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Time Series Classification based Correlational
Neural Network with Bidirectional LSTM for

Automated Detection of Kidney Disease
Navaneeth Bhaskar, Suchetha M, and Nada Philip

Abstract— In this paper, we aim to explore the feasibility of salivary
analysis for Chronic Kidney Disease (CKD) detection and thereby
design an automated mechanism to detect CKD through analysis
of human saliva samples. We have implemented an improved deep
learning model that combines both a one-dimensional Correlational
Neural Network (1-D CorrNN) and bidirectional Long Short-Term
Memory (LSTM) network for making accurate predictions. The LSTM
network is integrated with the neural model to utilize the capabil-
ities of both these networks to analyze the time-series data. The
proposed model is trained and tested with a CKD sensing module.
The application of deep learning algorithms helps to improve the
detection accuracy as they are capable of discovering the best
features from the input data. The proposed method achieved an average accuracy rate of 98.08% for the testing dataset.
The results show that the proposed detection module and classification algorithm substantially advance the current
methodologies, and provides more accurate predictions compared to conventional methods.

Index Terms— Convolutional neural network, correlation, chronic kidney disease, long short-term memory, salivary
diagnosis.

I. INTRODUCTION

A
CCORDING to the latest medical report on kidney

disease, about 323 million people are affected by CKD

globally. Serum urea and creatinine are the widely used

biomarkers in CKD diagnosis [1]. Apart from balancing the

water level, the kidney’s primary functions include the removal

of waste products like creatinine and urea from the body.

Creatinine is a chemical material released during the metabolic

activity of the muscles. Urea is also a chemical substance,

which is generated during the processing of proteins. The

amount of urea and creatinine in the body increases with an

increase in the severity of kidney disease. A blood test is

usually performed to diagnose kidney disease, which estimates

the levels of either urea or creatinine in the blood serum

[2]. Extracting blood samples for diagnosis is not always

considered the best approach, as it is an invasive procedure.

The biofluid saliva is gaining recognition as a significatory

fluid in the diagnostic and prognostic applications [3]. Saliva

can be considered as an effective alternative to the blood

sample for detecting many diseases as it contains several

disease determining biomarkers present in the blood. New
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research studies show that the saliva sample can be utilized for

CKD diagnosis [1], [4]. Saliva contains urea and creatinine,

which are the recognized CKD biomarkers. In the present

study, we have examined the levels of urea in the saliva sample

to identify kidney disease. There are various methodologies

and apparatus available for urea measurement. However, most

of the approaches are based on clinical trials, which take

more time for analysis because of their intricate detection

processes. As the current detection strategies and methods are

not ideal for the proposed method, a new detection module is

implemented in this work.

In traditional data processing methods, suitable feature ex-

traction algorithms are used prior to the classification process.

The need for a separate feature extraction process makes tradi-

tional hand-engineered approaches computationally slow and

less effective for large data sets and for certain applications.

Deep learning networks like CNN can overcome the short-

comings of traditional learning techniques [5]. In the CNN

algorithm, the optimal features are extracted automatically.

The CNN models are actually designed for image processing,

video processing, and other applications where the input is

usually a two dimensional (2-D) signal [6]. Recent research

works show that CNN can be employed to analyze 1-D signals

[7], [8]. However, only a few studies so far have used 1-D

CNN algorithm for signal processing applications. Applying

CNN for the analysis of 1-D signals was first introduced by

Kiranyaz et al. [7]. In their work, the authors have designed a

novel 1-D CNN architecture for the characterization of ECG
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signals for detecting heart-related problems. The authors have

tested the network with the MIT-BIH arrhythmia database. In

a similar study, Acharya et al. [9] adopted CNN for detecting

arrhythmia using different intervals of ECG segments. Zhang

et al. [10] have designed a 1-D CNN architecture for the

analysis of physiological information in humans. In their

work, an ensemble CNN model was developed to improve

the efficiency and robustness of the individual CNN models.

Ince et al. [8] have developed a 1-D version of CNN for

identifying the errors in motors. Wu et al. [11] have developed

a neural model based on 1-D CNN for analyzing human knee

movement. In a recent work, the authors have developed a

deep learning model by remodeling the 2-D CNN design to

make it feasible for 1-D applications [12]. Their model was

used for identifying cardiorespiratory abnormalities, and they

attained a prediction accuracy of around 96%.

Although the CNN algorithm functions extremely well, its

performance can be further enhanced by making a few changes

in its network structure. In this work, we have developed a

new Correlational Neural Network (CorrNN) that can provide

improved classification performance for automated diagnosis

applications. As the name indicates, the proposed network

uses a correlation layer instead of the convolution layer for

extracting the features. In addition to the correlation network,

a bidirectional LSTM network is also used in the model

for learning the temporal dynamics in the data. CNN-LSTM

combined network was initially introduced for sequence pre-

diction applications with spatial inputs like images or videos

[13]. Interestingly, a few recent studies have adopted CNN-

LSTM networks for analyzing 1-D signals. Shu et al. [14]

have implemented an LSTM based CNN architecture for

automated diagnosis of arrhythmia. Similarly, Tan et al. [15]

have developed a CNN-LSTM hybrid network for automati-

cally detecting coronary artery disease from ECG recordings.

Further, Ay et al. [16] presented a CNN-LSTM network for

computerized detection of depression in humans by examining

the EEG signals, where they have achieved an accuracy of

99.12%. The authors claim that the proposed model can be

applied in hospitals to recognize the depression issues in the

patients using the EEG signals. In our architecture, we choose

to employ bidirectional LSTMs as they are proven superior

in handling temporal sequences. Highly efficient algorithms

are needed for processing the medical signals automatically.

The proposed correlational network is more efficient compared

to conventional CNN and can provide improved classification

accuracy.

To the best of our knowledge, this is the first time a

correlational neural network is developed with bidirectional

LSTM for analyzing the 1-D time-series signals. The rest of

this paper is divided into four sections. Section II explains the

design structure of the proposed network. Section III describes

the material and methods. The performance evaluation and

validation results are presented in section IV. The conclusion

of the work is given in section V.

II. ARCHITECTURE OF THE PROPOSED MODEL

The proposed deep learning network is designed by mod-

ifying the structure of the traditional CNN algorithm. The

network architecture of the proposed 1-D CorrNN-LSTM

model is shown in Fig. 1. The architecture consists of cor-

relation and sub-sampling layers followed by bidirectional

LSTM layers and a fully connected classification layer. The

main component in the architecture is the correlational layer.

The correlation layer and the sub-sampling layer performs

the feature extraction operation to extract the optimal features

from the input signal.

A. Correlation Network

We have applied the correlation procedure in place of

the convolution operation for extracting the features in the

proposed model. Convolution and correlation operations are

commonly used in signal processing applications. The con-

volution process is similar to the correlation process with a

small difference. In the convolution operation, the filter is

flipped by 180 degrees before performing the convolution

process. Nevertheless, the convolution operations referred to in

deep learning networks are actually cross-correlation operation

because the kernel is not flipped before applying it to the

input. Kernels play a crucial role in extracting the features

[17]. Flipping of the kernel will invert the kernel values and

will lead to a different output. So, flipping of kernels is not

performed in the case of neural network learning.

As far as deep learning networks are concerned, the corre-

lation and convolution operations are identical. However, the

correlation network presented in this work is a new approach

and is different from the existing learning models. In the

CorrNN architecture, we have applied the cross-correlation

process to extract the optimal features. Correlation is a simple

operation where the filter is placed over the input signal,

and the sum of the products of the overlapping values are

computed. This operation is repeated by shifting the same

filter over the entire input signal. The correlation operation

between a 1-D input signal I and a kernel k is mathematically

represented as:

k ◦ I(x) =

n
∑

i=−n

k(i)I(x+ i) (1)

The correlation process will find the correlation between

the two input signals. We get the features from the input

signal based on the kernel selected for the correlation process.

However, for choosing the kernel size and type, there is no

direct method or guideline. The best approach for kernel

selection is the trial and error method, where we need to

test the network with different kernels and choose the one

which gives the most relevant result. Usually, a standard

gaussian kernel is used along with 1-D CNN models [18].

As the similarity between the signals is determined in the

correlation operation, a kernel procured from the input data can

deeply examine the signal’s characteristics. Therefore, we have

designed and implemented adaptive kernels for the correlation

operation. The dimension of the kernel is determined on the

basis of the input signal’s size for each stage. The details of the

adaptive kernel are explained along with the implementation

of the proposed network in section III-C.
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Fig. 1: Block representation of the proposed 1-D CorrNN-LSTM network

B. Long Short-Term Memory

LSTM is a deep learning network that is commonly used in

the analysis of time-series signals. This network is designed

as an improvement to conventional Recurrent Neural Network

(RNN). LSTM can deal with the long term dependency

problems far better than RNN. LSTM network has memory

blocks to handle the issues related to vanishing gradients

[19]. This network has the ability to memorize the long-

term historical information. The operations on the memory

block are managed using adaptive multiplicative gates. The

LSTM unit implemented in our architecture comprises of an

input gate It, an output gate Ot and a forget gate Ft. LSTM

can selectively retrieve or neglect any information by using

the memory state. Important information is remembered and

back-propagated and the unnecessary information is neglected

by the network. Bidirectional LSTM is an improvement to

conventional LSTM where the forward and backward hidden

layers are combined for accessing both the preceding and

succeeding data. Bidirectional LSTM can handle the sequential

modeling challenge better than conventional LSTM [20].

The primary step in LSTM is to identify the data to be

discarded from the cell state. The decision on this is performed

by the activation function. A sigmoid activation function is

applied in this study. The values of this function vary between

-1 and +1. The three gate structures are computed using the

following equations:

It = σ(WiXt +RiHt−1 + bi) (2)

Ft = σ(WfXt +RfHt−1 + bf ) (3)

Ot = σ(WoXt +RoHt−1 + bo) (4)

where bi, bf and bo are the bias gates, Wi, Wf and Wo are the

input weights, and Ri, Rf and Ro are the recurrent weights. σ

represents the sigmoid activation function, Xt represents the

current input and Ht−1 denotes the previous block output.

The modulated new memory Zt is computed as:

Zt = tanh(WtXt +RtHt−1 + bt) (5)

where Wt and Rt represent the input weight and recurrent

weight respectively, and tanh(·) is the hyperbolic tangent

function.

The current memory cell Mt is computed as:

Mt = It ⊙ Zt + Ft ⊙Mt−1 (6)

where Mt−1 represents the previous memory cell content and

⊙ denotes the element-wise multiplication operation.

The output of the LSTM unit is the hidden state Ht and it

is estimated as:

Ht = Ot ⊙ tanh(Mt) (7)

The LSTM network’s output signal is applied to the classifi-

cation module to perform the final classification task.

C. Fully Connected Classification Layer

The fully connected Multilayer Perceptron layer (MLP) is

used after the LSTM network to perform the classification

operation to map the extracted features to appropriate classes

[21]. Assuming l as the current layer, the input of kth feature

signal of this layer is represented as:

xl
k =

ml−1

∑

j=1

corr1D(wl
k,j , z

l−1

j ) + blk (8)

where blk represents the bias, wl
k,j represents the kernel weight

from jth signal at (l-1) layer to the kth function at the current

layer l, and zl−1

j represents the output of jth function on (l-1).

The kth feature signal output is represented as:

zlk = A(xl
k) (9)

where A represents the activation function.

The weights and bias of the network are randomly as-

signed during the initial phase. The gradient descent and

back-propagation algorithm are introduced to train the model.

The initially assigned weights are updated by the succeeding

repetitions of these two algorithms. The learning method of

the CorrNN includes finding the error E and its gradient ∂E
∂x
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Fig. 2: Snapshot of the test setup (Signal acquisition module

is shown in the inset)

for evaluating the difference in weights. For reducing the

error function, the derivatives of the error are estimated with

reference to its weights.

∂E

∂wl
k,j

= ∆wl
k,j (10)

∂E

∂wl
k,j

=
∂E

∂xl
k

∂xl
k

∂wl
k,j

(11)

By taking the derivative of the activation function, ∂E
∂xl

k

is

obtained as:
∂E

∂xl
k

=
∂E

∂zlk
A

′

(xl
k) (12)

Finally, the weights are updated as follows:

wl
k,jnew = wl

k,j + γ∆wl
k,j (13)

where γ is the learning rate.

The forward and backward propagation procedures are

repeated till the error is minimized. The error value decreases

in each iteration step. After the training process, the testing

dataset is given as input to the trained model.

III. MATERIAL AND METHODS

A. Signal Acquisition Module

We have implemented a new method for urea detection.

The concentration of urea in the saliva sample is determined

by converting it into ammonia gas. For converting urea to

ammonia, we have adopted the conventional enzymatic trans-

formation process [22]. Urease enzyme supplied by Calzyme

Laboratories is used for this conversion reaction. This enzyme

has the ability to hydrolyze urea molecules into ammonia. The

conversion reaction is to be carried out in a closed chamber.

So, we have specially designed a gas chamber with an internal

capacity of 212ml. The gas chamber is designed with an input

opening at the top. The enzyme needed for the conversion

is placed under the input valve in a small petri dish. A

semiconductor-based MQ-137 sensor, which is very responsive

to ammonia gas is used to measure the gas generated inside the

chamber [23]. MQ-137 ammonia sensor developed by Hanwei

Electronics is used in the sensing model. The reactive material

of this sensor is a stannic oxide layer on its surface. This

sensor requires a circuit voltage of 5V for its operation. A

heater voltage of 5V is also given to the sensor for providing

the required temperature. Figure 2 shows the photograph of

the testing module and the experimentation. To analyze the

static and dynamic properties of the sensor, it is initially tested

with different concentrations of ammonia gas. Ammonia gas

is introduced into the gas chamber using a micro-syringe and

the behavior of the gas sensor is monitored. The sensor’s

response depends on the ammonia gas concentration inside the

conversion chamber. It is seen that the output voltage of the gas

sensor changes corresponding to the ammonia gas variations

inside the chamber. The sensor showed linear behavior with

increasing concentrations of ammonia gas. We have carried

out our preliminary analysis in a controlled environment by

operating the sensor in its conventional working state to reduce

the impact of humidity and all interfacing gases.

B. Saliva Collection and Testing

The samples are collected from 104 participants for the

experimental analysis. Subjects selected for the study includes

64 CKD patients and 40 healthy individuals. Saliva samples

are collected in a 5ml graduated cylinder using the spitting

approach. 1ml of saliva is collected from each subject with the

assistance of medical professionals. The sample examination

is done by dropping 1ml of the sample through the inlet valve

using a dropper. Hydrolysis of urea occurs within the chamber

when the sample is dropped onto the urease enzyme. Ammonia

gas is generated in this reaction process. The sensor’s conduc-

tivity varies according to the ammonia gas produced inside

the chamber. This difference in the conductivity is transformed

into a voltage with the help of a simple electrical circuit. An

Arduino Uno microcontroller board is connected to the sensing

module for acquiring the sensor reading and for converting the

signal. The sensor signal is recorded for every 0.1 seconds, and

it is recorded for 100 seconds so that the output is obtained

for a longer period. The sensor response waveform obtained

for a healthy and CKD test sample is illustrated in Fig. 3.

In this work, we are not manually extracting the features

for the classification process. The features are automatically

extracted by the proposed neural network model. Therefore,

even the minute variations in the sensor response will be

considered for computing the feature maps. The proposed

research work is conducted in compliance with the ethical

standards of the Declaration of Helsinki. The objective of the

study was explained to the participants, and their consent was

taken before the experimentation.

C. Feature Extraction and Classification

The raw signal obtained from the sensor is first normalized

before giving it to the learning networks. Normalization of

the sensor response is done to ensure that the amplitude of

the sensor is within a specified level. The following equation

is used to normalize the signal:

s(n) =
x(n)− 1

P

∑P
n=1

x(n)
√

1

P

∑P
n=1

(x(n)− 1

P

∑P
n=1

x(n))2
(14)
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(a) Sensor response graph for a healthy test sample

(b) Sensor response graph for a CKD patient

Fig. 3: Graphs displaying the sensor output signal for a healthy

and CKD test sample

where x(n) is the signal sampled to 1000 points and P is the

number of data points in the input signal.

The normalized signal is correlated with the kernel filter to

obtain the most desirable features from the sensor response.

The proposed network has six correlation and pooling stages.

Initially, we have carried out the correlation process with

a predefined gaussian kernel. Subsequently, we tested the

network with our time-series adaptive kernels. It is observed

that the correlation works better with our adaptive kernels as

the correlation operation measures the similarity between the

kernel and the input signal.

As the size of the input signal is 1×1000, the kernel for the

first stage should have a dimension of 1×1000. To achieve this,

we have taken the average of sensor readings recorded for all

the 40 healthy cases, and this averaged signal is used as the

kernel. For deriving the kernel for the second correlation stage,

the kernel used for the previous stage is correlated with itself.

The correlation of kernel is performed to make the kernel

and correlated signal characteristics the same. The correlation

will produce a signal with a size of 1×1999. The correlated

kernel signal is divided into multiple sections by applying

the sliding window algorithm with segment size five. After

the segmentation process, 399 subsections will be generated.

The peak value from every section is selected for deriving

the kernel function. Therefore, the dimension of the kernel for

the second stage will be 1×399. Next, for deriving the kernel

signal for the third stage, the kernel applied for the second

stage is correlated with itself. The correlated signal is then

split into different segments by retaining the segment size as

TABLE I: DETAILS OF NETWORK STRUCTURE AND

SIGNAL DIMENSION

Layers Input signal Kernel size Correlated signal Output signal

1 1 × 1000 1 × 1000 1 × 1999 1 × 399

2 1 × 399 1 × 399 1 × 797 1 × 159

3 1 × 159 1 × 159 1 × 317 1 × 63

4 1 × 63 1 × 63 1 × 125 1 × 25

5 1 × 25 1 × 25 1 × 49 1 × 9

6 1 × 9 1 × 9 1 × 17 1 × 3

Fig. 4: Bidirectional LSTM operation for three time steps

five, and the maximum value from each section is selected.

Hence, the size of the kernel obtained for the third stage will

be 1×159. The same steps are repeated for deriving the kernel

signals for the remaining stages. Consequently, kernel signals

with proportions of 1×63, 1×25 and 1×9 are obtained for the

last three correlation layers, respectively.

The kernel signal is slid over the input signal by keeping the

stride value as one. Simultaneously, the sum of the products

of the overlapping values is computed. The first correlation

process will generate feature maps with 1999 values. The

segment size is set as five for all the pooling procedures. Thus,

after the first pooling operation, the size of the feature map

will be 1×399. The output of the first correlation layer will

serve as the input for the second correlation layer. This signal

is correlated with the second kernel to produce layer 2. This

is followed by the second pooling process, which decreases

the feature map dimension to 1×159. As our architecture

is designed for six stages, the same procedure is repeated

until layer 6. The kernel size and the signal dimensions are

presented in Table I. A reduced feature map with a size of

1×3 is obtained after the final correlation operation.

Optimal features are obtained after performing the correla-

tion and pooling operations. Extracted features are given to the

bidirectional LSTM layer. The memory blocks in the LSTM

network is used to learn the previous input for a long duration

[16]. The data flow is controlled using the three gates. The

input gate decides what information should be saved in the

memory block. The output gate makes decisions on the data

stored in the memory block. The amount of information to

be saved or discarded in the memory block is decided by the

forget gate. The data which is temporarily saved are fused



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

Fig. 5: Flowchart of the proposed model

with the previous memory state. The bidirectional LSTM will

process the data in both directions by using individual layers.

The input data and the values at every succeeding layer are fed

to both forward and backward layer. The bidirectional LSTM

operation for three time steps (t − 1, t and t + 1) is shown

in Fig. 4. There are no hidden-to-hidden connections between

the layers. The output layer of the network receives the data

by associating the forward and backward layers. The output

of the LSTM module is given to the final layer of the model,

which is the MLP layer. The MLP performs the classification

task and makes the prediction. Training of the network is done

using back-propagation and the resultant error is reduced using

the gradient descent method.

IV. RESULTS AND DISCUSSION

The normalized sensor output signal is given to the proposed

network for the analysis and classification. The last pooling

layer feeds into the bidirectional LSTM network. The output

of the LSTM layer is fed to the classification model. The flow

diagram of the steps involved in the proposed learning model

is illustrated in Fig. 5. In this work, the classification problem

is to identify CKD and healthy samples. This is a binary

classification as there are only two classes i.e CKD class or

healthy class. The classifier needs the training to identify how

the given samples are associated with the particular class. The

algorithm can identify whether CKD is there or not for a

particular sample once it is trained. The proposed network

is built and trained in Matlab 2017b environment.

The performance of the designed network is examined by

evaluating the performance parameters. For comparing the

performance of the proposed model, we have implemented dif-

ferent traditional algorithms. The network algorithms analyzed

in this work are SVM classifier with Principal Component

Analysis (PCA) and Singular Value Decomposition (SVD)

algorithms, RNN, Shallow CNN, 1-D CNN-MLP algorithm

with six layers and CNN-SVM hybrid network with different

kernels. All these algorithms are tested with the same input

samples. SVD and PCA are the traditional feature extrac-

tion techniques. The features extracted by these algorithms

are classified using the SVM classifier. RNN is commonly

used in time series prediction. RNN network transforms the

independent activations into dependent ones by offering the

same weights and biases to every layer of the network. CNN

with a single hidden layer is the shallow CNN model. In the

CNN-MLP algorithm, CNN works on feature extraction and

MLP does the classification task. The CNN-SVM algorithm

is implemented with linear kernel, polynomial kernel, sigmoid

kernel and gaussian kernel.

To evaluate the efficiency of the learning models, the

accuracy rate is calculated based on the following formula:

Accuracy =
NP

NT

× 100% (15)

where NP and NT represent the correctly predicted samples

and total samples, respectively.

Other parameters considered for performance evaluation are

precision, sensitivity, specificity, False Negative Rate (FNR),

False Discovery Rate (FDR), Matthews Correlation Coefficient

(MCC), Negative Predictive Value (NPV), F1 score, False

Positive Rate (FPR) and Misclassification Rate (MR). Ten-fold

cross-validation is performed to estimate the model perfor-

mance. Accordingly, the samples were divided into ten equal

parts. Out of the ten subsamples, nine are used for training the

model, and the remaining one subsample is applied as a test

sample for validating the performance. This process is repeated

ten times by changing the test dataset. The performance

parameter values are evaluated after every iteration. Finally,

the average of these ten iterations is estimated to assess the

performance of the model. MSE values of 0.145 and 0.148 are

obtained for the proposed 1-D CorrNN-LSTM algorithm and

traditional 1-D CNN algorithm respectively. Figure 6 shows

the comparison of the MSE plot.

The measured parameter values are summarized in Table

II. The features extracted through SVD and PCA are sepa-

rately classified using the SVM classifier. The PCA-SVM and

SVD-SVM models have classified the data with an average

accuracy rate of 88.46% and 89.42%, respectively. The RNN

model classified the samples with 92.57% accuracy. As the

features are automatically extracted in CNN-based algorithms,

they have performed better than SVD-SVM and PCA-SVM

algorithms. The conventional CNN-MLP algorithm attained a

classification accuracy of 96.49%. The performance of CNN

got better when an SVM classifier is used in place of MLP. The

CNN-SVM with gaussian kernel has performed slightly better

than other kernels. The proposed correlation network achieved

the highest accuracy rate compared to all other networks

analyzed in this study. The confusion matrix obtained for the
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TABLE II: PERFORMANCE MEASURES OF DIFFERENT NETWORK ALGORITHMS

Algorithms Accuracy Sensitivity (%) Specificity (%) Precision (%) FPR FNR NPV FDR F1 Score MCC MR

SVD-SVM 89.42 92.19 85.01 0.908 0.15 0.078 0.872 0.092 0.915 0.776 0.106

PCA-SVM 88.46 92.19 82.5 0.894 0.175 0.078 0.868 0.106 0.908 0.755 0.115

RNN 92.57 94.31 96.18 0.958 0.038 0.057 0.947 0.041 0.951 0.905 0.074

Shallow CNN 95.05 94.3 95.74 0.953 0.042 0.057 0.947 0.046 0.948 0.91 0.049

CNN-MLP 96.49 98.04 95.24 0.943 0.048 0.019 0.984 0.057 0.962 0.929 0.035

CNN-SVM

(Linear)
97.27 96.08 98.41 0.98 0.015 0.039 0.968 0.02 0.97 0.945 0.027

CNN-SVM

(Sigmoid)
96.42 96.08 96.83 0.961 0.032 0.04 0.968 0.039 0.96 0.945 0.036

CNN-SVM

(Gaussian)
97.37 98.03 96.82 0.961 0.031 0.019 0.987 0.038 0.977 0.947 0.026

CNN-SVM

(Polynomial)
97.14 98.43 95.12 0.969 0.048 0.015 0.975 0.03 0.977 0.939 0.029

Proposed 1-D

CorrNN-LSTM
98.08 98.44 97.5 0.984 0.025 0.016 0.975 0.016 0.984 0.959 0.019

Fig. 6: Comparison of mean square error plot of CNN algo-

rithm and proposed algorithm

proposed classification model is shown in Fig. 7. The 1-D

CorrNN-LSTM network has effectively classified the samples

as a ‘healthy’ or ‘diseased’ sample with an average accuracy of

98.08%. The misclassification rate of the proposed algorithm

is 0.019. The use of bidirectional LSTM in the network has

improved the functionality of the model to classify the signals

with varying sequence lengths.

We have evaluated the computing time of the proposed

algorithm and it is compared with the conventional CNN

model. As the computing time of the algorithm depends on

the processor speed and configuration of the system, it is

important to consider the specifications of the system used

for the analysis. In our experimentation, we have done the

analysis on an Intel i7-7700HQ four-core 2.8GHz processor

laptop computer with 16GB DDR4 RAM. As we are using a

larger kernel for the correlation process, the feature extraction

time will be more for the CorrNN model compared to CNN.

The time taken for feature extraction is 1.146s for the proposed

network, which is a little high value compared to that of the

CNN model. As the difference in the computing speed is very

less, it won’t affect the classification performance much. The

total time taken for computation by the proposed algorithm

is 2.427s. The conventional CNN-MLP has taken only 2.174s

Fig. 7: Confusion matrix obtained for the proposed model

for computation.

To verify the test results, clinical validation is also carried

out. Validating the results helps us to ascertain how good the

proposed networks can classify a person being examined is a

kidney patient or not. In clinical practice, kidney patients are

detected by determining the Glomerular Filtration Rate (GFR)

[24]. The GFR of all the subjects was measured using the

clinical analysis. This test is the widely recognized method to

diagnose CKD. A non-CKD person will have a GFR higher

than 90mL/min. Out of the 104 samples tested, the proposed

method has classified 64 samples under the CKD class and 40

samples under the healthy category. This model misclassified

only two samples. The GFR of 63 subjects who have been

classified under the CKD category by the proposed model,

had GFR less than 90mL/min. 39 healthy samples are correctly

classified under the healthy category by the proposed model.

Further, we have performed a t-test and obtained a p-value of

less than 0.05. This confirms that the results are statistically

significant. The experimental outcome shows that the proposed

network has the potential to be used for automated detection

applications. Automated disease detection models like this

are very useful in a country like India, where doctors and

paramedical staff are facing immense pressure in managing a

disproportionately larger number of patients.

V. CONCLUSION

In this work, we have developed a novel sensing model

and a hybrid deep learning network that combines both Cor-
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rNN and bidirectional LSTM for detecting kidney disease.

The CorrNN will learn the local properties and the LSTM

network learns the sequences from the signals. To explore

the capabilities of the proposed technique, experiments are

carried out with the hardware sensing module. The saliva-

based approach presented in this work will be more acceptable

to patients as the sample extraction method is stress-free and

painless. The performance of the implemented networks is

evaluated by determining the various performance parameters.

The proposed hybrid model attained promising performance

in the automated detection of CKD. The prediction accuracy

rate achieved by the proposed method is 98.08%, and it is

higher than other traditional methods. This study shows that

the integration of LSTM with the neural network model can

provide better efficacy when processing 1-D signals. Further,

we have performed the clinical validation and the result

shows a good correlation with our experimental results. Future

research will focus on the VLSI circuit implementation of the

proposed model.
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