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without applied voltage conditien meri 1 was developed to compute solar heat
. And cost analysis was carried out to
the smart PDLC film glasses in voltage
ON/OFF ceonditi 2 i iof¥in heat gained/lost compared to generic
conditions. The reduced heat gained/lost in the smart
the net annual cost savings (heating cost + cooling cost). The
white smart PG (V) was observed to be the most energy-efficient smart
glass with the higliest annual air-conditioning cost savings ($ 101.76 in the SE of hot and dry
climate), lowest paybagk periods (12.71 yrs in SE of hot and dry climate), and adequate daylight
factors as compared to the other studied smart glasses in eight orientations of three climatic
conditions. The results help to design and select suitable glazing for sustainable and energy-

efficient solar passive buildings.

Keywords: Smart PDLC film window, Heat transfer through smart window, Air-conditioning

cost reduction, Thermal and cost assessment, Cost payback period.
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1. INTRODUCTION

Window glazing is the weakest thermal building element that transmits the heat in and out of the
building depending upon the external climatic conditions. Higher solar transmittance and U-
values of clear glass windows allow more solar radiation through the window glazing [1]. Heat
gained/lost through the glazing adversely affects the comfort of occupants and thermal
performance of the building [2,3]. The energy efficiency in buildings is an essential issue to

achieve a sustainable environment. Optimum design and selection indew glazing is a crucial

strategy for energy conservation in the buildings. Numerous experi and simulations have
been conducted to enhance the thermal performance of glazing.
glazing [5], Vacuum insulated glazing [6], and agro i ] have a
remarkable improvement in thermal insulation. ]ﬁti-layer

inert gases had shown an increase in thermal insulati

[11]. Titanium oxide (Ti0O;) added, t / vanadium oxide thermochromic

(TC) thin films produced and appli 5 dow systems. The simulation results of

energy propagation in near-infrared radiation with modulated transmittance [14]. Oxide-based

electrochromic glas§es, for the variable solar transmittance and energy savings [15,16] and its
feasibility in large window areas of commercial buildings [17]. The frequency of this color-
changing electrochromic polymer glasses was estimated with the help of spectrophotometry and
electrochemistry. Fast switching high contrast polymers can be made using the plasmonics for

glazing applications [18,19].

Polymer-dispersed liquid crystal glass (PDLC) is the switchable glazing used in the low

energy building design. It possesses modulated optical properties when an electric field is
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applied to it [20,21]. Optical properties [22], daylighting characteristics of PDLCs switchable
glazing [23], and the effect of atmospheric clearness index on their solar transmittance were
explored in detail in the transparent and translucent state [24]. The characterization of the large
area PDLCs' optical properties for the building and automotive applications showed a good
performance in controlling light and heat [25]. Scattering properties and transmission of the
PDLCs can be enhanced with large incident angles [26]. An energy analysis of an electrochromic

window over a span of 25 years in Greece climatic conditions had shown about 54 % energy

savings compared to clear glass [27]. Electrochromic glasses (EC) w ous transition ranges

from clear to fully colored state studied for energy savings in heating an oling requirements
of Mediterranean climate as a retrofit to clear and conven

concluded that EC glasses were the energy-ef&nt str.

and to minimize the power require S to maintain transparency. This can be

mer matrix with the smectic LCs [32].

DLC film glasses are the promising choice among all

external heating and cooling load [34].

The litera discussed reveals the significant gap for the investigation of smart PDLC

glazing to mitigat€ air-conditioning costs with adequate daylighting factors. Smart PDLC film
glass is capable of controlling the transmission of solar heat through it. These smart PDLC film
glasses can be used for numerous applications ranging from window glazing in hot climatic
conditions to buildings with large glazed shells [35]. Air-conditioning and lighting systems of the
building can be made much more energy-efficient by neutralizing/reducing thermal load at
glazing by providing adequate interior daylight factor. The smart windows can provide thermal
comfort, secrecy, and aesthetic looks to the buildings if used appropriately. The inappropriate

selection and placing of smart windows lead to higher air-conditioning costs, higher payback
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periods, and lower daylight factors. In the present study, smart PDLC film gasses in different
colors (White, Red, Yellow, and Blue) with applied voltage and without voltage evaluated for
the thermal performance and air-conditioning cost savings. Spectral properties of the smart
PDLC film glasses were explored experimentally with a spectrophotometer in the entire solar
spectrum. These properties were used to evaluate heat gain/loss and air- conditioning cost
savings in three climatic zones (hot and dry, warm and humid, and composite). The simulations
were also carried out to find average daylight factors. The smartzglasses for the highest air-

conditioning cost savings, lowest payback periods, and adequate aver light factors in three

climates were reported in this work.

2. MATERIALS ’

corporated into a

glasses or applied on

es (LCs) should have a similar refractive

polymer sol

PDLC films. Du

polymerization initiated after forming a homogenous solution to form the
polymerization, the liquid crystals (LCs) grow up in the polymer matrix.
Liquid crystals droplet§’sizes depend on the curing temperature and type of the LCs components.
Thermal-induced phase separation and Solvent-induced phase separation (SIPS) can also be used

to produce the PDLC films based on the applications and the operating parameters.

The PDLC films aid in simplifying design, curbing down the cost, and bringing a surge
in the lifetime in the atmospheres of high temperature and humidity in contrast to other

polarizers which tend off, peel off, and degrade more readily under such weather conditions. The
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ability to control solar transmission in the infrared region helps to attain energy efficiency by
mitigating the energy requirements for cooling and heating. A commercial PDLC film of 0.4 mm
thickness of four different colors (Blue, Yellow, White, and Pink) is applied over the 6 mm clear
glass on the outer side for experimentation. Fig. 1(a) represents the schematic of the smart PDLC
film glass and Fig. 1(b) depicts the working principle of the smart PDLC film glasses with
voltage ON and OFF conditions. In this study, smart PDLC film glasses with and without
applied voltage and clear glass were experimentally evaluated for optical properties, and air-
conditioning cost-saving analysis was carried out. Fig. 2 presents the four different smart PDLC
film glasses studied in this work with and without applied voltage. The power rating of PDLC

glazing is 2W per unit area of the smart window.

Fig. 1 a) Schematic of smart PDLC film glasses (b) Schematic of the working principle of smart

PDLC film glasses with and without applied voltage.

W . W
Fig. 2 Smart PDLC film glasses a) WSPG (NV) b) WSPG (V) ¢) BSPG (NV) d) BSPG (V) e)

PSPG (NV) 1) PSPG (V) g) YSPG (NV) h) YSPG (V)

3. EXPERIMENTAL METHODOLOGY

ulate heating and cooling loads through the
rt PDLC film glasses can be evaluated

(Perkin Elmer 930y, as presented in Fig. 3. The spectrophotometer is integrated with UV WinLab

software to record diStribution at an interval of 2 nm. This spectrophotometer uses Deuterium
and Tungsten-Halogen lamps as the sources in the UV-Vis and Near-infrared (NIR) regions,
respectively. The spectrophotometer's wavelength accuracy is of +/- 0.08 nm in the UV-VIS
region and +/- 0.30 nm in the Near-Infrared (NIR) region. The spectral data obtained from the
spectrophotometer deduced to get total solar optical properties (300-2500 nm) by a weighted
average method. Spectral transmission and spectral reflection were measured in diffuse mode

with a 10 mm integrated sphere at a zero-angle incidence [37].
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MATLAB codes were developed to evaluate transmittance, reflectance, and absorptance using

the following Eqgs. (1) to (3) as per British standards [38,39].

Solar transmittance, reflectance, and absorptance are the fractions of solar radiation transmitted,
reflected, and absorbed by the glazing of the incident solar radiation on the glazing. They were

obtained from Egs. (1), (2) and (3), respectively.

3300 Sat)Ax

Tsir =
YAZ500° Sa AL (1)
Re . = ZAz300 SN
SLR =
YAZ5000S2 AN 2)
Agir = (100 — Tsop, — RsoL) (3)

Figs. 4-7 demonstrate spectral transmission an blue, Pink, yellow, and white

smart PDLC film glasses in voltage Qi d clear glass. The solar

transmittance, reflectance, and absorptance g arent (Voltage ON) and translucent

with and withoufapplied voltage has been noticed in the near-infrared region (780-2500 nm). It

is also observed thatithe spectral transmission of all smart PDLC glasses in the visible range is
less compared to spectral transmission in the NIR range. Solar transmittance of the blue, pink,
and yellow smart PDLC glasses was computed as 12 %, whereas white smart PDLC was 11 %.
These solar transmittances of PDLC glasses were 84.40 to 85.70 % less as compared to the clear
glass. Solar transmittances of blue, yellow, white, and pink smart PDLCs without voltage were
computed as 8, 7, 7, and 5 % respectively, which is 89.5 to 93.5 % less compared to the

transmittance of clear glass.
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Figs. 4 (b), 5 (b), 6 (b), and 7 (b) depict the spectral reflection of the smart PDLC film glasses in
both voltage ON and OFF conditions. Spectral reflection of smart PDLC film glasses in voltage
ON condition was found to be higher than the spectral transmission of PDLCs in voltage OFF
condition in the entire solar spectrum. Blue smart PDLC has the highest solar reflectance in both
voltage ON and OFF conditions among the smart PDLCs studied. The solar reflectance of smart
PDLC film glasses was 3 to 4 times higher than the solar reflectance of clear glass. From the
solar absorptance results (Table 1) of the smart PDLCs, it is evident that smart PDLC glasses

1 smart PDLC film

absorb a considerable amount of solar radiation. The absorptance

glasses studied were 3 to 4 times higher than the absorptance of clear glas

Fig. 3 Integrating sphere spectrophotometer (Perkin®Elmer ith U inlLab are

Fig. 4 Spectral characteristics of White smart PDLC film glass a) Transmission b) Reflection

Fig. 5 Spectral characteristics of Blue smart PDLC la TranSmission b) Reflection
&5 5p PR i i

Fig. 6 Spectral characteristics of Pink smart PDLC film glass a) Transmission b) Reflection
Fig. 7 Spectral characteristics of Yellow smart PDLC film glass a) Transmission b) Reflection
Table 1 Measured solar optical properties of various smart PDLC film glasses (300-2500 nm)

4. MATHEMATICAL M

as elec

of the

gnetic waves with wavelength ranging
tion is concentrated in the visible (0.38
.78um-2.5um). The total solar irradiance that enters
is the sum of direct normal radiation (Ig), sky-diffuse radiation

(Lsir), and g

2500 nm was cO

ected radiatton (I,). Solar radiation in the wavelength range of 300 nm to
idered to calculate the heat gain through the glazing since most of the solar
energy lies in this range. Total solar irradiance (Wm™) that reaches the earth is related to solar
geometry, which comprises several angles. Solar azimuth and altitude angles depend on the
fundamental angles such as solar declination, latitude, and hour angle. Three climatic conditions
were considered, such as hot and dry (Jodhpur), warm and humid (Mumbai), and composite
(New Delhi) as per Indian standards and analyzed for heating and cooling loads. The analysis

was carried out during day time, between 6:00 am to 6:00 pm (LAT), and 7:00 am to 5:00 pm

(LAT) for peak summer and winter days, respectively [40,41]. The room set point temperatures
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are 24°C and 21°C, respectively for summer and winter as per ASHRAE (2001). Building
models of dimensions 4 m X4 m X 3.5 m were considered, and an optimum 40% window to wall
ratio (2.8 m X 2 m) was maintained as per standards [42]. The building models are considered as
commercial/office buildings that use the air-conditioning system (cooling and heating systems)
during diurnal hours. Thermal and cost assessment was carried out for three climatic regions,
such as hot and dry (Jodhpur: 26.2389° N, 73.0243° E), warm and humid (Mumbai: 19.0760° N,

72.8777° E), and composite (New Delhi: 28.6139° N, 77.2090° E) ia eight cardinal directions to

compute the solar heat gain/loss and energy savings. Total solar ra admitted in building
through the glazing is calculated as per the following procedure at aSgixen latitude as per

ASHRAE clear-Sky and intermediate sky models [43, 44].

Solar declination is the angle between earth equator& plane and@line to th from the center of
the earth, and it can be computed by Eq (4).

. (360(n + 284)
8, = 23.45 sm( o )
“)
Where n is day number (starting fro
Solar altitude is the angle magd ac ling ith a horizontal of the surface, and it is
the complement of the zenith
)
The solar ngular distance between the south (zero azimuth) and the
projection of b
sinagsinL — singg
COSA
cosagcosL (6)
Surface solar Azimuth angle is presented in the following Eq. (7)
Vs =As — ¥ (7)
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The surface azimuth angle is measured from the south of the orientation, and its value in the

various orientations are listed in Table 2 [45].
Table 2 Surface azimuth angle (V) in various orientations

The angle of incidence (0;) is the angle made by the beam radiation on a surface with normal of

that surface.

cos0; = cosa;cosy,cosfl — sinagsinf3 (8)
Clear day terrestrial solar irradiance (Wm) per unit area is rep
Irng = u
™R = exp(B/sinay) 9)
L Apparent solar irradiance at air
y is given by Eq. (10)
(10)

the glazing surface from the sky can be
(11)

1—smp> (12)
2

Igrr = (C + sin as)lTNRpg(

Where I, B, and C are the constants used for calculating solar radiation per hour for local

conditions in Indian climates [44, 46].
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Total solar radiation incident on any surface is the sum of direct normal radiation (Ig), sky-

diffuse radiation (I4;r), and ground-reflected radiation (Iyy). It is presented in Eq. (13)

It = (Igir + Lair + Igrr) (13)

The total radiation enters the building through glazing can be obtained from Eq. (14)

U
Isrsc = (Iair + Lair + Igrr)- (TSOL + h_aSOL> AgL
° (14)

U is the heat transfer coefficient, and it can be computed using E
U=1/(Rse + L1/K;s + L3/K; + Ry;) (15)
The values of R, and R; have been considered as 0.04 an 3m? , respectively, as
per CIBSE standards, and they can be computed Egs. nd 47].
1 (16)
R. =
*  hp+E
7)
( out)
umerica w

ere compared with the results of Chand et al. (2011)

[48] for idati . MATLAB code was executed for a 3 mm clear glass window of

the composite el Delhi (28.5 8N, 77.200E) to validate the results. The deviations

in the results ofthe, numerical model were within the range of £1%. So, these numerical model

codes were used to study, the thermal performance of the other glasses.

4. 1 Cost assessment methodology

To substantiate the glazing's energy efficiency, it is required to calculate the cost savings in energy
consumption. So, the annual air-conditioning cost savings of different smart PDLC film glasses
with and without applied voltage were calculated. The cost assessments were carried out for three

climates of India, such as hot and arid (Jodhpur), warm and humid (Mumbai), and composite (New
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Delhi) as per the following procedure [49]. The total radiation incident on the glazing at any
location for all the seasons can be calculated using Eq. (13). Solar radiation incident on the earth's
horizontal surface varies during summer and winter. Summer prevails from April to August,
whereas winter is from September to March. The total solar radiation (Qs, 1) incident on the glazing

during the summer is obtained from Eq. (18).
Qs;r = (IrsX30) apr + (IrsX31D)May + (ITsX30)jyn +
(IrsX31D)gu1 + (IrsX31) aug

(19).
Qw,r = (IrwX30)gep + (IrwX31)gee +
+ (IrwX31)jan + (Ipy

Qs X AgL X (SHGC¢g — SHGCspg) (20)
X Agp X (SHGC¢g — SHGCgpg) (2D

SHGCCG and S
film glasses.

The unit cost of natural gas and electricity is taken as $ 0.02/kWh and $ 0.08/kWh,

G are solar heat gain coefficients (SHGC) of clear glass and smart PDLC

respectively, as per the Indian scenario (converted to USD at market exchange rate). The least
efficiency of the furnace and the least possible COP of the cooling system are taken as 0.8 and
2.5, respectively [2]. Annual cooling costs savings (Cc, $/year) and an increase in annual heating

costs (Cy, , $/year) can be computed using the Egs. (22) and (23).
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C. = QRed X Ce (22)
¢ COP
C
Ch — anc X Lf (23)
n
Net annual air-conditioning cost savings of the glazing ($/year) can be computed using Eq. (24)
Cnet = Cc-Cp (24)

Payback period (years) and implementation cost (C;) of the smart PDLC film glazing was
computed using the Egs. (25) and (26).
PP = Ci/ Cnet (25)

(26)

Ci = (Cg+ Ces )AqL
a AA
Where C, is glazing cost, Agr is the area of glazing and Cg is the cost of energy supplied to
smart glass. The power rating of PDLC glazing is 2W per unit area of the smart window. The
annual energy required for a unit area of smart glass to operate is 17.52 kWh. Annual energy cost

supplied (C;) to a unit area of smart window glass is $ 1.4.

This numerical model assumes that the air-conditioner runs for all summer and winter
days of climatic regions considered. It does not consider the heat gain through a glass frame or
window frame. This model does not take into consideration of infiltration loads and internal
loads of the buildings. This numerical model considers only heat transfer through the glass's
thickness, but it does not take into account the heat transfer in the direction of the window's

length and breadth as per CIBSE standards.

S. RESUL DISCUSSIONS

5.1 Heat gain in ings of various smart windows in different climates

Solar radiation into the building through the various smart PDLC film glasses was
computed for peak summer and winter days of three different climatic conditions ((Hot and dry
(Jodhpur), Warm, and humid (Mumbai), and Composite (New Delhi)). All smart PDLC film

glasses with and without applied voltage and clear glass were studied for the heat gain/loss.

Fig. 8 depicts heat gain through various smart PDLCs film glazing in different

orientations of hot and dry climate (Jodhpur). The peak summer and peak winter days were
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observed for hot and dry climate city (Jodhpur) on 21st June and 21st December, respectively, in
line with the Indian standards. Fig. 8 reveals that the smart PDLC film glasses kept in the south
direction gain the lowest amount of the heat in summer and the highest in the winter. Smart
PDLC film glasses have shown the highest heat gain reductions in the voltage OFF condition
compared to voltage ON condition. In voltage OFF condition, pink-colored PDLC film glass
PSPG (NV) showed the highest heat gain reduction of 73.30 % compared to the clear glass in the
south direction. Both White and Yellow-colored PDLC film glasses have shown 71.95 %
reduction, whereas Blue colored PDLC films had shown the 71.21

tion compared to the

voltage have the approximately same heat gain reductions on

orientation. When voltage is applied to the PDLC.m gla

south orientation for all the studied gla

the summer, had experienced ig ! in it the winter. Pink-colored PDLC film glass

glass. With ag d voltage to the PDLC film glasses, there is an increase in the solar heat gain

White, Pink, Blue, and Yellow-colored PDLC film glasses with applied

through the glazi¥
voltage have 10.47, 19723, 10.20, and 14.13 % of more heat gain, respectively, compared to
respective glasses without voltage in the south orientation during the summer. When voltage is
applied to smart PDLC film glasses, the glass turns transparent and allows the more heat
gain/loss and daylighting through the glasses. All the glasses with applied voltage in all the

orientations had experienced more heat gain/loss than the same glasses without applied voltage.

Fig. 8 Heat gain through various smart PDLCs film glazing in different orientations of hot and

dry climate (Jodhpur).
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Fig. 9 presents heat gain through various smart PDLCs film glazing in different
orientations of warm and humid climate (Mumbai) during peak summer and winter days. The
peak summer and peak winter days were observed for a warm and humid city (Mumbai) on 15"
May and 21st December. It is observed that all the studied glazings in the south direction had the
lowest and highest heat gains during summer and winter, respectively. White-colored PDLC film
glazing, WSPG(V) with applied voltage had shown the highest heat gain reduction of 69.01 % in
the south direction during the summer among all other studied gl

glazing. BSPG (V), PSPG (V), YSPG (V) were responsible for the he

ings compared to the clear

reductions of 68.37,

the west orientation had experienced the highest heat gain a
winter, pink-colored film glazing was responsible ’the hi

among other glazings.

Fig. 9 Heat gain through various smart PDLCs fj

humid climate (Mumbai).

reduce the sola

the winter PSPG

gat gain during the summer is S < N < SE < SW < NE < NW < E < W. During
eceived the highest gain among other smart PDLC film glazing. During the
winter, the south-oriented window had received the highest heat again, while the north-oriented

window received the lowest heat gain.

Fig. 10 Heat gain through various smart PDLCs film glazing in different orientations of

composite climate (New Delhi).
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5.2 Yearly air-conditioning cost savings and payback periods of various smart window

systems in different climates

Net cost saving is an important parameter to assure the glazing energy efficiency
potential of the building since it includes both cooling costs associated with summer and heating
costs associated with winter. The cost payback period is the length of time required to return the

smart PDLC film glass's initial implementation cost. If the cost payb of the glazing is less

than the life span of the smart PDLC film glasses (25 years), they can ¢

energy savings.

applied voltage in SE direction accoun
film glasses without applied vg
»But the smart PDLC film glasses are used

with applied voltage in ilding ayli and through views. The smart glasses with

film glass wi oltage accounts for the lowest payback period of 12.11 years compared to the

clear glass. But it PDLC film glasses are used with voltage during the daytime to provide
natural daylighting an@ through views. In voltage ON condition, White PDLC film glass is
responsible for the lowest cost payback period of 12.71 years in the southeast (SE) direction. In
contrast, smart Blue, Yellow, and Pink PDLC film glasses accounted for the cost payback
periods of 15.39, 15.46 and 15.72 years, respectively. The cost payback period is found to be
lowest in the South-East (SE) orientation for all the smart PDLC film glasses studied because of

the high annual cost savings of respective smart glazing systems in that direction.
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Implementation cost and cost payback periods for the various smart glazing systems in the

South-East (SE) direction of Jodhpur were presented in Table 3.

Fig. 11 Yearly air-conditioning cost savings and payback periods of smart glasses of hot and dry

climate (Jodhpur).

Table 3 Cost payback period of various Smart PDLC film glasses in ast (SE) direction

of hot and dry climate (Jodhpur).

Fig. 12 depicts annual air-conditioning cos& i i smart glasses
of warm and humid climate (Mumbai). It is observed th i ilm glazing with

applied voltage (WSPG (V)) reported the hig i savings of $ 96.21 in

glasses placed in South-East directio
directions, and the glazings in tf h-East, and North-West directions had

reported the lowest cost savi

From Fig. 12, 1 t PDLC film glass with applied voltage

payback peri0 ompared to other directions. Glasses placed in North, North-East, North-West

directions have rep@ited the payback periods of about 100 years. So, it is not advisable to place

the smart glasses in thoSe directions.

Fig. 12 Yearly air-conditioning cost savings and payback periods of smart glasses of warm and

humid climate (Mumbai).

Fig. 13 depicts yearly air-conditioning cost savings and payback periods of smart glasses

of composite climate (New Delhi). All the smart glasses have shown air-conditioning cost
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savings in all directions. White smart PDLC film glazing with applied voltage had reported the
highest cost savings of $ 103.1 in SE direction compared to clear glazing. BSPG (V), YSPG (V),
and PSPG (V) were responsible for the air-conditioning cost savings of $ 102.08, $ 101.36, and $
99.99 in SE direction. All the smart glasses placed in SE direction have reported the highest air-
conditioning cost savings compared, among other directions. Cost savings of all the smart
glasses placed in South, South-East, South-West directions were relatively high compared to

other directions. The order of the direction to place the glazing for the high to low cost savings is

air- conditioning cost savings in that direction. art i and NW

directions have the highest payback periods over the 1 ars i Wer cost savings

in those directions. The preference order of the di ons lo igh payback periods is
SE<SW<KS<KE<KW<KN<KNE<<KNW.

Fig. 13 Yearly air-conditioni
climate (New Delhi).

k periods of smart glasses of composite

(ON/OFF) a rnificant as compared to conventional 6 mm clear glass windows. The small

difference in the ai=eonditioning cost savings between ON and OFF conditions of smart glasses is
due to their smaller difféfence in solar transmittance values. Though smart glazings' air-conditioning
cost savings have less difference, their view is different in transparent and translucent states. In  all
three climates, glazings in the SE direction had shown the highest cost savings. The northwest
(NW) direction is responsible for the lowest cost savings among all other orientations studied. The
preferable orientation order from the highest to lowest net annual cost savings point of view is SE <
SW <S <E <W <N <NE < NW in all three different climates studied. All the smart glasses with

PDLC films in the North-East and North-West directions had shown fewer cost savings with and
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without applied voltage to them compared to South-East direction. The order of preference of the
smart PDLC film glasses from the lowest cost payback period to the highest in all three different
climates is WSPG (V) < BSPG (V) < YSPG (V) < PSPG (V). All smart PDLC film glasses kept in
the North, North-West (NW) and North-East (NE) directions account for the long payback periods,
over the 100 years because of its low annual cost savings in those directions and the high initial cost
of glazing. So, it is not recommended to keep the smart PDLC film glasses in those directions. The
optimum orientation order to keep smart PDLC film glasses from t

periods is SE < SW < S <E < W <N <NE <NW.

lowest to highest payback

5.3 Average daylight factor of various smart Wi@)W syst

The average daylight factor (ADF) is the p

illuminance inside the building compared to outsi of daylight factors in the

for four best directions (high-cost
savings) to place the glazing dard sky and Clear day conditions were

assumed to compute the day i . TheSgmnimum average daylighting factor required is

d that all the smart glasses have the average daylight factors
above the reco

and winter. BSPG

ded levels of daylighting factors for the jodhpur city during both summer
YSPG (V), PSPG (V) have the same ADF values in all the directions
since they possess the same light transmission values in the visible range, and it is 141.6 %
higher than the recommended level in east direction. WSPG (V) smart glasses ADF values are
relatively low compared to remaining smart glasses in all the directions because of its low light
transmission values. Glazings placed in east direction had reported the highest daylight factor
values compared to other directions. The optimum direction to place the glass for high

daylighting factor values is E < SW < SE < S during the summer and SE < S < SW < E during
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the winter. It is seen that ADF values were higher during the winter compared to summer for all

the smart glasses studied in four best orientations.

Fig. 14 Average daylight factor of various smart windows in a hot and dry climate (Jodhpur)

Average daylighting factors for a warm and humid climate (Mumbai) were simulated in
four cardinal directions and presented in Fig. 15. All the smart glasses during the summer and
ded level. The ADF
WSPG (V) records

winter have recorded a high average daylighting factor than the re
values are high and low in the east and south directions, respec
117.6%, and remaining smart glasses record 141.6 % more

values in the east direction. The optimum order Qle ori

the south. During the winter sequence of the di

SE <E.

Fig. 15 Average daylight factor of
(Mumbai)

Average daylighting 1tc climate (New Delhi) were simulated and

ig. 16. All the smart glasses during both

ADF, whereas{gémaining smart glasses have 141.6 % more ADF values than the recommended

values in the east'ditection during the summer. During the winter, ADF values are high in the
south direction, amon® other directions. South direction ADF values are 255.2 % more for
WSPG (V) and 280.8 % more for the remaining smart glasses than the recommended daylight

factor values.

Fig. 16 Average daylight factor of various smart windows in composite climate (New Delhi)

6. CONCLUSIONS
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This paper presents a mathematical model to assess the thermal performance and annual cost
savings of various smart PDLC film glasses with and without applied voltage in all eight
orientations of three different climatic regions. The spectral properties of PDLC film glasses
were explored experimentally using a spectrophotometer in the transparent and translucent state.
The effect of applied voltage (ON/OFF) on the opacity was presented. This work suggests the
optimum orientation to keep the window glazing for the highest annual air-conditioning cost

savings. The daylight factor and payback periods of the various s PDLC film glasses were

also presented.

e From Figs. 11, 12 and 13, it is observed that the White ilm glass (WSPG
(V)) in the South-East (SE) orientation ac%mts for_t

cost savings ($ 101.76 in a hot and dry climate) wi

e The white smart PDLC film gl3 nomically more feasible, with the
ot and dry climate) in all three climatic
asses for the lowest payback period in all

YSPG(V) < PSPG(V).

ver payback periods. It is not advisable to keep the smart glazing in the
North (N), North-East (NE) and North-West (NW) orientations, because of its long
payback periods of about 100 years, which is much longer than the life span of PDLC
film (25 years).

e Modulated solar optical properties of the smart PDLCs, such as solar transmittance and

reflectance, significantly affected the thermal performance and air-conditioning cost
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558 savings. Solar transmittance of white smart PDLC glass (WSPG (V)) was 85.71 % less,
559 and reflectance was observed to be four times higher than the clear glass.
560 This paper's findings are useful in designing energy-efficient smart window systems for

561 reduced heating and cooling loads. The results are also helpful in retrofitting existing window

562  systems with smart window systems to attain energy efficiency in buildings.

563 Nomenclature

564  AgL Area of the glazing installed[m?]

565 A, Solar azimuth angle [Deg]

566  Agir Total solar absorptance in the entire solar spectru
567 ADF Average Daylight Factor [%]

568 B Atmospheric extinction coefficient&

569 BSPG (NV) Blue smart PDLC film glass without Molt
570 BSPG (V)  Blue smart PDLC film glass with ge

571 b, Width of the air space between glas ]

572 C Sky radiation coefficient

573 CG Clear glass

574 C. Annual cooling

575 Ce

576 Ces

577 C

578 G,

579 Ch

580 (O]

581  Ciet

582 COP t of performance of the cooling system [-]
583 E Emissivity factor [-]

584  h;, Inside heat transfer coefficient [ Wm'zK'l]

585  hgu Outside convective heat transfer coefficient [Wm'2 K'l]
586 h;, Radiative convective heat transfer coefficient [Wrn'2 K'l]
587  h Solar hour angle [Deg]

588 I Apparent solar irradiance at air mass, m=0[Wm'2]
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589  lgr Sky-diffuse solar radiation [Wm'z]

590 Iy Direct solar radiation from the sun [Wm'z]

591 Iy Ground reflected solar radiation [Wm'z]

592 It Total incident solar radiation [Wm'z]

593  Imr Solar radiation at normal incidence [Wm'z]

594 IST Indian Standard Time

595 K| Thermal conductivity of inside glass [Wm K]
596 K, Thermal conductivity of PDLC film [Wm K]
597 L Latitude [Deg]

598 L, Thickness of the glass [m]

599 I, Thickness of the PDLC film [m]

600 N Day number, starting from January 1% a

601 PDLC Polymer Dispersed Liquid Crystal

602 PP

603  PSPG (NV)
604  PSPG (V)

605  Qunc
606  Qred
607 Ry

608  Rgir
609 Ry
610 SHGC
611 Sy

612 ta
613 Tsir
614 U Overall heat transfer coefficient [Wm'zK'l]

615  WSPG (NV) White smart PDLC film glass without Voltage
616  WSPG (V)  White smart PDLC film glass with Voltage

617 WWR Window to wall ratio

618  YSPG(NV) Yellow smart PDLC film glass without Voltage
619  YSPG(V) Yellow smart PDLC film glass with Voltage
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Greek letters
Ol Solar altitude angle [Deg]
a(r) Spectral absorption of smart PDLC film glass
B Smart window system inclination with normal of the surface [Deg]
Vs Surface solar azimuth angle [Deg]
s Solar declination [Deg]
Efficiency of the furnace [%]

i Solar incidence angle [Deg]
A Wavelength [nm]
AA Wavelength interval [2 nm)]
Pe Ground reflectance factor [-]
p(A) Spectral reflection of smart PDLC f
T™(A) Spectral transmission of smart PD
Y Surface azimuth angle [D
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773  TABLES:
774
775 Table 1

776  Measured optical properties of smart PDLC film glasses in the solar spectrum (300-2500 nm)

S.NO Glass material Transmittance (%) Reflectance (%) Absorptance (%) SHGC (%)

1 Clear glass (bmm) 77 7 16 81
2 WSPG(NV) 7 24 69 23
3 WSPG(V) 11 27 62 25
4 BSPG(NV) 8 25 67 23
5 BSPG(V) 12 28 60 26
6 PSPG(NV) 5 22 73 22
7 PSPG (V) 12 23 65 27
8 YSPG(NV) 7 24 69 23
9 YSPG(V) 12 27 61 26
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790 Table 2

791  Surface azimuth angle (V) in various orientations

Orientation N NE E SE S SW W NW
Surface azimuth 180 -135 -90 -45 0 45 90 135
angle (W)

792

793  Table 3

794  Implementation cost and cost payback periods of various Smart PDL asses in South-East

795  (SE) direction of hot and climate (Jodhpur)

796
Glazing C,y($/m?) C. ($/m?) PP (Years)
WSPG(NV) 229.6 0 12.10
WSPG(V) 229.6 14 12.71
BSPG(NV) 275.6 0 14.67
BSPG(V) 275.6 15.39
PSPG(NV) 275.6 108.18 14.26
PSPG(V) 275.6 1551.2 98.64 15.72
YSPG(NV) 275.6 1543.36 106.18 14.53
YSPG(V) 275. 1551.2 100.34 15.46
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