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Abstract 

Artificial roughness have been provided under side of the absorber plate for improve in the friction factor, heat transfer and 

pumping power as compared to smooth one. Analysis and experimental investigation for fully developed turbulent flow of 

artificially roughened solar air heaters have been established to have a better performance as compared to smooth one under the 

similar operating conditions [1, 2]. Three sides glass covers with three sides artificially roughened solar air heater has been 

analyzed and investigated [3, 4], which result in enhancement of friction factor and heat transfer than existing one side artificially 

roughened ones. Three sides glass covers with three sides artificially roughened and existing one side artificially roughened 

collectors have been analyzed and optimized for maximum friction factor and heat transfer and minimum pumping power [5-7]. 

This paper represents an experimental investigation for the thermal analysis of three sides glass covers with three sides artificially 

roughened solar air heaters under actual outdoor conditions and compare well with smooth ones, also having three sides glass 

covers. 

 

© 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility ofthe organizing committee of RAAR 2016. 

Keywords: Friction factor, Heat transfer coefficient, Flow Reynolds number, Relative roughness height, Relative roughness pitch. 

1. Introduction 

Friction factor and heat transfer for tubes, artificially roughened collectors and annuli have been studied earlier by 

[8-11]. For enhancement of thermal performance, various solar air heaters have been developed and designed by the 

researchers over the years.  
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For solar air heaters it has been concluded that the low range of heat transfer coefficient between the absorber 

plate and flowing air, which increase the absorber plate temperature and resulting higher value of heat losses and 

lower value of thermal efficiency. Inclination of 60
0
 to artificial roughness using continuous ribs on the absorber 

plate, which results at higher relative roughness and low flow rate yields a better performance [12]. Transverse ribs 

have been used to enhance heat transfer coefficient [13]. Wire mesh roughness, wedge shape ribs, V-shape ribs, arc 

shape roughness, dimple shape roughness, combined inclined and transverse ribs, multi V-rib roughness, w-shaped 

ribs
 
[14-22], are the works on investigations and analysis, have been found qualitatively and quantitatively 

enhancement of heat transfer coefficient. By providing artificial roughness it has been concluded that there is an 

improvement of heat transfer coefficient, which results increase in pumping power, pressure drop and also higher 

value of thermal performance. This paper represents the experimental investigation for three sides glass covers with 

three sides roughened collectors under the actual outdoor conditions at different range of roughness and flow 

parameters and also compare well with smooth ones having three sides glass covers.  
 

Nomenclature 

 

 collector area, m
2
 k thermal conductivity of air, W/m K 

B solar air heater duct height, m  mass flow rate of air, kg/s 

Cp specific heat of air at constant pressure, J/kg K  Nusselt number 

D hydraulic diameter of solar air heater duct, m  average Nusselt number 

e roughness height, m  Nusselt number for smooth duct 

e
+
 roughness Reynolds number

4
,   Heat transfer enhancement factor 

e/D relative roughness height p pitch of roughness element, m 

f friction factor p/e relative roughness pitch 

fS friction factor for smooth duct Re flow Reynolds number 

fr friction factor for four sided rough duct T0 outlet temperature of air, 
0
C 

 average friction factor Ti inlet temperature of air, 
0
C 

 friction enhancement factor  average plate temperature, 
0
C 

 friction enhancement factor  average air temperature, 
0
C 

H convective heat transfer coefficient, W/m
2
K W width of solar air heater duct, m 

  SWG standard wire gauge 

2. Experimental study 

Fig. 1 represents the two rectangular collectors of similar size, smooth one and three sides roughened collector, 

whereas, Fig. 1(a) represent the photograph of measuring instruments. Both the ducts are having three sides glass 

covers. The total length of the ducts consists of entry sections for flow stabilization and test sections. Mass flow rate 

was varied by controlling the blower speed by means of a 3-phase auto-variac. G.I. wires of 20, 22 and 24 SWG 

were used as artificial roughness in transverse direction for three sides artificially roughened collector. Flange-tap 

orifice-meters in both the ducts (roughened and smooth) used for measuring the flow rates. Multi-tube manometers 

were used to measure the pressure drop, while thermocouples measured the air and plate temperatures. A 

pyranometer was used for measuring the intensity of solar radiation. Top side absorber plate having artificial 

roughness shown in fig. 1(b), whereas, fig. 1(c) shows the side walls of the absorber plate with artificial roughness.  
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A-Three sides smooth with three sides glass covers, B- 

Three sides glass covers with three sides artificially 

roughened, 1-Entry section, 2-Test section, 3-Orifice 

meter, 4-Blower 

Fig. 1 Block diagram of experimental set-up 

Fig. 1(a) Photograph of measuring instruments 

 

 
 

 
 

Fig. 1(b) Top absorber plate for three sides artificially 

roughened one 

Fig. 1(c) Side view of three sides artificially roughened 

one (two nos.)  

 

3. Results and discussions 

The data were collected simultaneously for both three sides smooth solar air heater and three sides artificially 

roughened ducts. Table-1 shows the range of flow parameters and roughness investigated. Figs. 2 and 3 represent 

the improvement of heat transfer for three sides glass covers with three sides roughened collectors and the smooth 

ones. The experimental values of heat transfer coefficient for three sides glass covers with three sides artificially 

roughened collectors and the smooth ones have been found out from Eq. (1) as under: 

  

                                                                                                                                   (1) 

 

For smooth and roughened collectors, the above equation has been used to find out the range of Nusselt number by 

using the equation: 

 

                                                                                                                                                                        (2) 
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Table 1 Range of flow parameters and roughness  

 

Sl. 

No 

Parameters Range of parameters 

1. Mass flow rate (Kg/s) 8.36 × 10
-3

 – 3.74 × 10
-2 

2. Reynolds number, Re 4000 – 20000 

3. Roughness height 0.6 mm – 1.1 mm 

4. Roughness pitch 6 mm – 30 mm 

5. Relative roughness pitch, p/e 10 – 30 

6. Relative roughness height, e/D 0.0135 – 0.0247 

 

Figs. 2 and 3 show the range of Nusselt number for three sides glass covers with three sides artificially roughened 

collector and three sides smooth one with the effect of the roughness parameters p/e and e/D respectively. Fig. 2 

shows the influence of p/e on heat transfer for a fixed value of e/D, equal to 0.0247. It has been found from this 

figure that at the decreasing values of relative roughness pitch, p/e and increasing values of the flow Reynolds 

number, Re, the values of Nusselt number increase, but at a quicker way than that in the smooth collector. It has 

been observed that for a flow Reynolds number of 9806, the corresponds to the values of Nusselt number are 58, 62 

and 66 in three sides roughened collector for p/e equal to 20, 15 and 10, whereas, it is 32 in the smooth collector. 

Fig. 3 shows the influence of e/D on heat transfer for a fixed value of p/e, equal to 10. It has been concluded from 

this figure that the values of Nusselt number increase with the increasing value of e/D, with enlarging values of flow 

Reynolds number, also at a rapid speed than that in smooth ones. It has been recorded that for a flow Reynolds 

number of 9806, the corresponds to the values of Nusselt number in three sides roughened collector are 56, 61and 

64 for the corresponding values of e/D, equal to 0.0135, 0.0225 and 0.0247 at a fixed value of p/e, equal to 10, 

while, it is 30 for smooth collector.  
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Fig. 2 Influence of p/e on heat transfer in three sides 

artificially roughened and smooth collector 

Fig. 3 Influence of e/D on heat transfer in three sides 

artificially roughened and smooth collector 

 

 

Figs. 4 and 5 represent results with respect to friction factor for three sides glass covers with three sides roughened 

and the smooth one for fixed value of p/e and e/D, respectively. The values of  has been taken from Moody chart 
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to find out for values of  by using Eq. (3) of [4],  written under as: 

                                                                                                                   (3) 

 

Fig. 4 represents the influence of p/e on friction factor for a fixed value of e/D, equal to 0.0247. It has been found 

from the figure that the values of friction factor increase with reduction in the value of the relative roughness pitch 

p/e, decrease with increasing values of the flow Reynolds number, Re for three sides glass covers with three sides 

roughened collector and the smooth ones. Similarly, Fig. 5 shows the influence of e/D on friction factor for a fixed 

value of p/e, equal to 10. It is quite clear from the figure that the values of friction factor enlarge with the enlarging 

in the value of relative roughness height, e/D and the values of friction factor decrease with enlarging values of flow 

Reynolds number, Re for three sides glass covers with three sides artificially roughened collector and the smooth 

ones.  
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Fig. 4 Influence of p/e on friction factor in three sides 

artificially roughened  and smooth collector  

Fig. 5 Influence of e/D on friction factor in three sides 

artificially roughened and smooth collector 

 

Inclusion of artificial roughness invariably increases friction factor, leading to more pumping power. The rate of 

heat transfer improvement due to inclusion of artificial roughness and that of friction factor have not been found to 

be the same. The heat transfer enhancement factor,  and friction enhancement factor, , defined by Eqs. 4 and 5 

respectively have been considered to represent the thermo hydraulic results as shown in Fig. 6, for fixed value of 

e/D equal to 0.0247 and changing values of relative roughness pitch and flow Reynolds number. Fig. 6 shows the 

results of heat transfer enhancement factor, , and friction enhancement factor, , with increasing values of 

Reynolds number for a given value of e/D, equal to 0.0247 at different values of p/e.  

 

                                                                                                                                                            (4) 

 

                                                                                                                                                                     (5) 
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It has been concluded could be seen from this figure that the values of both heat transfer enhancement factor and 

friction loss factor increase with the improving of flow Reynolds number. Fig. 6 also shows that for a fixed value of 

e/D the rate of increment of  is higher than that of  at varying values of p/e. In the range of the parameters 

investigated, the value of heat transfer increment factor is in the range of 0.378 to 0.487, while, it is in the range of 

0.384 to 0.491 for that of friction factor. At greater values of Reynolds number, the rate of improvement of heat  

transfer enhancement factor appears to be monotonous. It can therefore, be concluded that performance of such solar 

air heater could be better at lesser values of Reynolds number. 
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Fig. 6 Influence of Heat transfer enhancement factor and friction loss factor  

4. Conclusions 

Based on the experimental results and subsequent analysis, the following conclusions are drawn: 

A) Three sides glass covers with three sides artificially roughened solar air heaters have improved rate of heat 

transfer as compared to the smooth ones at the same operating conditions of mass flow rate. 

B) Heat transfer rate of three sides roughened solar air heaters improves with the increasing values of flow Reynolds 

number and relative roughness height for a fixed value of relative roughness pitch. 

C) It has been found that the range of values of Reynolds Number from 5000-13000, results better thermal 

performance in three sides glass covers with three sides artificially roughened solar air heater as compared to one 

side artificially roughened solar air heater and also three sides smooth solar air heaters.  

D) Three sides glass covers with three sides artificially roughened solar air heater have been established better 

thermal performance due to the more surface area, high turbulent flow and more heat transfer coefficient as 

compared to existing one side artificially roughened and also smooth collectors. 

E) Heat transfer rate of three sides roughened collectors improves with the improving values of flow Reynolds 

number and relative roughness pitch for a fixed value of relative roughness height. 

F) The values of Nusselt number for three sides glass covers with three sides artificially roughened and smooth 

collector have been established to be in the range of 31.24-75.62 and 20-40 respectively, for the varying values 

of parameters investigated. 

G) Heat transfer increament factor have been established to lie in between 0.378 to 0.487 in the varying values of 

parameters investigated. 
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