA, is accurate in describing the micro-
scopic structure of the binary mixtures under investigation.
To this purpose, we applied the HMSA scheme to the
He–Xe and Ne–Xe mixtures experimentally studied, respec-
tively, by Bellisent-Funel et al.,12 and by Filabozzi et al.13

In their work, Bellisent-Funel et al.12 reported neutron
scattering data for the total structure factor, S t(k), of two
thermodynamic states of the He–Xe mixture close to the
demixing surface. Such structure factor is given by

S t~k !511

1

~x1b̄11x2b̄2!2
~ b̄ 1

2S11~k !1 b̄ 2
2S22~k !

12 b̄1b̄2S12~k !!, ~25!

where the coefficients ba are the coherent scattering length
of the two species, and the partial structure factors, Sab(k),
are the Fourier transform of the pair distribution functions
gab(r)

Sab~k !5xadab1nxaxbE dr e2ik–rgab~r !. ~26!

From these definitions, it is evident that the total struc-
ture factor, S t(k), can be theoretically evaluated by solving
the set of Eqs. ~18!, ~19!, and ~20!, once the appropriate
microscopic parameters characterizing the two species are
supplied.

The Lennard-Jones interaction parameters of the pure
elements He, Ne, and Xe are reported in Table I, together
with the crossed interaction parameters as obtained from the
Lorentz–Berthelot ~LB! rule

e12
LB

5Ae11e22,
~27!

s12
LB

5~s111s22!/2.

The values of coherent scattering lengths ba are taken from
standard nuclear data tables.

By defining the attractive and repulsive part of the
Lennard-Jones potential

vab~r !54eabS S sab

r
D 12

2S sab

r
D 6D , ~28!

according to the Weeks, Chandler, and Andersen
prescription,22 we solved the HMSA scheme by using a rap-
idly convergent Picard procedure introduced by Ng.23

Figure 1 shows a comparison between the experimental
data and the HMSA results for the two He–Xe mixtures of
Ref. 12. A quantitative agreement is obtained, although the
mixtures are very close to the transition line, as it is evident
from the extremely high value of S t(k) at k50.

Analogous results for a Ne–Xe mixture are shown in
Fig. 2. Since more than one set of Lennard-Jones interaction
parameters are reported in the literature we performed two
different calculations according to the parameters labeled set
1 and set 2 of Table I. It is observed that the best agreement
is obtained for set 2 @Fig. 2~b!#, which corresponds to a
smaller value of the Xe diameter. However, more extended
tests of the HMSA accuracy, and of the validity of the LB
rule could not be performed, due to the fact that experimen-

TABLE I. Lennard-Jones interaction parameters.

Xe–Xea

Set 1
Xe–Xeb

Set 2
Ne–Nea He–Heb Ne–Xec

Set 1
Ne–Xec

Set 2
He–Xec

Set 1
He–Xec

Set 2

eab/kB ~K! 222.3 230 35.6 10.2 88.96 90.49 47.62 48.44
sab ~Å! 4.1 3.85 2.75 2.56 3.425 3.3 3.33 3.205

aValues from Ref. 7.
bValues from Ref. 12.
cValues obtained from the Lorentz–Berthelot rule @see Eq. ~27!#.

FIG. 1. Total structure factor of two He–Xe mixtures. Circles: experimental
data from Ref. 12; Lines: HMSA results. Parameters of ~a!: T5294.6 K,
xXe50.78, n59.4931021 atoms/cm3; Parameters of ~b!: T5294.6 K,
xXe50.48, n57.0831021 atoms/cm3. Other input quantities are from set 2 of
Table I.
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tally measured partial structure factors, Sab(k) are not avail-
able.

IV. LOCALIZATION OF SPINODAL LINES AND
CRITICAL POINTS

To locate the spinodal line of a binary mixture it is nec-
essary to fix the density of the mixture, and to change both
the composition and the temperature until vanishing eigen-
values of the diagonalization procedure of Sec. II are found.
By repeating such a procedure for different densities, it is
then possible to reconstruct the full line of critical points.

More specifically, we proceeded in the following way.
We started from a region where the system is homogeneous
and, for a given density, composition, temperature, and in-
teraction parameters, we solved the HMSA equations. We
then decreased the temperature, while keeping constant the
density and the composition. At this point, we evaluated the
eigenvalues, l1 and l2 , and we followed the one which ap-
proaches zero. Getting closer to the instability region, it be-
comes more difficult to find thermodynamically self-
consistent solutions of HMSA, and to locate the instability
point we performed a linear extrapolation of the behavior of
the smallest eigenvalue.15 We could perform the extrapola-
tion procedure for both branches of the spinodal line, i.e.,
x,xc and x.xc , where xc is the critical composition. For
densities and compositions too close to the critical point,
HMSA soon looses its solution at temperatures far from the
critical one, where the behavior of the smallest eigenvalue is

not yet linear with T . For this reason, we achieved the local-
ization of the critical point by interpolating the two dis-
jointed branches of the spinodal line.

As a summary of all this procedure, we show, in Fig. 3,
the spinodal lines and the line of critical points obtained by
using the interaction parameters of Table I ~set 2! corre-
sponding to Ne–Xe mixtures. The plot is done in the (x ,T)
plane and for different values of the density.

In addition to the vanishing eigenvalue, let say l1 , we
also determined the associated eigenvector X1~k50!. It gives
the linear combination (d n̄1(k50)) of composition
(dnC(k50)) and density (dnN(k50)) fluctuations, @see Eq.
~13!#, which becomes instable and drives the transition. A
measure of the relative weight of dnC(k50) and dnN(k50)
is given, in the (dnC,dnN) plane, by the angle a between the
axis dnC and the direction of X1~k50!. The values of a can
be obtained along all the spinodal line from the relation

a5arctanS X11~k50 !

X12~k50 !
D . ~29!

From Eqs. ~12! and ~13! we see that for a5690° the
transition mechanism is of a pure condensation/evaporation
~C/E! type, while for a50° we have a pure mixing–
demixing ~M/D! transition. However, in most cases, the
angle a is in between these two values, and the transition is
of combined type, since both the chemical and the mechani-
cal stability are violated.6

V. THE CRITICAL LINES OF NE–XE AND HE–XE
MIXTURES

As noted at the end of Sec. III, a task, which still re-
mains unclear in the modeling of realistic fluid mixtures
through the use of LJ potentials, is the choice of the param-
eters e12 and s12 for the mixed interaction. And such inter-
action parameters strongly affect the location of the spinodal
lines and hence of the critical points. Then, to systematically

FIG. 2. Total structure factor of a Ne–Xe mixture. Circles: experimental
data from Ref. 13; Lines: HMSA results. In ~a!, the HMSA results are
obtained by using parameter set 1 of Table I, while in ~b! has been used set
2. Other parameters are T5275 K, xXe50.81, n57.931021 atoms/cm3.

FIG. 3. Spinodal lines of Ne–Xe mixtures in the (x ,T) plane. The broken
line is the CPL. From top to bottom: n55.9631021, 7.0131021, 8.4131021,
9.8131021, 1.0531022, 1.1231022, 1.2631022 atoms/cm3. Interaction pa-
rameters from set 2 of Table I.
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check the effects of different values of e12 and s12 , we in-
troduce two parameters, h and j, which measure the devia-
tion from the LB rule according to

e125~11h !e12
LB ,

s125~11j !s12
LB .

We performed several calculations for different values
of h and j, and here we only present those results which
indicate more clearly the trends of the critical behavior, and
which are closer to the experiments. We found that changing
the value of h influences the behavior of the CPL more than
changing j. For this reason we show the results obtained by
fixing j to the value used in Ref. 7, j50.101, and by using a
variable h. Although the critical point values are affected by
numerical errors, which are generated by the interpolation
between the two branches of the CPL, we prefer to show the
results as they come out from the calculations, without any
smoothing.

In Figs. 4~a! and 4~b! we show the critical lines in the
(T ,P) and (x ,P) planes. The results are obtained by using
set 1 for the Xe–Xe interaction parameters, and different
values for the parameter h. It is evident that h must be cho-
sen negative, and this implies a lower value of «12 with re-
spect to the LB rule. From Fig. 4~b! we see that the (T ,P)
representation of the critical line gives a more severe test of
the theory. In this plane, the results for h520.454 and h5

20.655 somehow ‘‘bracket’’ the experimental data. We also
see that the curve corresponding to the less negative h is

strongly deviating from the realistic behavior, showing that
the LB rule is completely inadequate. In the (x ,P) plane the
theoretical results are closer to the experimental data, but
still the less negative h gives the worst results.

A better agreement with the experiments is obtained by
using, for the Xe–Xe interaction, the parameters labeled as
set 2 in Table I. The results are shown in Figs. 5~a! and 5~b!.
For h520.454 we get the best agreement with the experi-
mental data, at least in the lower pressure part of the CPL. It
is important to note that the ‘‘second-type’’ behavior of the
CPL in the (T ,P) plane is qualitatively reproduced by the
theory, although the agreement is only semi-quantitative.

More simple theoretical approaches give analogous re-
sults ~for short reviews see Schneider2 and Deerenberg,
Schouten, and Trappeniers7!, but the theory outlined in this
work has more predictive power. As it will be clear, it allows
an understanding of the microscopic phenomena which drive
the phase transition, a characterization of the transition
which is generated by crossing the CPL, and the prediction
of changes in the partial molar volumes, which could be
experimentally measured.

To these purposes we show, in Fig. 6~b!, an histogram
with the values of the angle a, which have to be associated
with the CPL of Fig. 6~a!. In correspondence with the critical
point of the pure Xe @not included in Fig. 6~a!#, the angle
a590° and the transition is of a pure C/E type. As we move
along the CPL by starting from the lowest critical pressure
~which also corresponds to a continuous decrease of xXe!, the
angle a decreases, and becomes a50° at the double critical

FIG. 4. Critical lines of Ne–Xe mixtures in ~a! (x ,P) plane and ~b! (T ,P)
plane. The line with empty symbols are experimental data from Ref. 7. The
full symbols are the results from the present theory. Interaction parameters
from set 1 of Table I. For other parameters, see the text.

FIG. 5. Critical lines of Ne–Xe mixtures in ~a! (x ,P) plane and ~b! (T ,P)
plane. The line with empty symbols are experimental data from Ref. 7. The
full symbols are the results from the present theory. Interaction parameters
from set 2 of Table I. For other parameters, see the text.
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point. This mean that for P<PDCP, the transition mechanism
smoothly changes from a pure C/E type to a pure M/D type,
passing through a variety of transitions simultaneously char-
acterized by both C/E and M/D. For P.PDCP, the angle a
becomes negative, and the transitions are again of a mixed
type.

To understand these results from a microscopic point of
view, we have to determine the fluctuations which diverge at
the instability points and which, then, drive the transition.
This can be done by analyzing Eqs. ~29! and ~13!, together
with the definitions of dnN and dnC given in Eqs. ~9! and
~10!. For a590° there is a divergence in the number density
fluctuations. For 0°,a,90° the divergent fluctuations are a
combination of dnN and dnC, in which both fluctuations
have the same sign. For a,0°, we still have a combination
of dnN and dnC but, this time, with a different sign.

If in the above-mentioned equations the sub-index 1
identify Xe and 2 Ne, we can conclude the following. On the
CPL and for P,PDCP ~0°,a,90°!, the macroscopic re-
gions of high density ~positive fluctuations of dnN!, and
which correspond to a new incoming phase, are more rich,
with respect to their 1-phase value, of Xe particles ~positive
fluctuations of dnC!. At the same time, the macroscopic re-
gions of low density ~the other new phase!, are more rich in
Ne particles. When, instead, we are on the CPL and
P.PDCP, the new incoming phase at high density are more
rich, always with respect to its 1-phase value, in Ne particles,
while the regions at low density are richer in Xe particles.
Then when we move along the CPL and we cross the PDCP

or, which is the same, when we cross the corresponding
xXe

DCP , there is a drastic change in the behavior of the sys-
tems, and at the DCP the transition is a pure M/D.

These observations are confirmed by the behavior of the
dilatation factor, D, introduced in Eq. ~11! and calculated
from the ratio of Eqs. ~7! and ~8!

D52

1

~x1x2!1/2

SNC~k→0 !

SCC~k→0 !
}2

^dnk→0
N dn

2k→0
C &

^dnk→0
C dn

2k→0
C &

,

the results of which are shown in Fig. 6~c!.
When DÞ0, a coupling between the density and compo-

sition fluctuations switches on. Such a coupling is absent
whenever there is a pure phase transition mechanism, like at
the DCP or at the critical point of pure Xe. When P,PDCP,
we have D,0 and negative ~or positive! fluctuations in the
composition which correspond, as we saw, to a local increase
of Ne particles ~or of Xe particles!, are coupled with negative
~or positive! fluctuations in the density which, in turns, cor-
respond to a local decrease ~or increase! of the density.
These considerations are exactly the same made for the case
of Fig. 6~b! with a.0. Analogously, the conclusions reached
for a,0 apply to the case in which D.0. Moreover, D being
a difference of macroscopic quantities, it can be experimen-
tally measured allowing a direct check of the results of Fig.
6~c!.

Figures 7~a! and 7~b! show the partial pair distribution
functions, gab(r), for cases, respectively, with a.0, D,0
and below the PDCP and for cases above PDCP ~a,0, D.0!.
The broken lines refer to xXe50.55, while the continuous
ones to the smaller fraction xXe50.45. Also at the level of
the gab(r), the systems show a qualitative different behavior
depending on which side of the PDCP they are. In particular,
the number of Xe particles in the first coordination shell of
gXe,Xe(r) increases in passing from xXe50.55 to xXe50.45
when P,PDCP @Fig. 7~a!#, while it is reduced for the same
change of xXe when P.PDCP @Fig. 7~b!#.

The behavior of the CPL of He–Xe mixtures is reported
in Fig. 8. For these mixtures, it was not possible to reproduce
the so-called ‘‘first type’’ behavior of the CPL in the (T ,P)

FIG. 6. ~a! Theory results for the CPL of Ne–Xe mixtures. Interaction
parameters from set 2 of Table I, and h520.454, j50.101. ~b! Values of a
corresponding to the circles in ~a!. ~c! Values of D corresponding to the
circles in ~a!.

FIG. 7. Pair distribution functions of Ne–Xe mixtures. Broken lines:
xXe50.55; continuous lines: xXe50.45. ~a! n58.7631021 atoms/cm3; ~b!
n51.7531022 atoms/cm3. Interaction parameters from set 2 of Table I and
T5299 K, n58.7631021, h520.454, j50.101.
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plane. As observed in the figure, all the theoretical results
have a wrong slope. They seem to slowly approach the right
behavior for negatively large values of h, while changes of j
do not improve the results. The ‘‘first type’’ behavior ap-
pears to be a still challenging and open problem in this kind
of statistical mechanics approach.

VI. CONCLUSIONS

In order to achieve a microscopic interpretation of the
gas–gas transition of binary mixtures of rare gases, we ap-
proached the problem within the framework of the density
functional expansion, which allows a detailed analysis of the
type of instabilities present in the systems. For the input
structure we used the HMSA closure, which shows a reason-
able agreement with the measured total structure factors in
the single phase region. After calculating the spinodal curve
for different values of the macroscopic thermodynamical pa-
rameters, we extrapolated the critical points and obtained the
line of the critical points. For the Ne–Xe mixture we get the
right qualitative behavior, with a critical point line showing a
double critical point. It turns out that the line is strongly
dependent on the parameters of the potential. Along the CPL
we follow the change of the type of transition, from pure
condensation–evaporation at the critical point of Xe, to the
pure demixing transition at the double critical point. We also
predicted the behavior of the partial volume difference along
the CPL. In particular we found that it is negative for pres-
sure below the double critical point and positive otherwise.
This behavior reflects how the density and concentration
fluctuations are related.

We stress that our microscopic approach, even if it is not
refined enough to find a quantitative agreement, gives some
understanding of the phase transition mechanism and allows
predictions which could be checked by experiments. There
are of course still a number of open problems. We recall that

we could not reach any agreement with the first type behav-
ior of the He–Xe mixtures, in spite of the reasonable results
obtained for the structure. Even in the case of Ne–Xe it
remains the problem of the best choice for the parameters of
the potential, which is also common to theoretical and com-
puter simulation approaches. We showed that these param-
eters are far from the Lorentz–Berthelot rule, and strongly
nonadditive contributions must be taken into account. A
more systematic study of different types of potentials, and of
combining rules for the mixed interaction is necessary. A
different behavior of the radial distribution functions has
been found above and below the DCP. It has to be deter-
mined whether this is due to changes in the effective atomic
forces across the DCP. On the other hand, it would be also
important to compare the results obtained from the integral
equation approximation with the computer simulation. This
is part of the future work that we intend to carry on.
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