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We propose three dimensional-graphene nanonetworks (3D-GN) with pores in the range of

10� 20 nm as a potential candidate for thermoelectric materials. The 3D-GN has a low thermal

conductivity of 0.90W/mK @773K and a maximum electrical conductivity of 6660 S/m @

773K. Our results suggest a straightforward way to individually control two interdependent

parameters, r and j, in the nanoporous graphene structures to ultimately improve the figure of

merit value.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883892]

The energy-conversion efficiency of a thermoelectric

material is evaluated by a dimensionless figure of merit

(ZT), defined as ZT¼S2rT/j, where S is the Seebeck coeffi-

cient, r is the electrical conductivity, j is the thermal con-

ductivity, and T is the temperature.1 To be competitive with

conventional refrigerators or power generators, thermoelec-

tric materials with a ZT value greater than 3 are highly desir-

able.2 The key problem in increasing ZT lies in the

conflicting interdependence between the Seebeck coefficient,

the electrical conductivity (which should be high) and the

thermal conductivity (which should be low).3 The thermal

conductivity can be written as j¼jphþjel, where jph is the

lattice thermal conductivity and jel is the electronic thermal

conductivity. jel can be varied by doping the materials,4

whereas jph cannot be reduced below a critical limit without

distorting the lattice structure.5 In general, jph is greater

than jel for most thermoelectric materials. The various

approaches to reducing jph include but are not limited to (i)

changing the dimensionality of structures,6 (ii) making com-

posite materials,7 or (iii) using porous materials.8,9 Out of

the different approaches, porous structures seem to be a

more viable option because the degree of reduction in the

thermal conductivity is higher than the reduction of electrical

conductivity by an order of magnitude. For example, Yang

et al. reported the reduction of thermal conductivity by 2

orders of magnitude in nanoporous silicon structures with

holes of different pitch sizes (55 nm, 140 nm, 350 nm) while

preserving sufficient electrical conductivity. Synder and

co-workers have extended the concept to mesoporous Bi2Te3
which shows a nearly 50% reduction (1.2W/mK @ 300K)

in thermal conductivity compared to non-porous samples

(2.4W/mK @ 300K).3 However, most of the telluride based

thermoelectric materials are toxic and hazardous to the envi-

ronment. Recent report validates the possibility of nanopo-

rous graphene/carbon to a wide variety of applications.10,11

Recent reports on theoretical studies of 2D-graphene anti-

dot lattices (GAL) illustrate very low thermal conductivity

values accompanied by one order reduction in electrical

conductivity values; but not many experiments have been

reported on GAL.12 Shi et al. reported that macroscopic

graphene-based foam (MGF) with a pore diameter of around

500lm has low thermal conductivity, due to the randomly

dispersed pores.13 However, there is more room to improve

the ZT value in this structure. Based on findings by Yang, a

major reduction in the thermal conductivity can be attained

when pore size is smaller than the phonon mean free path

(MFP). The phonon MFP of graphene at room temperature is

�775 nm,14 so nanometer sized pores could cause a more

effective drop in the thermal conductivity values than micron

sized pores. We hypothesized that by introducing pores with a

diameter of 10� 20 nm into graphene, the thermal conductiv-

ity could be greatly reduced to a large extent while maintain-

ing a reasonable electrical conductivity.

The detailed synthesis procedure of nanoporous three-

dimensional graphene networks (3D-GN) is described else-

where.15 Briefly, �20 nm silica particles were coated with

poly vinyl alcohol/iron chloride solution and carbonized at

1000 �C for 30min under inert conditions. The silica particles

and the residue materials were removed by means of chemical

etching leaving behind porous graphene powders. The pow-

ders were dried at 90 �C for 3 h and used for further character-

izations (Refer to supplementary material16 for more details).

Fig. 1(a) shows TEM images of the 3D-GN with pores

around 10–20 nm; pores are highlighted in orange color. The

pore size agrees well with that of the silica particles used for

synthesis. The inset is a large area SEM image of 3D-GN

FIG. 1. (a) TEM image of 3D-GN highlighting pores in orange colour. The inset

shows a large area SEM image of 3D-GN, (b) Raman spectrum of 3D-GN.
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showing uniform distribution of the pores (see Figure S3 in

supplementary material). Fig. 1(b) shows the Raman spec-

trum of the synthesized 3D-GN powder. The spectrum indi-

cates low defects in the samples, which is also reflected by a

good ID/IG ratio. The integrated height method was used to

calculate the ratio of Raman peaks, and the ID/IG and I2D/IG
ratios were found to be 0.15 and 0.63, respectively, which

proves the crystallinity of the sample. The intensity of the

2D peak shows the graphene has few to many layers.

Fig. 2(a) indicates the electrical conductivity of 3D-GN

measured over a temperature range of 298–773K. The pel-

lets used for the measurements were consolidated at 1273K

under a pressure of 50MPa for a holding time of 5min using

a spark plasma sintering system (Dr. Sinter, SPS-systex,

Japan). The electrical conductivity of the material is given

by

r ¼ nel; (1)

where n is carrier concentration, e is the electronic charge,

and l is the mobility. The electrical conductivity increases

with temperature from 5210 S/m at 298K to 6660 S/m at

773K, indicating the appearance of semiconductor nature of

3D-GN. This can be attributed to the distortion of sp2 lattice

caused by the presence of pores, which causes the behaviour

of 3D-GN to change from a semi-metal to a semiconductor.

In GAL structure, the bandgap opening depends on the

dimension of the holes as well as the wall distance between

the holes.17 The bandgap opening makes a nonzero effective

mass which considerably degrades carrier mobility, resulting

in an inverse relation with mobility in the graphene nanorib-

bon structures.18 The electrical conductivity values in

3D-GN are higher than the previously reported values for

nanoporous carbon19 (3030 S/m). Using Hall Effect measure-

ment, the carrier concentration of 3D-GN was evaluated

using n¼ 1/eRH, where RH is the Hall coefficient. The value

of n for 3D-GN was 1.21� 1019 cm�3 at room temperature.

Fig. 2(b) shows the thermal conductivity of 3D-GN

measured using a laser flash apparatus (LFA 457) over tem-

perature range. The thermal conductivity of the material can

be calculated using

j ¼ adc; (2)

where a is the thermal diffusivity, d is density, and c is

the specific heat. The thermal conductivity values increases

from 0.54–0.90W/mK over temperature range of 298–773K,

due to electron-phonon nonequilibrium at high electron

temperatures.20 This can be explained using the Wiedemann-

Franz law,21 Ke¼rLTe, where r is charge conductivity, L is

the Lorenz number (¼2.45E-8 WXK�2),22 and Te is the elec-

tronic temperature. In our samples, the contribution of pho-

nons is dominant over the entire temperature range, as

evidenced from electronic thermal conductivity values (Fig.

2(c), calculated from the Wiedemann-Franz law) which are

much lower than phononic thermal conductivity values (Fig.

2(d)), thus confirming electron-phonon nonequilibrium in

3D-GN. The electron-phonon non equilibrium also exists in

nanoporous gold structures20 and GAL structures23 reported

earlier. Importantly, the 3D-GN showed greatly reduced ther-

mal conductivity values than the few layer graphene (FLG)

(1300–2700W/mK) as will be described in Fig. 3. The j value

of FLG can be varied depending on any one or a combination

of the following processes: boundary scattering, charged

FIG. 2. (a) Electrical conductivity of 3D-GN, (b) the total thermal conductivity of 3D-GN, (C) the electronic thermal conductivity and (d) the phononic thermal

conductivity of 3D-GN.
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impurity scattering, and Umklampp process. In FLG samples,

the scattering from the surface (top & back) of the graphene

and charged impurity scattering of the graphene are minimal

whereas the major reduction in thermal conductivity is gov-

erned by the Umklampp process.24 The reduction in j value

of 3D-GN due to pores might cause a reduction in phonon

group velocities and flattening of the phonon band, which

causes change in Umklampp process. This large difference in

the j value is also due to the numerous interfaces of the

3D-GN, which interrupt phonon transport. In addition, the

3D-GN can be assumed to be a partly phononic crystal, wherein

the pores act as channels of air between carbon atoms, which

also contributes to the low j value. The necking effect which

was observed as a major cause of the reduction in thermal con-

ductivity values of other porous materials such as nanoporous

Si,25 nanoporous Ge,9 etc. was also present in our material.

The thermoelectric properties of 3D-GN measured at

room temperature were compared with previously reported

data of other carbon-based thermoelectric materials as shown

in Fig. 3 and Table I. We confirmed much enhanced perform-

ances of our 3D-GN compared to those of others. First,

3D-GN presents a much reduced thermal conductivity but a

somewhat lower electrical conductivity than those of FLG.

Since our structure resembles a GAL structure, the r is inevi-

tably lower than FLG, and this may be attributed to (i) open-

ing of the electronic band gap due to pores and (ii)

the dangling oxygen bonds around holes, which cannot be

eliminated in our experimental constraints.28 Second, differen-

ces in the structures which control heat transport properties

were observed between 3D-GN and MGF. The thermal con-

ductivity of 3D-GN is 4 times lower than that of MGF

whereas electrical conductivity is higher than MGF structures,

implying much improved thermoelectric properties of 3D-GN

to MGF. This is because the pore size and distance between

walls in 3D-GN are in the nm range, whereas they are in the

order of lm in MGF structures. Third, the degrees of the

increase in r and decrease in j of the 3D-GN are slightly

superior to very recently reported data from carbon nanotube

(CNT). The decrease in thermal conductivity values in 3D-

GN is attributed to the nm-size-hole porosity and roughness,

both of which increase heat resistance by acting as centres for

phonon scattering, which interrupts phonon transport through

the structure, as we had hypothesized. Even though the electri-

cal conductivity of the 3D-GN is found to be lower than FLG,

it is comparatively higher than the values for CNT and MGF

and can further be further improved by doping. Importantly,

the contrast in values between the thermal and electrical con-

ductivities suggests the possibility of increasing the r-to-j

ratio through nanoporous structures.

In conclusion, we have studied the effects of nanometer-

sized-holes in graphene over a wide temperature range, and

illustrated the possibility of high ZT value in topological

insulators of nanoporous three dimensional structures. The

results suggest that the thermoelectric performance of nano-

porous graphene is better at high temperatures (>600K)

than in the low temperature region (<400K). Our result vali-

dates the hypothesis that two interdependent parameters, r

and j, can be individually controlled in the nanoporous gra-

phene structures to ultimately enhance the ZT value.
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